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Differential spatial distribution 
of HNF4α isoforms 
during dysplastic progression 
of intraductal papillary mucinous 
neoplasms of the pancreas
Jahg Wong 1,11, Vincent Q. Trinh 1,2,3,4,11, Nidhi Jyotsana 5, Jumanah F. Baig 1,2, Frank Revetta 6, 
Chanjuan Shi 7, Anna L. Means 5,8,9, Kathleen E. DelGiorno 5,9,10 & Marcus Tan 4,5,8,9,10*

Hepatocyte Nuclear Factor 4-alpha (HNF4α) comprises a nuclear receptor superfamily of ligand-
dependent transcription factors that yields twelve isoforms in humans, classified into promoters P1 
or P2-associated groups with specific functions. Alterations in HNF4α isoforms have been associated 
with tumorigenesis. However, the distribution of its isoforms during progression from dysplasia 
to malignancy has not been studied, nor has it yet been studied in intraductal papillary mucinous 
neoplasms, where both malignant and pre-malignant forms are routinely clinically identified. We 
examined the expression patterns of pan-promoter, P1-specific, and P2-specific isoform groups in 
normal pancreatic components and IPMNs. Pan-promoter, P1 and P2 nuclear expression were weakly 
positive in normal pancreatic components. Nuclear expression for all isoform groups was increased 
in low-grade IPMN, high-grade IPMN, and well-differentiated invasive adenocarcinoma. Poorly 
differentiated invasive components in IPMNs showed loss of all forms of HNF4α. Pan-promoter, 
and P1-specific HNF4α expression showed shifts in subnuclear and sub-anatomical distribution in 
IPMN, whereas P2 expression was consistently nuclear. Tumor cells with high-grade dysplasia at the 
basal interface with the stroma showed reduced expression of P1, while P2 was equally expressed 
in both components. Additional functional studies are warranted to further explore the mechanisms 
underlying the spatial and differential distribution of HNF4α isoforms in IPMNs.

Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are pre-malignant cystic tumors of the 
pancreas, accounting for up to 25% of all cases of pancreatic ductal adenocarcinoma (PDAC)1–3. Unlike solid, 
non-IPMN PDAC and its precursor pancreatic intra-epithelial neoplasia (PanIN), IPMNs are easily identified 
by cross-sectional imaging (CT or MRI scans) and are typically diagnosed before invasive malignancy has 
developed. Thus, most patients with IPMN have a window of opportunity during which progression to cancer 
could be prevented., The mechanisms by which IPMN carcinogenesis occur remain obscure and are important 
to study, since PDAC has a dismal prognosis, and is projected to become the second leading cause of cancer-
related death in the United States by  20304,5.

HNF4α is a nuclear receptor superfamily of ligand-dependent transcription  factors6. It is expressed in various 
visceral endodermal organs, and is considered a master regulator of hepatocellular differentiation with multiple 
roles in metabolic function and  injury6–10. Alternative splicing of HNF4α’s two promoters, P1 and P2, yields up 
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to twelve isoforms that are divided into P1 (α1-α6) and P2 (α7-α12)  groups11,12. In the liver, mature hepatocytes 
predominantly express P1 isoforms which have metabolic, secretory and synthetic  functions9. In contrast, hepato-
cytes that are immature, injured or dysplastic predominantly express P2 isoforms, which are associated with 
cellular dedifferentiation, proliferation and epithelial-to-mesenchymal transition (EMT)9. Beyond the liver, roles 
for HNF4α have been identified in several malignant and pre-malignant lesions including Barret’s esophagus, 
gastric intestinal metaplasia, gastric adenocarcinoma, colorectal carcinoma and  PDAC13,14. In these, HNF4α 
dysregulation is associated with alterations in transcription networks related to metabolic, inflammatory and 
proliferative  pathways7,14–16. Transcriptomic studies of non-IPMN PDAC have described “classical” and “basal/
squamous” molecular  subtypes17–20. These studies have shown HNF4α predominantly in the classical molecular 
group of PDAC while loss of HNF4α is associated with the basal  subtype21. Additional studies employing cell 
lines, mouse models, and human tissue have studied HNF4α in PDAC but not in  IPMNs21,22.

