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Deep reinforcement learning 
with significant multiplications 
inference
Dmitry A. Ivanov 1,2,6, Denis A. Larionov 2,3,6, Mikhail V. Kiselev 2,3,7 & Dmitry V. Dylov 4,5,7*

We propose a sparse computation method for optimizing the inference of neural networks in 
reinforcement learning (RL) tasks. Motivated by the processing abilities of the brain, this method 
combines simple neural network pruning with a delta-network algorithm to account for the input 
data correlations. The former mimics neuroplasticity by eliminating inefficient connections; the latter 
makes it possible to update neuron states only when their changes exceed a certain threshold. This 
combination significantly reduces the number of multiplications during the neural network inference 
for fast neuromorphic computing. We tested the approach in popular deep RL tasks, yielding up to 
a 100-fold reduction in the number of required multiplications without substantial performance loss 
(sometimes, the performance even improved).

Modern deep learning (DL) gravitates towards large neural networks, with ever-increasing demands for compu-
tational resources to perform basic arithmetic operations, such as multiplication. When used with contemporary 
DL hardware, known to face the limitation of the von Neumann  bottleneck1, this results in a substantial energy 
consumption and significant delays during the network inference. At the same time, the human brain is capable 
of inferring with remarkable efficiency by dismissing the irrelevant signals and connections, consuming just 
10–20 W for basic cognitive  tasks2. Such efficiency motivated our study to optimize the DL inference by taking 
into account only significant signals. Specifically, we consider the inference in RL tasks, using the popular Atari 
games  environment3 as the sandbox.

In the brain, the presence of regular dense layers is not evident. Instead, the brain employs neural rewiring 
as a means to eliminate inefficient and unnecessary  connections4. At the same time, recent  studies5–7 demon-
strate that in many cases significant part of neural connections are excessive and can be removed without a 
drop in the neural network’s predictive power (or with a negligible one). The optimization technique, known 
as pruning, represents a method to attain structural sparsity within a neural network. The conceptualization of 
this approach can be traced back to the  1990s8,9. Today, there are multiple strategies for identifying redundant 
connections within neural networks, including the examination of absolute values, the Hessian matrix, decom-
position methods, and  others5,10.

Moreover, neural networks often anticipate the input data in a form of sequential highly correlated signals or 
frames, as observed in domains like video, audio, monitoring and control problems, including RL. In such tasks, 
the information processed by a neural network at time step t closely resembles what it analyzed at the time step 
t − 1 . This phenomenon is referred to as temporal sparsity, also characteristic of the perceptual systems in the 
 brain4,11. Some studies propose various optimization algorithms for neural networks handling such temporal 
sparse  data12–15. These approaches are based on the idea of asynchronous updates, where only the states of neu-
rons that have changed significantly, compared to the previous step, are updated. It is worth noting that the brain 
neurons also operate asynchronously, transmitting signals to each other only when necessary.

A typical neural network layer could be represented as a matrix-vector multiplication combined with the 
application of a nonlinear transformation. Therefore, for the input vector x, the jth value of the output vector y 
could be represented as

yj = f (w
j
1 ∗ x1 + · · · + w

j
n ∗ xn),
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where f is a nonlinear function applied to the Multiply and Accumulate (MAC) operation. The MAC operation 
is the summation of products of the input vector elements and the respective weights w. If at least one operand 
in any of such multiplications is zero, then such multiplication could be omitted. In this work, we refer to a 
multiplication of two numbers as significant if neither operand is equal to zero.

In this study, we propose a combination of the two aforementioned approaches to optimize the inference of 
Neural Networks in RL tasks with the video inputs. More specifically, we optimize the inference of a popular 
DQN  algorithm16 for the Atari games. The pruning approach yields a 2–8× reduction in the number of signifi-
cant neural network multiplications. The second part of our approach achieves a further 10–50-fold reduction. 
When combined, these approaches result in a 20–100-fold reduction in the number of significant multiplications, 
without notable performance loss and in some cases, even enhancing the original performance.

The proposed combination of these methods is biologically inspired and exhibits neuromorphic properties 
for fast information  processing1. To the best of our knowledge, such an approach has never been applied in deep 
RL problems.

Background
Deep Q-network
In RL  tasks17, an agent receives the current environment state s as an input, after which it selects action a, and 
then it goes to a new state s′ , and it receives a certain reward r. The agent’s goal is to maximize the total reward.

