
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports

Deep reinforcement learning
with significant multiplications
inference
Dmitry A. Ivanov 1,2,6, Denis A. Larionov 2,3,6, Mikhail V. Kiselev 2,3,7 & Dmitry V. Dylov 4,5,7*

We propose a sparse computation method for optimizing the inference of neural networks in
reinforcement learning (RL) tasks. Motivated by the processing abilities of the brain, this method
combines simple neural network pruning with a delta-network algorithm to account for the input
data correlations. The former mimics neuroplasticity by eliminating inefficient connections; the latter
makes it possible to update neuron states only when their changes exceed a certain threshold. This
combination significantly reduces the number of multiplications during the neural network inference
for fast neuromorphic computing. We tested the approach in popular deep RL tasks, yielding up to
a 100-fold reduction in the number of required multiplications without substantial performance loss
(sometimes, the performance even improved).

Modern deep learning (DL) gravitates towards large neural networks, with ever-increasing demands for compu-
tational resources to perform basic arithmetic operations, such as multiplication. When used with contemporary
DL hardware, known to face the limitation of the von Neumann bottleneck1, this results in a substantial energy
consumption and significant delays during the network inference. At the same time, the human brain is capable
of inferring with remarkable efficiency by dismissing the irrelevant signals and connections, consuming just
10–20 W for basic cognitive tasks2. Such efficiency motivated our study to optimize the DL inference by taking
into account only significant signals. Specifically, we consider the inference in RL tasks, using the popular Atari
games environment3 as the sandbox.

In the brain, the presence of regular dense layers is not evident. Instead, the brain employs neural rewiring
as a means to eliminate inefficient and unnecessary connections4. At the same time, recent studies5–7 demon-
strate that in many cases significant part of neural connections are excessive and can be removed without a
drop in the neural network’s predictive power (or with a negligible one). The optimization technique, known
as pruning, represents a method to attain structural sparsity within a neural network. The conceptualization of
this approach can be traced back to the 1990s8,9. Today, there are multiple strategies for identifying redundant
connections within neural networks, including the examination of absolute values, the Hessian matrix, decom-
position methods, and others5,10.

Moreover, neural networks often anticipate the input data in a form of sequential highly correlated signals or
frames, as observed in domains like video, audio, monitoring and control problems, including RL. In such tasks,
the information processed by a neural network at time step t closely resembles what it analyzed at the time step
t − 1 . This phenomenon is referred to as temporal sparsity, also characteristic of the perceptual systems in the
 brain4,11. Some studies propose various optimization algorithms for neural networks handling such temporal
sparse data12–15. These approaches are based on the idea of asynchronous updates, where only the states of neu-
rons that have changed significantly, compared to the previous step, are updated. It is worth noting that the brain
neurons also operate asynchronously, transmitting signals to each other only when necessary.

A typical neural network layer could be represented as a matrix-vector multiplication combined with the
application of a nonlinear transformation. Therefore, for the input vector x, the jth value of the output vector y
could be represented as

yj = f (w
j
1 ∗ x1 + · · · + w

j
n ∗ xn),

OPEN

1Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia. 2Cifrum, 3 Kholodil’nyy
per., Moscow 115191, Russia. 3Chuvash State University, 15 Moskovsky pr., Cheboksary, Chuvash Republic 428015,
Russia. 4Skolkovo Institute of Science and Technology, 30/1 Bolshoi blvd., Moscow 121205, Russia. 5Artificial
Intelligence Research Institute, 32/1 Kutuzovsky pr., Moscow 121170, Russia. 6These authors contributed equally:
Dmitry A. Ivanov and Denis A. Larionov. 7These authors jointly supervised this work: Mikhail V. Kiselev and Dmitry
V. Dylov. *email: d.dylov@skol.tech

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47245-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

where f is a nonlinear function applied to the Multiply and Accumulate (MAC) operation. The MAC operation
is the summation of products of the input vector elements and the respective weights w. If at least one operand
in any of such multiplications is zero, then such multiplication could be omitted. In this work, we refer to a
multiplication of two numbers as significant if neither operand is equal to zero.

