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OPEN A general class of improved

population variance estimators
under non-sampling errors using
calibrated weights in stratified
sampling

M. K. Pandey'™, G. N. Singh?, Tolga Zaman?, Aned Al Mutairi® & Manahil SidAhmed Mustafa*

This paper proposes a new calibration estimator for population variance within a stratified two-phase
sampling design. It takes into account random non-response and measurement errors, specifically
applying this method to estimate the variance in Gas turbine exhaust pressure data. The study
integrates additional information from two highly positively correlated auxiliary variables to develop
a general class of estimators tailored for the stratified two-phase sampling scheme. The properties of
these estimators, in terms of their biases and mean square errors, have been thoroughly examined
and extensively analyzed through numerical and simulation studies. Furthermore, the calibrated
weights of the strata are derived. The proposed estimators outperform the natural estimator of
population variance. Finally, suitable recommendations have been made for survey statisticians
intending to apply these findings to real-life problems.

In many practical scenarios, estimating population variance is a crucial task with wide-ranging applications,
spanning various domains including finance, healthcare, and weather forecasting. Actuaries and insurance ana-
lysts heavily rely on population variance estimation to make well-informed decisions. In the realm of weather
forecasting, grasping the variability in temperature, humidity, and other meteorological factors at diverse loca-
tions is fundamental for precise predictions. To bolster the precision of estimators in sample surveys, auxiliary
variables play a pivotal role. For instance, when estimating crop yields, incorporating data on the area covered
by crops can significantly enhance prediction accuracy. Numerous studies, such as' did work on the use of aux-
iliary information in estimating the finite population variance?, developed a class of estimators using auxiliary
information for estimating finite population variance, and® introduced a new procedure for variance estimation
in simple random sampling using auxiliary information*. further improved the estimation of finite population
variance using dual supplementary information under stratified random sampling, while® explored the more
efficient use of auxiliary information in population variance estimation, presenting a new family of estimators.

Moreover, recent research has delved into variance estimation using auxiliary information, with innovative
approaches like memory type ratio and product estimators”® gaining attention. These endeavors aim to enhance
the accuracy and reliability of population variance estimation in diverse sampling designs.

However, sample surveys often encounter practical challenges that result in non-response or missing data.
These challenges encompass non-contact, refusal to cooperate, and various other reasons. When a substantial
amount of data goes missing, it casts doubt on the reliability of ensuing statistical results. Diverse types of missing
data patterns, such as missing at random (MAR) and missing completely at random (MCAR), can be observed.
Particularly noteworthy is the MAR pattern, characterized by the probability of missingness being independent
of the unobserved data’s value.

In the presence of random non-response or measurement errors, various researchers have addressed the
need for robust estimators’. introduced a class of estimators using auxiliary information for estimating finite
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population variance in the presence of measurement errors, while'® developed classes of factor-type estimators
in the presence of measurement error''. focused on the estimation of the population coefficient of variation in
the presence of measurement errors, and'? worked on estimating the population mean in the presence of meas-
urement error and non-response under stratified random sampling"®. contributed to the estimation of the finite
population distribution function with the dual use of auxiliary information under non-response, and'* introduced
a generalized class of estimators for sensitive variables in the presence of measurement error and non-response'.
explored the estimation of finite population mean using dual auxiliary variables for non-response using simple
random sampling, while'® and Bhushan (2023) proposed classes of robust estimators to handle correlated meas-
urement errors and new logarithmic type imputation techniques in presence of measurement errors within the
survey sampling literature. These errors may stem from flawed measuring instruments, shortcomings in survey
methodology, vague questionnaires, or imprecise measurements.

The calibration approach, pioneered by'8, has garnered prominence in statistical practice. Its objective is
to devise unbiased estimation procedures with minimal dispersion, leveraging auxiliary variables. Subsequent
researchers, exemplified by" and?®, have fine-tuned and extended calibration estimation procedures, striving to
minimize the divergence between initial and final weights while adhering to calibration equations and constraints.

Recent advances in calibration techniques, as demonstrated by*!, have focused on a class of calibration esti-
mators under stratified random sampling in the presence of various kinds of non-sampling errors*. Explored
calibration estimation for ratio estimators in stratified sampling for proportion allocation, and® further advanced
the finite population distribution function estimation with the dual use of auxiliary information under simple
and stratified random sampling’. investigated the use of dual ancillary variables to estimate the population mean
under stratified random sampling, while?* worked on modified estimators of the finite population distribution
function based on the dual use of auxiliary information under stratified random sampling. These techniques have
streamlined the optimization of stratum weights in stratified random sampling, ultimately refining estimates,
particularly when closely related auxiliary variables are integrated.