More strictly, the environment is formalized as a Markov decision process. A Markov decision process (MDP) 
is a tuple (S, A, P, R), where S is a set of possible states and A is a set of possible actions. P is the function describ-
ing transition between states; Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) , i.e., the probability to get into state s′ at 
the next step when selecting action a in state s. R = Ra(s, s

′) is the function describing receiving rewards. It 
determines how big a reward an agent will receive when transitioning from state s to state s′ by selecting action a.

The strategy an agent uses to select its actions a depending on state s is called a policy and is usually denoted 
by the letter πθ where θ denotes policy parameters.

One way to solve an RL task is Q-function-based approaches. A Q-function has two parameters - s and a. 
Qπθ (s, a) estimates what cumulative reward the agent following policy πθ will receive if it performs action a from 
state s and then follows policy πθ . If complete information about an environment is available, the exact value of 
a Q-function can be calculated. However, the knowledge of the world is usually incomplete and the number of 
possible states is enormous. Therefore, the Q-function can be approximated using neural networks. This approach 
named DQN (Deep Q-Network) was demonstrated by DeepMind  in16. In the present study, we use this algorithm 
to train Neural Networks for Atari RL tasks.

Pruning and lottery ticket hypothesis
The authors  of7 have proposed the Lottery Ticket Hypothesis. The hypothesis states that when at any stage of 
neural network training the smallest weights by absolute value are pruned (set to zero and frozen) and the 
remaining weights are reset to the values they had before the training, and then neural network training is 
resumed, the training capabilities of such neural network will remain the same. However, this does not happen 
if we set the remaining weights to random (not initial) values. Furthermore, the investigation reveals that sparse 
neural networks, which have undergone such pruning and training, can exhibit superior performance compared 
to unpruned neural networks.

In  practice7,18,19 neural network iterative magnitude pruning by absolute value is usually used. This approach 
involves training neural networks, followed by pruning a small percentage of their weights (typically 10-20%). 
The remaining weights are then reset to their initial values, and this process is repeated for a specified number 
of iterations, denoted as M. Consequently, given a pruning rate of v, the fraction f of pruned weights can be 
computed as follows:

where i is the pruning iteration. Figure 1 displays the relationships between the fraction of pruned weights and 
various values of i and v.

In18,19 it was shown that the phenomenon of the Lottery Ticket Hypothesis is observed in RL tasks as well. In 
particular, the authors  of19 investigated this phenomenon within the context of the DQN algorithm.

DeltaNetwork algorithm
The output values of the neural network layer number k + 1 can be written as:

where xk+1 ∈ Rn is the output of k + 1 neural network layer, xk ∈ Rn is the input of k + 1 neural network layer 
(output of k layer), Wk ∈ Rnxn is the weight matrix, and bk ∈ Rn is the bias. In a conventional neural network, for 
every new input vector xk(t) in the moment of time t a total recomputation of output value xk+1(t) is required, 
which will require n2 multiplications. However, the following should be noted:

(1)f =
pruned_weights

total_weights
= 1− (1− v)i , i ∈ [0 : M)

(2)ok+1 =Wkxk + bk

(3)xk+1 =f (ok+1)

(4)�xk(t) =xk(t)− xk(t − 1)
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Thus, it is possible to recompute layer output values at the moment of time t using Eqs. (4), (5), (6) using layer 
input changes that occur relative to the state at the moment t − 1.

This remark does not lead to neural network optimization by itself. But we can introduce threshold T for 
output value changes �xk(t) such that recomputation of succeeding neurons is started only when an output 
value exceeds this threshold.

Authors  of12,13 call this approach “Hysteresis Quantizer”. To implement it, it is necessary to introduce an 
additional variable x_prev(t) into each neuron. Such a variable will be used to record the last transmitted value. 
Thus, the following Algorithm 1 will be run on each neuron:

Related works
To the best of our knowledge, we present the first attempt to combine the temporal and the structural sparsity 
for optimizing inference in RL tasks. However, there are several publications that applied  pruning18,20 and other 
optimization techniques to RL problems, e.g.,  distillation21. Also, there are works that employ the DeltaNetwork 
algorithm for convolutional and recurrent neural  networks13,22,23.