In this study, we propose a combination of the two aforementioned approaches to optimize the inference of
Neural Networks in RL tasks with the video inputs. More specifically, we optimize the inference of a popular
DQN algorithm16 for the Atari games. The pruning approach yields a 2–8× reduction in the number of signifi-
cant neural network multiplications. The second part of our approach achieves a further 10–50-fold reduction.
When combined, these approaches result in a 20–100-fold reduction in the number of significant multiplications,
without notable performance loss and in some cases, even enhancing the original performance.

The proposed combination of these methods is biologically inspired and exhibits neuromorphic properties
for fast information processing1. To the best of our knowledge, such an approach has never been applied in deep
RL problems.

Background
Deep Q-network
In RL tasks17, an agent receives the current environment state s as an input, after which it selects action a, and
then it goes to a new state s′ , and it receives a certain reward r. The agent’s goal is to maximize the total reward.

More strictly, the environment is formalized as a Markov decision process. A Markov decision process (MDP)
is a tuple (S, A, P, R), where S is a set of possible states and A is a set of possible actions. P is the function describ-
ing transition between states; Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) , i.e., the probability to get into state s′ at
the next step when selecting action a in state s. R = Ra(s, s

′) is the function describing receiving rewards. It
determines how big a reward an agent will receive when transitioning from state s to state s′ by selecting action a.

The strategy an agent uses to select its actions a depending on state s is called a policy and is usually denoted
by the letter πθ where θ denotes policy parameters.

One way to solve an RL task is Q-function-based approaches. A Q-function has two parameters - s and a.
Qπθ (s, a) estimates what cumulative reward the agent following policy πθ will receive if it performs action a from
state s and then follows policy πθ . If complete information about an environment is available, the exact value of
a Q-function can be calculated. However, the knowledge of the world is usually incomplete and the number of
possible states is enormous. Therefore, the Q-function can be approximated using neural networks. This approach
named DQN (Deep Q-Network) was demonstrated by DeepMind in16. In the present study, we use this algorithm
to train Neural Networks for Atari RL tasks.

Pruning and lottery ticket hypothesis
The authors of7 have proposed the Lottery Ticket Hypothesis. The hypothesis states that when at any stage of
neural network training the smallest weights by absolute value are pruned (set to zero and frozen) and the
remaining weights are reset to the values they had before the training, and then neural network training is
resumed, the training capabilities of such neural network will remain the same. However, this does not happen
if we set the remaining weights to random (not initial) values. Furthermore, the investigation reveals that sparse
neural networks, which have undergone such pruning and training, can exhibit superior performance compared
to unpruned neural networks.

In practice7,18,19 neural network iterative magnitude pruning by absolute value is usually used. This approach
involves training neural networks, followed by pruning a small percentage of their weights (typically 10-20%).
The remaining weights are then reset to their initial values, and this process is repeated for a specified number
of iterations, denoted as M. Consequently, given a pruning rate of v, the fraction f of pruned weights can be
computed as follows:

where i is the pruning iteration. Figure 1 displays the relationships between the fraction of pruned weights and
various values of i and v.

In18,19 it was shown that the phenomenon of the Lottery Ticket Hypothesis is observed in RL tasks as well. In
particular, the authors of19 investigated this phenomenon within the context of the DQN algorithm.

DeltaNetwork algorithm
The output values of the neural network layer number k + 1 can be written as:

where xk+1 ∈ Rn is the output of k + 1 neural network layer, xk ∈ Rn is the input of k + 1 neural network layer
(output of k layer), Wk ∈ Rnxn is the weight matrix, and bk ∈ Rn is the bias. In a conventional neural network, for
every new input vector xk(t) in the moment of time t a total recomputation of output value xk+1(t) is required,
which will require n2 multiplications. However, the following should be noted:

(1)f =
pruned_weights

total_weights
= 1− (1− v)i , i ∈ [0 : M)

(2)ok+1 =Wkxk + bk

(3)xk+1 =f (ok+1)

(4)�xk(t) =xk(t)− xk(t − 1)

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

Thus, it is possible to recompute layer output values at the moment of time t using Eqs. (4), (5), (6) using layer
input changes that occur relative to the state at the moment t − 1.