Specific expression patterns of P1 and P2 isoform groups vary between cancers of different anatomical 
 origins13,14,23,24. There is also subcellular and spatial variation in HNF4α isoform expression, such as colonic 
mucosa where P1 isoforms are expressed in the differentiated surface component whereas P2 expression is 
predominant in the proliferative basal crypt cells. The nuclear localization of P1, however, is lost or shifted to 
the cytoplasm with progression to colorectal  carcinoma25. However, the subcellular and spatial distribution of 
HNF4α remains poorly studied in the normal and neoplastic pancreas.

HNF4α’s potential role in tumorigenesis makes it a target of interest for potential therapeutic interventions. 
For instance, restoration of HNF4α delivered through lipid nanoparticles in human fibrotic liver tissue has been 
shown to attenuate fibrosis and  cirrhosis26. Similarly, ectopic HNF4α expression in hepatocellular carcinoma 
(HCC) is associated with increased miR-122 expression, which induces re-differentiation, mesenchymal-to-
epithelial transition, and decreased invasive  capacity27. HNF4α’s role in PDAC represents an opportunity to 
translate findings in HCC to pancreatic neoplasms such as  IPMNs21.

In the present study, we have explored HNF4α expression in IPMNs using promoter-specific antibodies. We 
show that nuclear HNF4α expression increases in high-grade dysplasia and in well-differentiated invasive IPMN 
but is lost in poorly differentiated invasive IPMN. Additionally, we show that subcellular and spatial distribution 
of HNF4α expression varies in pan-promoter and P1 isoform but not for P2 isoform groups. Our study serves as 
the basis for future functional studies that can further characterize the roles of specific HNF4α isoforms in IPMN 
carcinogenesis. Further understanding of mechanisms underlying IPMN development may provide avenues for 
the development of novel therapies.

Materials and methods
IPMN selection
This study was approved by the Vanderbilt University Human Research Protections Program (Protocol #101,066; 
Nashville, TN). The need for written informed patient consent was waived by Vanderbilt University (Vanderbilt 
University Human Research Protections Program; Protocol #101,066; Nashville, TN). HIPAA identifiers were 
deleted to assure data anonymity. This study was conducted in accordance with the Declaration of Helsinki. After 
IRB approval, surgical specimens of human IPMN were retrospectively selected from institutional and referred 
patients to Vanderbilt University Medical Center (VUMC, Nashville, TN, USA). Morphologically, IPMNs were of 
either gastric-foveolar (GF), intestinal (INT), or pancreaticobiliary (PB) subtype (Table 1). Non-invasive IPMNs 
were also categorized as low-grade (LG) or high-grade (HG). Invasive glandular components associated with 
IPMN were well-differentiated if they exhibited well-defined glandular architecture or poorly differentiated if 
glandular architecture was lost. In clinical practice, grading of invasive PDAC is determined by the proportion 
of tumor composed of well-formed glands. In practice, PDAC is heterogenous, and may often be “moderately 
differentiated” when 50–95% of the total tumor consists of  glands28. To capture the heterogenous intra-tumoral 
morphology of PDAC, expression patterns were recorded based on morphology of individual well-differentiated 
and poorly differentiated components, rather than on final tumor grade that simply represents the dominant 
degree of glandular differentiation. Controls consisted of normal pancreatic or duodenal tissue without IPMN.

Immunohistochemistry (IHC) testing
Tissue sections were stained by H&E, according to standard protocol for diagnostic purposes. Monoplex immu-
nohistochemistry was then conducted using a standard protocol with sodium citrate pH6.0 heat-induced epitope 
retrieval with DAB (K3468; Dako), and counterstained with Mayer’s hematoxylin (S3309; Dako). For each of the 
55 specimens, one slide per specimen was chosen for immunohistochemical testing with a rabbit monoclonal 
antibody directed against pan-promoter HNF4α isoforms, which includes both P1 and P2-specific isoform groups 
(EPR3648, ab92378). A second cohort comprising 31 specimens with 60% diagnosed as low-grade IPMN and 

Table 1.  Total cohort IPMN cases by morphological subtype, and grade of dysplasia. GF: Gastric-foveolar; 
INT: Intestinal, PB: Pancreaticobiliary; IPMN: Intraductal papillary mucinous neoplasm.