Methods
In the previous section, we described two neural network optimization algorithms: Pruning and DeltaNetwork 
Algorithm. The following neural network optimization becomes possible when these approaches are applied 
jointly:

(5)ok+1(t) =Wk�xk(t)+ ok+1(t − 1)

(6)�xk+1(t) =f (ok+1(t))− f (ok+1(t − 1))

Figure 1.  Dependencies of the fraction of pruned weights on pruning iterations i for various pruning rates v.

Algorithm 1.  Update neuron j of layer k+1 at time t.
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Stage 1—Training:

1. Train neural network in the environment
2. Prune (set to zero and freeze) lowest v = 20 % weights
3. Reset remaining weights to original
4. Train neural network again in the environment
5. Repeat steps 2–4 M = 10 times

Using this algorithm, we obtain a set of structurally sparse neural networks with different degrees of sparsity. The 
number of neural networks in the set equals the number of pruning algorithm iterations. The general scheme of 
the learning stage of the algorithm is shown in Fig. 2.

Stage 2—Inference: Then we apply the DeltaNetwork Algorithm with the threshold T = 0.01 to the inference 
of the trained neural networks. As a result, we get a set of new neural networks using both structure and temporal 
sparsity. The selection of one neural network from such a set depends on the desirable balance between the number of 
significant multiplications and neural network performance. The scheme of the inference stage is presented in Fig. 3.

Experiments
Neural network architecture
In this study, we conducted all experiments using the following Neural Network architecture.

An 84 × 84 × 4 matrix received from the environment is an input to the neural network, which consists of 4 
sequential game frames. The first convolutional layer consists of 32 8 × 8 filters with strides equal to 4 and ReLU 
activations. The second layer consists of 32 4 × 4 filters with strides equal to 2 and ReLU activations. The third 
layer consists of 64 3 × 3 filters with strides equal to 2 and ReLU activations. They are followed by a dense layer 
with 512 neurons with ReLU activations. At the output there is another dense layer with a number of neurons 
equal to the number of actions in a video game. Depending on the video game, the number of actions n may 
vary from 4 to 18. The neural network structure is shown in Fig. 4.

RL environments
We experimented within the following RL environments: Breakout, SpaceInvaders, Robotank, Enduro, Krull and 
Freeway. Figure 5 shows frames from these video games. For example, in Breakout, an agent has to hit as many 
bricks as possible by hitting the ball. In Spacelnvaders, an agent has to eliminate all alien spaceships.
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Significant operations counting
The number of multiplications before optimization
Let us estimate the number of multiplications in a standard neural network without any optimizations. The fol-
lowing formula can be used to estimate the number of multiplications in a convolutional layer k:

where

• size_xk+1—is the k + 1 layer input size along the x axis
• size_yk+1—is the k + 1 layer input size along the y axis
• filtersk+1—is the number of filters at layer k ( k + 1 layer input size along the z axis)
• kernel_size_xk—is the convolution size along the x axis
• kernel_size_yk—is the convolution size along the y axis
• filtersk—is the k layer input size along the z axis

The following formula can be used to count multiplications in dense layer k:

where

• inputk—is the k layer input size (number of neurons at k − 1 layer)
• outputk—is the k layer output size (number of neurons at k layer)

General results for all layers are presented in Table 1. It should be noted that these results are universal for any 
Atari environment and for any DQN run.

(7)γk = size_xk+1 ∗ size_yk+1 ∗ filtersk+1 ∗ kernel_size_xk ∗ kernel_size_yk ∗ filtersk ,

(8)γk = inputk ∗ outputk ,
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Figure 4.  Optimized DQN architecture. DQN consists of three convolutional layers and two dense layers. This 
architecture is suitable for all video games (the number of outputs at the last layer is the only value that changes).

Figure 5.  RL environments for experiments.
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The number of multiplications after optimization
It is clear that the degree of weight sparsity will affect the number of non-zero multiplications. However, the delta 
algorithm provides different levels of temporal sparsity depending on the selected threshold, layer, and input 
data. That is why it is impossible to analytically estimate the number of non-zero multiplications. Therefore we 
empirically calculated the number of significant multiplications by calculating all operations that have zero oper-
ands. Examples of the numbers of significant multiplications are given in the next section and in Tables 2 and 3.

Results
Figure 6 shows the abovementioned neural network performance metrics at different sparsity levels and for 
different environments.