This remark does not lead to neural network optimization by itself. But we can introduce threshold T for
output value changes �xk(t) such that recomputation of succeeding neurons is started only when an output
value exceeds this threshold.

Authors of12,13 call this approach “Hysteresis Quantizer”. To implement it, it is necessary to introduce an
additional variable x_prev(t) into each neuron. Such a variable will be used to record the last transmitted value.
Thus, the following Algorithm 1 will be run on each neuron:

Related works
To the best of our knowledge, we present the first attempt to combine the temporal and the structural sparsity
for optimizing inference in RL tasks. However, there are several publications that applied pruning18,20 and other
optimization techniques to RL problems, e.g., distillation21. Also, there are works that employ the DeltaNetwork
algorithm for convolutional and recurrent neural networks13,22,23.

Methods
In the previous section, we described two neural network optimization algorithms: Pruning and DeltaNetwork
Algorithm. The following neural network optimization becomes possible when these approaches are applied
jointly:

(5)ok+1(t) =Wk�xk(t)+ ok+1(t − 1)

(6)�xk+1(t) =f (ok+1(t))− f (ok+1(t − 1))

Figure 1. Dependencies of the fraction of pruned weights on pruning iterations i for various pruning rates v.

Algorithm 1. Update neuron j of layer k+1 at time t.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

Stage 1—Training:

1. Train neural network in the environment
2. Prune (set to zero and freeze) lowest v = 20 % weights
3. Reset remaining weights to original
4. Train neural network again in the environment
5. Repeat steps 2–4 M = 10 times

Using this algorithm, we obtain a set of structurally sparse neural networks with different degrees of sparsity. The
number of neural networks in the set equals the number of pruning algorithm iterations. The general scheme of
the learning stage of the algorithm is shown in Fig. 2.

Stage 2—Inference: Then we apply the DeltaNetwork Algorithm with the threshold T = 0.01 to the inference
of the trained neural networks. As a result, we get a set of new neural networks using both structure and temporal
sparsity. The selection of one neural network from such a set depends on the desirable balance between the number of
significant multiplications and neural network performance. The scheme of the inference stage is presented in Fig. 3.

Experiments
Neural network architecture
In this study, we conducted all experiments using the following Neural Network architecture.

An 84 × 84 × 4 matrix received from the environment is an input to the neural network, which consists of 4
sequential game frames. The first convolutional layer consists of 32 8 × 8 filters with strides equal to 4 and ReLU
activations. The second layer consists of 32 4 × 4 filters with strides equal to 2 and ReLU activations. The third
layer consists of 64 3 × 3 filters with strides equal to 2 and ReLU activations. They are followed by a dense layer
with 512 neurons with ReLU activations. At the output there is another dense layer with a number of neurons
equal to the number of actions in a video game. Depending on the video game, the number of actions n may
vary from 4 to 18. The neural network structure is shown in Fig. 4.

RL environments
We experimented within the following RL environments: Breakout, SpaceInvaders, Robotank, Enduro, Krull and
Freeway. Figure 5 shows frames from these video games. For example, in Breakout, an agent has to hit as many
bricks as possible by hitting the ball. In Spacelnvaders, an agent has to eliminate all alien spaceships.

prune

train

Wi

reset remaining weights
to initial values (before

training) wi-1

set lowest v% weights
to zero and prevent them

from future changes

Wi*

W1* W2

W1 W2

W0 – random weights

WM–1*

WM – set of sparse nets

WM–1

Wi+1Wi
DQN

a = argmax (Q)
a

s
r

env

Wi

train1prune1train0 trainM-1pruneM-1

W – weight matrix of DQN
i – pruning iteration [0:M]