GF INT PB Total

Low grade IPMN 16 7 5 28

High grade IPMN 5 4 9 18

Invasive 1 5 3 9

Total 22 16 17 55
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40% with high-grade or invasive IPMNs underwent additional immunohistochemistry with antibodies specific 
to P1 isoform-specific HNF-4-alpha antibodies (K9218, PP- PP-K9218-00, 2ZK9218H, R&D Systems) and P2 
isoform-specific HNF-4-alpha/NR2A1 antibodies (H6939, PP-H6939-00, R&D Systems). HNF4α immunohis-
tochemical staining was considered satisfactory if the pathologically reviewed elements showed at least weak/
focal positivity. This was not the case for 2/31 (6%) specimens stained with P2-isoform-specific HNF-4-alpha/
NR2A1 antibody that were excluded from the study. A SCN400 slide scanner (Leica, Wetlzar, Hesse, Germany) 
was used to scan whole slides at 20X objective magnification. Normal human pancreatic and duodenal tissue 
were used as controls.

Pathology validation and analysis
All cases were independently reviewed by two pathologists, one of whom was specialized in gastrointestinal 
and pancreaticobiliary pathology. QuPath version 0.3.2 was used to visualize and annotate scanned whole slide 
 images29. Interobserver discordance resulted in a review by both observers to establish consensus. Surgical speci-
mens were reviewed to confirm morphological subtype, grade of dysplasia, and grade of invasive components.

For each slide, up to 3 regions of interest measuring 250 × 250 µm2 were selected to evaluate each of the fol-
lowing components: pancreatic acini, intercalated ducts, intralobular ducts, large ducts, peribiliary glands, acinar-
to-ductal metaplasia (ADM), surface low-grade IPMN components, basal low-grade IPMN components, surface 
high-grade IPMN components, basal high-grade IPMN components, well-differentiated invasive adenocarci-
noma arising from IPMN, and poorly differentiated invasive adenocarcinoma component arising from IPMN 
(Table 2). Surface IPMN components were defined as epithelial cells lining fibrovascular papillary projections. 
Basal IPMN components were defined as epithelial cells in contact with non-papillary stroma. Certain regions 
of interest were used to evaluate more than one component. The QuPath interactive alignment function was 
used select the same region of interest (ROI) in serial sections of a given tissue.

For each region of interest targeting a specific component, HNF4α IHC expression was graded between 0 
and 3: “0” represented absent expression; “1” represented areas in which under 50% of epithelial cells showed 
up to moderate staining; “2” represented areas in which over 50% of epithelial cells exhibited moderate staining 
but under 50% of cells showed strong staining; “3” represented areas with a strongly diffuse staining in over 
50% of epithelial cells.

Statistical analyses
Different set sizes were used for different statistical analyses due to logistical restraints. In statistical tests compar-
ing HNF4α expression in non-invasive IPMN without regard for spatial distribution, the scored regions of interest 
at the surface and at the base were combined. In statistical tests comparing the difference in HNF4α expression 
between the surface and basal components of non-invasive IPMN, the corresponding regions of interest were 
separately compared. Mann–Whitney U with two-tailed significance level of 0.05 and Kruskal Wallis non-para-
metric testing were conducted using GraphPad Prism version 8.4.3 (GraphPad Software, San Diego, CA, USA).

Results
Nuclear HNF4α expression increases in normal ductal components
First, we sought to characterize nuclear pan-HNF4α expression patterns in normal pancreatic tissue (Supplemen-
tal Fig. S1). Expression of HNF4α in acini was weak and focal. As intercalated ducts progressed to intralobular 
ducts and then larger pancreatic ducts, the intensity of nuclear pan-HNF4α expression increased. (Kruskal–Wallis 

Table 2.  Number of regions of interest scored per component and HNF4α isoform. ADM: Acinar-to-ductal 
metaplasia; IPMN: Intraductal papillary mucinous neoplasm; Well diff INV: Well-differentiated invasive 
adenocarcinoma; Poorly diff INV: Poorly differentiated invasive adenocarcinoma.