The reward metric results (blue line) are similar to the results  from18,19, where the highest decrease of reward 
during pruning was in SpaceInvaders and Breakout. In these environments performance dropped very quickly 
as neural network sparsity grew. At the same time for Enduro the reward during the pruning does not decrease. 
It even increases. For Robotank and Freeway the performance does not degrade seriously, and even for some 
sparsity levels it increases in comparison with the unpruned version. Thus it is possible to use very sparse neural 
networks for some environments without the loss of performance.

The orange line demonstrates the rewards for the neural networks with delta neurons. We can see that they 
have similar (sometimes a little bit higher, sometimes a little bit lower) performance to a network without delta 
neurons. This means that the delta algorithm does not influence the reward gravely.

Table 1.  The structure of the DQN network and the number of multiplications in each layer before 
optimization.

Layer Input shape #Param #Multiplications

Conv2d-1 (8 × 8, stride = 4) [4, 84, 84] 8224 3,276,800

Conv2d-2 (4 × 4, stride = 2) [32, 20, 20] 32,832 2,654,208

Conv2d-4 (3 × 3, stride = 1) [64, 9, 9] 36,928 1,806,336

Flatten [64, 7, 7] 0 0

Dense-1 (3136, 512) [3136] 1,606,144 1,605,632

Dense-2 (512, noutput) [512] 512 ∗ noutput + noutput 512 ∗ noutput

Table 2.  Number of multiplications in one Breakout run with 0.79 sparsity and 0.01 threshold.

Layer Multiplications Non-zero multiplications Fraction of zero multiplications Sparsity of weights Delta sparsity

Input 0 0 0.0 0.0 0.994

Conv2d-1 3,276,800 6554 0.998 0.600 0.974

Conv2d-2 2,654,208 13,271 0.995 0.778 0.927

Conv2d-4 1,806,144 19,868 0.989 0.843 0.949

Dense-1 1,605,632 80,281 0.950 0.0 0.815

Dense-2 2048 379 0.815 0.0 0.412

Total 9,344,832 121,483 0.987 0.79 0.977

Table 3.  Number of multiplications in SpaceInvaders with 0.79 sparsity and 0.01 threshold.

Layer Multiplications Non-zero multiplications Fraction of zero multiplications Sparsity of weights Delta sparsity

Input 0 0 0.0 0.0 0.986

Conv2d-1 3,276,800 16,384 0.995 0.693 0.935

Conv2d-2 2,654,208 45,122 0.983 0.764 0.802

Conv2d-4 1,806,336 70,447 0.961 0.835 0.857

Dense-1 1,605,632 228,000 0.858 0.0 0.756

Dense-2 2048 498 0.757 0.0 0.005

Total 9,344,832 364,448 0.961 0.79 0.943
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The gain in the number of non-zero multiplications (black dotted line) is dependent on the game the agent 
is playing. For example, in SpaceInvaders the fraction of the non-zero multiplications is in the range from 0.065 
to 0.022. At the same time in Breakout this value is in the range from 0.018 to 0.009.

The delta algorithm alone (without the weight pruning) leads to a decreasing in the number of non-zero mul-
tiplication operations from 5.5 times for Robotank to 55 times for Breakout. At the same time, the pruning leads 
to a more modest gain. For some environments, the fraction of non-zero multiplication operations decreases as 
a result of pruning more than for others. E.g., for Robotank the fraction of non-zero multiplication operations 
decrease during pruning from 0.184 to 0.059 (about x3.11). At the same time for Breakout it decreases only from 
0.018 to 0.015 (x1.2). Anyway, it is clear that the gain of the delta algorithm is much higher than the gain of the 
pruning. Moreover, pruning sometimes leads to the degradation of performance.

We made 5 runs for every environment and averaged all metrics presented here. In the Supplementary 
Materials, the tables with the number of non-zero multiplication operations in layers are shown for each tested 
environment. In these tables, one can see that the highest gains occur in the first layers.