W* – pruned weight matrix

W1

Figure 2. The pipeline, including the training and the pruning stages.

inference

DQN (Wi) + Delta
network algorithm

a

s

r
envWi

Figure 3. The inference stage of the algorithm.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

Significant operations counting
The number of multiplications before optimization
Let us estimate the number of multiplications in a standard neural network without any optimizations. The fol-
lowing formula can be used to estimate the number of multiplications in a convolutional layer k:

where

• size_xk+1—is the k + 1 layer input size along the x axis
• size_yk+1—is the k + 1 layer input size along the y axis
• filtersk+1—is the number of filters at layer k (k + 1 layer input size along the z axis)
• kernel_size_xk—is the convolution size along the x axis
• kernel_size_yk—is the convolution size along the y axis
• filtersk—is the k layer input size along the z axis

The following formula can be used to count multiplications in dense layer k:

where

• inputk—is the k layer input size (number of neurons at k − 1 layer)
• outputk—is the k layer output size (number of neurons at k layer)

General results for all layers are presented in Table 1. It should be noted that these results are universal for any
Atari environment and for any DQN run.

(7)γk = size_xk+1 ∗ size_yk+1 ∗ filtersk+1 ∗ kernel_size_xk ∗ kernel_size_yk ∗ filtersk ,

(8)γk = inputk ∗ outputk ,

noutput

Q (s, a1)
Q (s, a2)

...
Q (s, an)

3 136

512

84 20 9 7

20
9 7

8
8

4
4

3
3 7

4

32 64 64

Output:
Action a
where a = argmax(Q(,))

Input:
Stack of 4 previous grayscale frames

84

4 x 84 x 84
conv-2d 8 x 8
stride 4, ReLU

32 x 20 x 20
conv-2d 4 x 4
stride 2, ReLU

64 x 9 x 9
conv-2d 3 x 3
stride 1, ReLU

64 x 7 x 7
conv-2d 3 x 3
Flatten

3 136
dense
ReLU

512
dense
ReLU

Figure 4. Optimized DQN architecture. DQN consists of three convolutional layers and two dense layers. This
architecture is suitable for all video games (the number of outputs at the last layer is the only value that changes).

Figure 5. RL environments for experiments.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

The number of multiplications after optimization
It is clear that the degree of weight sparsity will affect the number of non-zero multiplications. However, the delta
algorithm provides different levels of temporal sparsity depending on the selected threshold, layer, and input
data. That is why it is impossible to analytically estimate the number of non-zero multiplications. Therefore we
empirically calculated the number of significant multiplications by calculating all operations that have zero oper-
ands. Examples of the numbers of significant multiplications are given in the next section and in Tables 2 and 3.

Results
Figure 6 shows the abovementioned neural network performance metrics at different sparsity levels and for
different environments.

The reward metric results (blue line) are similar to the results from18,19, where the highest decrease of reward
during pruning was in SpaceInvaders and Breakout. In these environments performance dropped very quickly
as neural network sparsity grew. At the same time for Enduro the reward during the pruning does not decrease.
It even increases. For Robotank and Freeway the performance does not degrade seriously, and even for some
sparsity levels it increases in comparison with the unpruned version. Thus it is possible to use very sparse neural
networks for some environments without the loss of performance.

The orange line demonstrates the rewards for the neural networks with delta neurons. We can see that they
have similar (sometimes a little bit higher, sometimes a little bit lower) performance to a network without delta
neurons. This means that the delta algorithm does not influence the reward gravely.

Table 1. The structure of the DQN network and the number of multiplications in each layer before
optimization.