Component

Isoform

Pan-promoter HNF4α (n = 55) HNF4α P1 (n = 31) HNF4α P2 (n = 29)

Acini 84 39 39

Intercalated ducts 84 39 39

Intralobular ducts 84 38 38

Large ducts 42 21 22

Peribiliary glands 39 20 19

ADM 69 32 33

Low-grade IPMN, surface 105 58 58

Low-grade IPMN, base 109 62 62

Low-grade IPMN, total 214 120 120

High-grade IPMN, surface 81 42 46

High-grade IPMN, base 76 36 38

High-grade IPMN, total 157 78 84

Well-diff INV 24 12 12

Poorly diff INV 15 6 6
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P < 0.0001, Supplemental Fig. S1B). We observed an increased expression of pan-HNF4α in ADM, consistent 
with previous studies showing increased HNF4α expression as acini and benign ducts undergo an ADM-PanIN-
PDAC sequence of  progression21,22. A similar pattern of higher expression in larger ducts was observed for the 
HNF4α P1 isoform group (Kruskal–Wallis p < 0.0001, Supplemental Fig. S2) and the HNF4α P2 isoform group 
(Kruskal–Wallis p < 0.0001, Supplemental Fig. S3).

Nuclear HNF4α expression increases with IPMN grade
For non-invasive IPMN, we observed a higher nuclear expression of HNF4α in high-grade IPMN relative to 
low-grade IPMN (Fig. 1a,b). This increase was significant in pan-promoter (p < 0.0001), P1 (p < 0.0001, and 
P2 (p = 0.0211) isoform groups of HNF4α. The increased nuclear expression of HNF4α in non-invasive IPMN 
mirrors the expression pattern observed in PanIN in which isoform-specific expression patterns have not been 
studied, and in intestinal metaplasia in the stomach, which is characterized by synchronously increased P1 and 
P2 isoform  expression14,15,21,22.

Nuclear HNF4α expression decreases between well-differentiated and poorly differentiated 
invasive components
Next, we evaluated HNF4α expression patterns in well-differentiated and poorly differentiated components of 
invasive adenocarcinoma associated with IPMN. Pan-promoter HNF4α nuclear expression was higher in well-
differentiated invasive IPMN compared to HG non-invasive IPMN (p = 0.0026; Supplemental Fig. S1) but this 
difference was not observed for P1-specific (p = 0.8021; Supplemental Fig. S2) and P2-specific isoform groups 
(p = 0.6260; Supplemental Fig, S3). However, HNF4α nuclear expression was markedly lower in poorly differen-
tiated invasive IPMN compared to well-differentiated invasive IPMN across all isoform groups: pan-promoter 
(p < 0.0001), P1 (p = 0.0066), and P2 (p = 0.0001) (Fig. 2a,b). The loss of HNF4α in poorly differentiated invasive 
IPMN components mirrors expression patterns observed in  PDAC21,22. Similarly, HNF4α nuclear expression 
in poorly differentiated invasive IPMN was lower than in high-grade non-invasive IPMN across all isoform 
groups: pan-promoter (p = 0.0002), P1 (p = 0.0087), and P2 (p < 0.0001). Poorly differentiated invasive components 
showed a lower HNF4α nuclear expression than low-grade non-invasive IPMN for pan-promoter (p = 0.0384) 
and P2 (p < 0.0001) isoform groups but not for the P1 isoform group (p = 0.1808) (Supplemental Fig. S1, S2, S3).

Variations in subcellular localization of HNF4α expression are observed for pan-promoter and 
P1 but not P2 isoform groups
We then sought to characterize the cytoplasmic expression of HNF4α isoform groups in IPMN and invasive 
components. In the pan-promoter HNF4α isoform group, poorly differentiated invasive components showed an 
increase in cytoplasmic expression relative to well-differentiated invasive components (p = 0.0005), but there was 
no difference in cytoplasmic pan-promoter HNF4α expression between low-grade and high-grade IPMN compo-
nents (p = 0.9186) or between high-grade and well-differentiated invasive components (p = 0.1108). Cytoplasmic 
expression was observed within the P1 isoform group, though there was no statistically significant difference 
among non-invasive or invasive IPMN components (Kruskal–Wallis p = 0.0722). In contrast to pan-promoter 
and P1 isoform groups that showed both nuclear and cytoplasmic HNF4α expression, P2 expression was strictly 
nuclear in non-invasive IPMN and invasive components (Fig. 3a,b).