(a) Freeway (b) Robotank

(c) Enduro (d) Breakout

(e) Krull (f) SpaceInvaders

Figure 6.  Results for Freeway, Robotank, Enduro, Breakout, Krull and SpaceInvaders. The x axes of the figures 
denote the neural network sparsity degree; the left y axes denote the reward received by an agent; the right y 
axes denote fraction of significant multiplications averaged by environment runs. The orange line shows the 
performance of the pruned network, while the blue line shows the performance of the pruned network with 
the additional application of the DeltaNetwork algorithm. The grey dotted lines show the fraction of significant 
multiplications (the less the better) of a pruned neural network enhanced by the DeltaNetwork algorithm. The 
blue dashed lines demonstrate the performance of a neural network without any optimization.
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Discussion
The variety in performance gain between different environments can be explained by the fact that some envi-
ronments (e.g., SpaceInvaders) have much more changing pixels at each time step than others (e.g., Breakout). 
In the Breakout only the playground and the ball move, while in the SpaceInvaders several objects can move at 
once—shots, a ship and aliens. This is well confirmed by the difference in delta sparsity (the fraction of neuron 
activations during the delta algorithm execution) level when playing Breakout and SpaceInvaders (see Tables 2 
and 3). In Fig. 7, we visualized the correlation between the level of input sparsity caused by the delta algorithm 
with the fraction of zero multiplications. We see a tendency for the fraction of zero multiplications to increase 
during inference with an increase in the fraction of input zeros.

Both parts of the optimization approach (pruning and delta algorithm) presented here contribute to the 
reduction of the number of significant multiplications (see Fig. 6). Thus here we provided an efficient combina-
tion of structural and temporal sparsity.

Furthermore, we conducted an examination of how the parameter T (threshold) affects the performance and 
the operational gains. We assessed the performance in both Krull and SpaceInvaders using various values of T, 
namely 0.001, 0.005, 0.01, and 0.05. The results are presented in Fig. 8, clearly illustrating that 0.01 is the most 
favorable parameter value among those tested. The higher values, despite winning in the multiplication options, 
result in a significant decrease in the rewards. Whereas, the lower thresholds yield nearly identical rewards, with 
a more modest productivity improvement.

Multiplication is an expensive computational operation from the point of view of energy and  time24. The desire 
to reduce the number of these operations is obvious. The provided algorithm decreases the number of significant 
multiplications. Moreover, due to the structural sparsity, this approach reduces the number of memory accesses, 
that are also very expensive in energy and  time24.

However, presently, there are very few opportunities to use the existing hardware to effectively implement 
this algorithm. This is due to modern GPUs being designed for handling dense matrices. Nevertheless, there are 
attempts to turn the situation. Nvidia began offering hardware support of sparse matrix operations on one of its 
Tesla A100 GPUs; however, the maximum supported sparsity is only 75% so  far25.

The authors of the abovementioned DeltaNetwork algorithm introduced the  NeuronFlow26,27 architecture that 
supports delta algorithm. The Loihi2 processor that Intel  presented28 in September 2021 also has the multi-core 
asynchronous architecture capable of running sparse delta neuron-based neural networks.

In18, it was shown that the Lottery Ticket Hypothesis pruning approach also works for RL algorithms trained 
by the A2C method. At the same time, DeltaNetwork Algorithm could be applied to any network working with 
sequential data. Thus, the RL algorithm for neural network training is not restricted by DQN.

In the future, it would be highly interesting to apply the proposed algorithm in new environments and real-
world control tasks, assessing its performance on real hardware to measure the real efficiency gain. Additionally, 
it would be worthwhile to explore the potential enhancement of this algorithm through the incorporation of 
other neural network optimization methods, such as quantization, which can lead to reduced memory footprint 
and integer arithmetic.

Conclusion
This study demonstrates the large redundancy of the operation of multiplication during the inference of neural 
networks in popular RL tasks. Minimizing the number of multiplications will prove critical in the areas where 
computational and energy efficiency are key, for example Edge  AI29, real-time  control30,  robotics31–33, and many 
others. While suitable equipment to take full advantage of these benefits is currently not available to a consumer, 
the computational chips capable of evaluating the network inference in the proposed way are currently being 
researched and developed as a part of neuromorphic computing paradigm. Our study highlights the importance 
of significant multiplications inference for a plethora of such neuromorphic computing applications.

Figure 7.  Correlation of the input sparsity (x axes) with zero multiplication fraction (y axes). Each red square 
corresponds to a particular environment.
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Data availability
The data generated or analysed during this study are included in this article and its supplementary information 
files. Supplementary  Tables summarizes the numerical results in all game environments. Supplementary Infor-
mation 2 contains a model and its neural network weights for the Enduro game (the other weights are available 
upon request). Supplementary Information 1 contains the source code for the sparse model inference.
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