Layer Input shape #Param #Multiplications

Conv2d-1 (8 × 8, stride = 4) [4, 84, 84] 8224 3,276,800

Conv2d-2 (4 × 4, stride = 2) [32, 20, 20] 32,832 2,654,208

Conv2d-4 (3 × 3, stride = 1) [64, 9, 9] 36,928 1,806,336

Flatten [64, 7, 7] 0 0

Dense-1 (3136, 512) [3136] 1,606,144 1,605,632

Dense-2 (512, noutput) [512] 512 ∗ noutput + noutput 512 ∗ noutput

Table 2. Number of multiplications in one Breakout run with 0.79 sparsity and 0.01 threshold.

Layer Multiplications Non-zero multiplications Fraction of zero multiplications Sparsity of weights Delta sparsity

Input 0 0 0.0 0.0 0.994

Conv2d-1 3,276,800 6554 0.998 0.600 0.974

Conv2d-2 2,654,208 13,271 0.995 0.778 0.927

Conv2d-4 1,806,144 19,868 0.989 0.843 0.949

Dense-1 1,605,632 80,281 0.950 0.0 0.815

Dense-2 2048 379 0.815 0.0 0.412

Total 9,344,832 121,483 0.987 0.79 0.977

Table 3. Number of multiplications in SpaceInvaders with 0.79 sparsity and 0.01 threshold.

Layer Multiplications Non-zero multiplications Fraction of zero multiplications Sparsity of weights Delta sparsity

Input 0 0 0.0 0.0 0.986

Conv2d-1 3,276,800 16,384 0.995 0.693 0.935

Conv2d-2 2,654,208 45,122 0.983 0.764 0.802

Conv2d-4 1,806,336 70,447 0.961 0.835 0.857

Dense-1 1,605,632 228,000 0.858 0.0 0.756

Dense-2 2048 498 0.757 0.0 0.005

Total 9,344,832 364,448 0.961 0.79 0.943

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

The gain in the number of non-zero multiplications (black dotted line) is dependent on the game the agent
is playing. For example, in SpaceInvaders the fraction of the non-zero multiplications is in the range from 0.065
to 0.022. At the same time in Breakout this value is in the range from 0.018 to 0.009.

The delta algorithm alone (without the weight pruning) leads to a decreasing in the number of non-zero mul-
tiplication operations from 5.5 times for Robotank to 55 times for Breakout. At the same time, the pruning leads
to a more modest gain. For some environments, the fraction of non-zero multiplication operations decreases as
a result of pruning more than for others. E.g., for Robotank the fraction of non-zero multiplication operations
decrease during pruning from 0.184 to 0.059 (about x3.11). At the same time for Breakout it decreases only from
0.018 to 0.015 (x1.2). Anyway, it is clear that the gain of the delta algorithm is much higher than the gain of the
pruning. Moreover, pruning sometimes leads to the degradation of performance.

We made 5 runs for every environment and averaged all metrics presented here. In the Supplementary
Materials, the tables with the number of non-zero multiplication operations in layers are shown for each tested
environment. In these tables, one can see that the highest gains occur in the first layers.

(a) Freeway (b) Robotank

(c) Enduro (d) Breakout

(e) Krull (f) SpaceInvaders

Figure 6. Results for Freeway, Robotank, Enduro, Breakout, Krull and SpaceInvaders. The x axes of the figures
denote the neural network sparsity degree; the left y axes denote the reward received by an agent; the right y
axes denote fraction of significant multiplications averaged by environment runs. The orange line shows the
performance of the pruned network, while the blue line shows the performance of the pruned network with
the additional application of the DeltaNetwork algorithm. The grey dotted lines show the fraction of significant
multiplications (the less the better) of a pruned neural network enhanced by the DeltaNetwork algorithm. The
blue dashed lines demonstrate the performance of a neural network without any optimization.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

Discussion
The variety in performance gain between different environments can be explained by the fact that some envi-
ronments (e.g., SpaceInvaders) have much more changing pixels at each time step than others (e.g., Breakout).
In the Breakout only the playground and the ball move, while in the SpaceInvaders several objects can move at
once—shots, a ship and aliens. This is well confirmed by the difference in delta sparsity (the fraction of neuron
activations during the delta algorithm execution) level when playing Breakout and SpaceInvaders (see Tables 2
and 3). In Fig. 7, we visualized the correlation between the level of input sparsity caused by the delta algorithm
with the fraction of zero multiplications. We see a tendency for the fraction of zero multiplications to increase
during inference with an increase in the fraction of input zeros.