Variations in spatial HNF4α distribution are observed for pan-promoter and P1 but not P2 
isoform groups
Additionally, we compared nuclear HNF4α expression between surface and basal epithelium of non-invasive 
IPMN. There was increased pan-promoter HNF4α expression in the basal compartments of low-grade IPMN 
(p = 0.0009) compared to the surface compartment, but this pattern was not observed in P1 or P2 isoform groups. 
In high-grade non-invasive IPMN, pan-promoter HNF4α was increased in the basal compartment (p = 0.0049) 
but the surface IPMN epithelium exhibited increased P1 isoform-specific expression relative to basally located 
cells at the stromal interface (p = 0.0001). There was no significant difference between surface and basal expres-
sion for P2 isoforms in either low-grade or high-grade IPMN components (Fig. 3c,d).

Discussion
Our results demonstrate that HNF4α expression may be dynamically involved in IPMN dysplastic progression 
and invasive transformation. We showed that there is pan-promoter increase in HNF4α expression through 
IPMN dysplasia and in well-differentiated invasive components. There is however a loss of HNF4α expression 
in poorly differentiated components. In addition, we showed that P1 isoform groups show variable subcellular 
localization and there is also variable spatial distribution of P1-specific isoforms in high-grade disease. In con-
trast, P2 isoform expression is constant throughout IPMN progression except for poorly differentiated invasive 
lesions that lost expression. Our findings complement the literature on HNF4α in PanIN-associated PDAC, while 
characterizing HNF4α expression patterns for the first time in  IPMN15,21,22.

There are conflicting results pertaining to the HNF4α isoform-specific expression in non-tumoral pancreatic 
tissue. Human pancreatic tissue stained by Tanaka et al. exclusively expressed pan-promoter and P2 isoforms, 
while P1 isoforms were  absent13. Conversely, a transcriptional study by Eeckhoute et al. showed the presence of 
P1 isoforms and absence of P2 isoforms in human exocrine pancreas cell  lines30. In addition, Camolotto et al. 
observed patient-derived xenograft models of PDAC to show expression of either P2 only or concomitant P2 
and P1 isoform group  expression21. Our findings were nonetheless consistent with previous studies, since the 
nuclear intensity score was generally higher for P2 than P1 in normal exocrine components.
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Variations of HNF4α expression patterns in different cancer types reflect the protean functions of HNF4α iso-
form  groups31,32. The isoform-specific expression pattern we observed in IPMNs mirrors the expression patterns 