Both parts of the optimization approach (pruning and delta algorithm) presented here contribute to the
reduction of the number of significant multiplications (see Fig. 6). Thus here we provided an efficient combina-
tion of structural and temporal sparsity.

Furthermore, we conducted an examination of how the parameter T (threshold) affects the performance and
the operational gains. We assessed the performance in both Krull and SpaceInvaders using various values of T,
namely 0.001, 0.005, 0.01, and 0.05. The results are presented in Fig. 8, clearly illustrating that 0.01 is the most
favorable parameter value among those tested. The higher values, despite winning in the multiplication options,
result in a significant decrease in the rewards. Whereas, the lower thresholds yield nearly identical rewards, with
a more modest productivity improvement.

Multiplication is an expensive computational operation from the point of view of energy and time24. The desire
to reduce the number of these operations is obvious. The provided algorithm decreases the number of significant
multiplications. Moreover, due to the structural sparsity, this approach reduces the number of memory accesses,
that are also very expensive in energy and time24.

However, presently, there are very few opportunities to use the existing hardware to effectively implement
this algorithm. This is due to modern GPUs being designed for handling dense matrices. Nevertheless, there are
attempts to turn the situation. Nvidia began offering hardware support of sparse matrix operations on one of its
Tesla A100 GPUs; however, the maximum supported sparsity is only 75% so far25.

The authors of the abovementioned DeltaNetwork algorithm introduced the NeuronFlow26,27 architecture that
supports delta algorithm. The Loihi2 processor that Intel presented28 in September 2021 also has the multi-core
asynchronous architecture capable of running sparse delta neuron-based neural networks.

In18, it was shown that the Lottery Ticket Hypothesis pruning approach also works for RL algorithms trained
by the A2C method. At the same time, DeltaNetwork Algorithm could be applied to any network working with
sequential data. Thus, the RL algorithm for neural network training is not restricted by DQN.

In the future, it would be highly interesting to apply the proposed algorithm in new environments and real-
world control tasks, assessing its performance on real hardware to measure the real efficiency gain. Additionally,
it would be worthwhile to explore the potential enhancement of this algorithm through the incorporation of
other neural network optimization methods, such as quantization, which can lead to reduced memory footprint
and integer arithmetic.

Conclusion
This study demonstrates the large redundancy of the operation of multiplication during the inference of neural
networks in popular RL tasks. Minimizing the number of multiplications will prove critical in the areas where
computational and energy efficiency are key, for example Edge AI29, real-time control30, robotics31–33, and many
others. While suitable equipment to take full advantage of these benefits is currently not available to a consumer,
the computational chips capable of evaluating the network inference in the proposed way are currently being
researched and developed as a part of neuromorphic computing paradigm. Our study highlights the importance
of significant multiplications inference for a plethora of such neuromorphic computing applications.

Figure 7. Correlation of the input sparsity (x axes) with zero multiplication fraction (y axes). Each red square
corresponds to a particular environment.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

Data availability
The data generated or analysed during this study are included in this article and its supplementary information
files. Supplementary Tables summarizes the numerical results in all game environments. Supplementary Infor-
mation 2 contains a model and its neural network weights for the Enduro game (the other weights are available
upon request). Supplementary Information 1 contains the source code for the sparse model inference.

Received: 9 August 2023; Accepted: 10 November 2023

References
 1. Ivanov, D., Chezhegov, A., Kiselev, M., Grunin, A. & Larionov, D. Neuromorphic artificial intelligence systems. Frontiers in Neu-

roscience 16 (2022).
 2. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow &

Metabolism 21, 1133–1145 (2001).
 3. Bellemare, M., Veness, J. & Bowling, M. Investigating contingency awareness using atari 2600 games. In Proceedings of the AAAI

Conference on Artificial Intelligence 26, 864–871 (2012).
 4. Hudspeth, A. J., Jessell, T. M., Kandel, E. R., Schwartz, J. H. & Siegelbaum, S. A. Principles of neural science (McGraw-Hill, Health

Professions Division, 2013).
 5. Blalock, D., Ortiz, J. J. G., Frankle, J. & Guttag, J. What is the state of neural network pruning? arXiv preprint arXiv: 2003. 03033

(2020).
 6. Gomez, A. N. et al. Learning sparse networks using targeted dropout. arXiv preprint arXiv: 1905. 13678 (2019).
 7. Frankle, J. & Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv: 1803. 03635

(2018).
 8. LeCun, Y., Denker, J. S. & Solla, S. A. Optimal brain damage. In Advances in Neural Information Processing Systems, 598–605 (1990).
 9. Hassibi, B. & Stork, D. G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon (Morgan Kaufmann, 1993).
 10. Liang, T., Glossner, J., Wang, L., Shi, S. & Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.

Neurocomputing 461, 370–403 (2021).
 11. Krylov, D., Dylov, D. V. & Rosenblum, M. Reinforcement learning for suppression of collective activity in oscillatory ensembles.

Chaos 30, 033126 (2020). https:// doi. org/ 10. 1063/1. 51289 09. https:// pubs. aip. org/ aip/ cha/ artic le- pdf/ doi/ 10. 1063/1. 51289 09/ 14626
706/ 033126_ 1_ online. pdf

Figure 8. Comparison of thresholds for Krull and SpaceInvaders: The x-axis in the figures represents the
degree of sparsity in a neural network. The left y-axes indicate the rewards achieved by the agent, while the right
y-axes represent the fraction of significant multiplications. Dotted lines represent the percentage of significant
multiplications (lower is better) in pruned neural networks enhanced by the DeltaNetwork algorithm. Solid
lines depict the rewards of the agents. Different colors correspond to different thresholds.

http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1905.13678
http://arxiv.org/abs/1803.03635
https://doi.org/10.1063/1.5128909
https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5128909/14626706/033126_1_online.pdf
https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5128909/14626706/033126_1_online.pdf

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:20865 | https://doi.org/10.1038/s41598-023-47245-y

www.nature.com/scientificreports/

 12. Yousefzadeh, A. et al. Asynchronous spiking neurons, the natural key to exploit temporal sparsity. IEEE J. Emerg. Sel. Top. Circuits
Syst. 9, 668–678 (2019).

 13. Khoei, M. A., Yousefzadeh, A., Pourtaherian, A., Moreira, O. & Tapson, J. Sparnet: Sparse asynchronous neural network execution
for energy efficient inference. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS),
256–260 (IEEE, 2020).

 14. Neil, D., Lee, J. H., Delbruck, T. & Liu, S.-C. Delta networks for optimized recurrent network computation. In International Confer-
ence on Machine Learning, 2584–2593 (PMLR, 2017).

 15. O’Connor, P. & Welling, M. Sigma delta quantized networks. arXiv preprint arXiv: 1611. 02024 (2016).
 16. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
 17. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
 18. Yu, H., Edunov, S., Tian, Y. & Morcos, A. S. Playing the lottery with rewards and multiple languages: Lottery tickets in RL and NLP.

arXiv preprint arXiv: 1906. 02768 (2019).
 19. Vischer, M. A., Lange, R. T. & Sprekeler, H. On lottery tickets and minimal task representations in deep reinforcement learning.