Figure 1.  Increased nuclear expression of HNF4α isoforms in non-invasive HG IPMNs. (a) Average nuclear 
staining intensity of non-invasive IPMN ROIs as graded by 2 pathologists for pan-promoter, P1, and P2 
HNF4α isoforms. The scale bar represents 100 µm. (b) Average nuclear intensity according to IPMN grade. 
Pan-promoter LG IPMN versus HG IPMN: p < 0.0001; P1 LG IPMN versus HG IPMN p < 0.0001; P2 LG IPMN 
versus HG IPMN: p = 0.0211.
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Figure 2.  Loss of HNF4α nuclear expression isoforms in poorly differentiated invasive IPMN. (a) Average 
nuclear staining intensity of invasive carcinoma ROIs associated with IPMNs, as graded by 2 pathologists for 
pan-promoter, P1, and P2 HNF4α isoforms. The scale bar represents 100 µm. (b) Average nuclear intensity 
according to differentiation of invasive carcinoma component. Pan-promoter well-diff INV versus poorly diff 
INV: p < 0.0001; P1 well-diff INV versus poorly diff INV: p = 0.0066; P2 well-diff INV versus poorly diff INV: 
p = 0.0001.
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Figure 3.  Differential staining of P1 and P2 in tumor cell components. (a) Average cytoplasmic staining 
intensity of IPMN and invasive carcinoma ROIs, as graded by 2 pathologists for pan-promoter, P1, and P2 
HNF4α isoforms The scale bar represents 100 µm. (b) Pan-promoter LG IPMN versus HG IPMN : p = 0.9186; 
Pan-promoter HG IPMN versus well-diff INV: p = 0.1108; Pan-promoter well-diff INV versus poorly diff 
INV: p = 0.0005; Pan-promoter Kruskal–Wallis: p = 0.0014; P1 LG IPMN versus HG IPMN: p = 0.5553; P1 HG 
IPMN versus well-diff INV: p = 0.0519; P1 well-diff INV versus poorly diff INV : p = 0.8045; P1 Kruskal–Wallis: 
p = 0.0722; No cytoplasmic staining was observed for P2 isoforms. (c) Differential staining of P1 and P2 in 
surface versus base of high grade IPMN ROIs. The scale bar represents 250 µm. (d) Pan-promoter low grade 
IPMN, surface versus base: p = 0.0009; P1 low grade IPMN, surface versus base: p = 0.3634; P2 low grade IPMN, 
surface versus base: p = 0.6862; Pan-promoter high grade IPMN surface versus base: p = 0.0049; P1 high grade 
IPMN, surface versus base: p = 0.0001; P2 high grade IPMN, surface versus base : p = 0.0567.
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of certain gastrointestinal tract adenocarcinomas such as esophageal, gastric, and pancreatic  adenocarcinoma31,33. 
These tumors all involve pre-neoplastic metaplastic processes, such as gastric intestinal metaplasia, Barret’s esoph-
agus, and pancreatic ADM which are also similarly associated with increased overall HNF4α  expression14,15,21,22,34. 
When looking at the isoform-specific differences in these metaplastic processes, gastric intestinal metaplasia is 
associated with P1-specific overexpression in a background of P2 expression within normal foveolar cells, while 
isoform-specific expression has not yet been well characterized in Barret’s esophagus and  ADM15. This over-
expression pattern may reflect a rerouting of P1-mediated cell differentiation towards other tumor-promoting 
 mechanisms31,35–37. In contrast, hepatocellular carcinoma is characterized by decreased expression of P1 isoforms. 
Acute or chronic cellular injury resulted in decreased HNF4α loss, due to inflammatory pathways such as NF-κB 
that induce endoplasmic reticulum stress and impair HNF4α recruitment for normal metabolic functions, as 
observed in models of chronic hepatocyte injury, cirrhosis, and  colitis9,16. In these specific contexts, it is possible 
that P1 isoforms instead have a tumor suppressive function in which sustained loss leads to metabolic reprogram-
ming and HCC. The loss of pan-isoform HNF4α expression in poorly differentiated invasive IPMN may reflect a 
severe loss of HNF4α-dependent cell differentiation due to accumulated epigenetic and genetic alterations. The 
loss of pan-isoform HNF4α we observed in poorly differentiated invasive IPMN reflects prior observations in 
PanIN-associated PDAC. In human PDAC cell lines, Kim, et al. showed that HNF4α had increased expression in 
PanIN and in well-differentiated PDAC, but was lost in undifferentiated  carcinoma22. Similarly, Camolotto et al. 
used murine and human models to show that HNF4α deletion resulted in poorly differentiated PanIN-derived 
PDAC, and that reconstitution of HNF4α isoform 8, a P2 isoform, resulted in decreased tumoral proliferation 
and increased epithelial  differentiation21. Modulation of tumor differentiation may be attributed to HNF4α-
mediated inhibition of mesodermal lineage markers SIX1 and SIX4 that are activated in the basal molecular 
subtype of  PDAC21. Further mechanistic studies are required to establish the exact biological roles of individual 
HNF4α isoforms in IPMN progression.

The isoform-specific subcellular localization of HNF4α may be related to post-translational and epigenetic 
factors that differentially modulate HNF4α expression. In colon adenocarcinoma, P1 isoform expression that 
is normally present in the superficial differentiated epithelium is lost and instead exhibits a cytoplasmic shift 
due to SRC-mediated phosphorylation and degradation of HNF4α25. Phosphorylation-mediated cytoplasmic 
HNF4α retention has also been described in mice with hepatic  steatosis8. Other processes that may interfere 
with HNF4α transcriptional activity include epigenetic methylation which is observed in hepatocyte injury and 
in the squamous/basal molecular subtypes of  PDAC9,38.