arXiv preprint arXiv: 2105. 01648 (2021).
 20. Graesser, L., Evci, U., Elsen, E. & Castro, P. S. The state of sparse training in deep reinforcement learning. In International Confer-

ence on Machine Learning, 7766–7792 (PMLR, 2022).
 21. Rusu, A. A. et al. Policy distillation. arXiv preprint arXiv: 1511. 06295 (2015).
 22. Gao, C., Neil, D., Ceolini, E., Liu, S.-C. & Delbruck, T. Deltarnn: A power-efficient recurrent neural network accelerator. In Pro-

ceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 21–30 (2018).
 23. Gao, C., Delbruck, T. & Liu, S.-C. Spartus: A 9.4 top/s FPGA-based LSTM accelerator exploiting spatio-temporal sparsity. IEEE

Transactions on Neural Networks and Learning Systems (2022).
 24. Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 10–14 (IEEE, 2014).
 25. Krashinsky, R., Giroux, O., Jones, S., Stam, N. & Ramaswamy, S. Nvidia ampere architecture in-depth. NVIDIA blog: https:// devbl

ogs. nvidia. com/ nvidia- ampere- archi tectu re- in- depth (2020).
 26. Moreira, O. et al. Neuronflow: A neuromorphic processor architecture for live ai applications. In 2020 Design, Automation and

Test in Europe Conference and Exhibition (DATE), 840–845 (IEEE, 2020).
 27. Moreira, O. et al. Neuronflow: A hybrid neuromorphic-dataflow processor architecture for AI workloads. In 2020 2nd IEEE

International Conference on Artificial Intelligence Circuits and Systems (AICAS), 01–05 (IEEE, 2020).
 28. Intel. Taking neuromorphic computing to the next level with loihi 2. Technology Brief (2021).
 29. Singh, R. & Gill, S. S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 3, 71–92 (2023). https:// www. scien cedir ect. com/ scien

ce/ artic le/ pii/ S2667 34522 30001 96
 30. Anikina, A., Rogov, O. Y. & Dylov, D. V. Detect to focus: Latent-space autofocusing system with decentralized hierarchical multi-

agent reinforcement learning. IEEE Access (2023).
 31. DeWolf, T., Jaworski, P. & Eliasmith, C. Nengo and low-power AI hardware for robust, embedded neurorobotics. Front. Neuroro-

botics 14, 568359 (2020).
 32. Stagsted, R. K. et al. Event-based PID controller fully realized in neuromorphic hardware: a one dof study. In 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 10939–10944 (IEEE, 2020).
 33. Yan, Y. et al. Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control.

Neuromorphic Comput. Eng. 1, 014002 (2021).

Author contributions
D.A.I., D.A.L., D.V.D. and M.V.K. contributed to the conception and the design of the experiments. D.A.I.
developed the code for experiments. D.A.I. and D.A.L. conducted experiments. D.A.I. wrote the initial draft
of the manuscript. D.A.I., D.A.L., M.V.K., and D.V.D. participated in data analysis. All authors contributed to
manuscript revision, read, and approved the submitted version.

Funding
This study was funded by Russian Foundation for Basic Research (No. 21-51-12012).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 47245-y.

Correspondence and requests for materials should be addressed to D.V.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://arxiv.org/abs/1611.02024
http://arxiv.org/abs/1906.02768
http://arxiv.org/abs/2105.01648
http://arxiv.org/abs/1511.06295
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth
https://www.sciencedirect.com/science/article/pii/S2667345223000196
https://www.sciencedirect.com/science/article/pii/S2667345223000196
https://doi.org/10.1038/s41598-023-47245-y
https://doi.org/10.1038/s41598-023-47245-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep reinforcement learning with significant multiplications inference
	Background
	Deep Q-network
	Pruning and lottery ticket hypothesis
	DeltaNetwork algorithm
	Related works

	Methods
	Experiments
	Neural network architecture
	RL environments
	Significant operations counting
	The number of multiplications before optimization
	The number of multiplications after optimization

	Results
	Discussion
	Conclusion
	References