Variability in the spatial distribution of HNF4α isoforms may similarly reflect variable isoform functions. The 
micro-anatomical distribution of HNF4α has previously only been studied in human and murine colon tissue in 
which the differentiated surface component is characterized by P1 predominance while the proliferative basal 
compartment showed a P2 predominance. In humans, HNF4α P1 isoform is downregulated in colorectal carci-
noma at the transcriptional and proteinic level by WNT/β-catenin activity, whereas P2 isoforms are maintained 
throughout  tumorigenesis39. Restriction to α1 or α7 expression in a model of colitis resulted in concomitant 
surface and basal expression of the restricted isoform, though colorectal carcinoma with α1 isoform restric-
tion showed lower tumor burden compared to α7  restriction16. In high-grade IPMN, we observed an increase 
in surface expression of P1 relative to the basal compartment. This increase in surface P1 expression suggests 
reprogramming of surface cells before eventual progression to invasive carcinoma. In contrast, the lower degree 
of P1 expression within the basal compartments in association with an increase in P2 is more similar to the pat-
tern observed in colonic crypts with proliferative capacity. This differential expression between the surface and 
the base may potentially be explained by the differences in stromal signaling that modulate HNF4α expression. 
For instance, in the liver, increased extracellular matrix rigidity secondary to liver fibrosis activates YAP nuclear 
translocation and results in HNF4α  downregulation40. Similarly to colorectal carcinoma, a subset of PDACs with 
low HNF4α expression are characterized by an amplified WNT/β-catenin signaling program and an increased 
tolerance to GSK3β  inhibitors38. The potential role of the IPMN tumor-microenvironment in HNF4α modula-
tion has yet to be studied.

The limits of our study are mainly attributable its retrospective methodology. Although our study shows an 
association of HNF4α immunohistochemical expression patterns within IPMN progression, a causal relationship 
cannot be determined. However, the increased HNF4α expression in high-grade dysplasia and well-differentiated 
invasive adenocarcinoma, with subsequent loss of expression in poorly differentiated invasive adenocarcinoma, 
is a common event observed for pan-promoter, P1 and P2 isoforms. Although the employed semi-quantitative 
scoring for immunohistochemical expression of HNF4α is subject inter-observer variability, our results exam-
ined the relative differences in HNF4α immunohistochemical expression scores, rather than the absolute scores. 
In vitro study of HNF4α in IPMN is hampered by lack of cell lines and mouse models. Fresh tissue is only avail-
able at the time of surgical resection, but collection for research is often impossible when the entire specimen 
must be submitted to assess the presence of an invasive component. Furthermore, the antibodies employed for 
immunohistochemistry target pan-promoter, P1 and P2 isoform groups without further discrimination of the 
underlying isoforms within these groups. When comparing surface to basal HNF4α expression, we observed 
discrepant patterns between pan-promoter, P1 and P2-specific isoform expression. For instance, low-grade 
IPMN showed increased basal pan-promoter expression relative to surface expression, yet this was not observed 
with P1 or P2-specific antibodies. High-grade IPMN similarly showed a higher degree of basal pan-promoter 
specific expression relative to surface epithelium but P1 isoforms showed increased surface expression relative 
to the basal epithelium while P2 expression did not vary. These discrepant expression patterns may be due to 
post-translational HNF4α protein modifications, such as phosphorylation and acetylation, that may variably 
affect protein stability and epitope recognition by immunohistochemical  antibodies25,41.

Our study serves as a basis for future studies that will delve into the roles and differential distributions and 
functions of specific isoforms, particularly in high-grade disease. Prevailing single-cell sequencing analysis 
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studies have revealed a highly heterogenous and complex genetic landscape in pancreatic adenocarcinoma and 
its precursors, which have been shown to also harbor a wide array of metaplastic programs as well as a heterog-
enous tumor  microenvironment42–46. While many of these reports analyze pan-gene transcripts, the relevance of 
HNF4α isoform expression in addition to subcellular and spatial distribution, adds another layer of complexity 
to our understanding of IPMN carcinogenesis.

In summary, we showed that nuclear HNF4α expression is increased in IPMNs with high-grade dysplasia 
and well-differentiated invasive IPMN but is lost in poorly differentiated invasive IPMN. We also demonstrated 
that pan-promoter and P1-specific isoforms show variable cytoplasmic expression of HNF4α. Similarly, there 
is a differential spatial distribution of P1 isoforms in high-grade IPMNs. These findings can serve as a basis 
for investigating the roles specific HNF4α isoforms in IPMN progression, as well as their viability as potential 
therapeutic targets.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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