To underscore the practical significance of this research, let’s consider real-life examples:

1. Inhealthcare research, when conducting patient surveys to evaluate the effectiveness of medical treatments,
not all patients may respond, and measurement errors can occur due to self-reporting. Accurate population
variance estimation in such cases is crucial to making informed decisions about treatment strategies.

2. Inmarket research, understanding consumer preferences through surveys is essential for product develop-
ment and marketing strategies. Non-response from certain demographic groups or errors in survey responses
can distort the estimation of market variances, impacting business decisions.

3. In educational assessments, when evaluating the performance of schools or educational programs, student
participation may vary, and measurement errors can affect the assessment outcomes. Reliable population
variance estimation is vital for making informed policy decisions and improving education quality.

4. By addressing these issues across diverse fields, this innovative framework aims to provide a reliable approach
for accurately estimating population variances, thereby enhancing decision-making processes in real-life
scenarios. Additionally, the proposed estimation strategy may be applied to estimate the variance in Gas
turbine exhaust pressure, as illustrated using real data in a subsequent section of the manuscript.

Survey sampling necessitates addressing uncertainty and imprecision. Neutrosophic statistics, championed by*
in "Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis, extend clas-
sical statistics for indeterminate data. Aslam’s contributions include ’A New Sampling Plan using Neutrosophic
Process Loss Consideration® and *Neutrosophic Analysis of Variance: Application to University Students?’,
among others, illustrating its application in handling vague and imprecise observations in populations or samples.

Motivated by the aforementioned discussions, the present work proposes a wide class of estimators of popula-
tion variance in two-phase sampling for the stratified population in the presence of random non-response and
measurement errors in sample data. The stratum weights have been optimized using calibration procedures,
which enables us to get more accurate estimates of the population variance. The performances of the suggested
class of estimators have been deeply examined through empirical and simulation studies.

Sample structure

Consider a finite population of size N divided into L non-overlapping strata, each containing Nx(k=1,2,..., L)
units. Let Y, X, and Z be the study variable, first and second auxiliary variables, respectively. Let y;, Xk;, and zx; be
the ith values of y, x, and z for the k-th (k = 1, 2,..., L) stratum. To estimate the population variance of the study
variable Y, It is assumed that the information on the second auxiliary Z is readily available for all the population
units. Hence its population variance is known. However, information on the first auxiliary variable is not available
for all the units of the population. It is also assumed that the random non-response is observed in the sample
data on the study and first auxiliary variables Y and X, respectively. In the first phase, a sample, say S, of size
ng (k=1,2..., L), is drawn from kth strata using simple random sampling without replacement and observed for
the variables y and x. Let in the first phase sample of size n, nx_,,, respond and random non-response observed
on the 1, units. Again in the second phase, from the n;_,, respondent units, another simple random sample
without replacement, say Sy, of size my, is chosen from which my._,, units respond and r, units do not respond.

Notations
From now on, we will use the following notations:
052,: The population variance of Y, i.e, the characteristics under study

S%,Nk:ﬁ JN=k1 (Yij — Yn,)* The population mean squares of the kth stratum of the study variable Y.

Scientific Reports |

(2024) 14:2948 | https://doi.org/10.1038/s41598-023-47234-1 nature portfolio



www.nature.com/scientificreports/

s2 X~ Nk i Z 1(Xk] )_(Nk)z S2 N Nk ] Z =1 (Zkj — ZNk )2: The population mean squares of the kth stratum
for the aux1hary var1ables Xand Z, respectlvely
;:k == "lk P r— an "% (xkj — Xne—n; ) :Depending on the responding part of sample S,,,, the sample mean
square of aux111ary varlable X for the kth stratum.
ij = = rzk P —— ka " (xkj — Xmy—r,;)%: Depending on the responding part of sample S,y,,, the sample mean
square of aux1l1ary varlable X for the kth stratum.
;"k == m r— Z"k " (ykj — Vmp—ryp)*: Depending on the responding part of sample S,,,, the sample mean
square of study varlable Y for the kth stratum.
Symk = W Z] 2" (Ykj — Ymy—r»)*: Depending on the responding part of sample S,y the sample mean
square of study variable Y for the kth stratum.
an == "lk P — Z"k "% (2kj — Zng—n,)*: Depending on the responding part of sample Sy, the sample mean
square of aux1l1ary varlable Z for the kth stratum.
:’"k = = rzk e ka "*(2kj — Zmy—ry,)*: Depending on the responding part of sample S, the sample mean
square of aux1l1ary varlable Z for the kth stratum.
Wi =Wk The original weight of the kth stratum, k= 1, 2,....,.L
W The weight obtained by calibration of the kth stratum k=1,2,..,L
Qx: The independent weight of the kth stratum, k= 1, 2,....,.L

Non-response probability model

The kth stratum is considered based on the random non-response model proposed by Singh and Joarder. In
the first phase, a sample of size ny taken from the population, n; — 7k units responded, while random non-
response was observed on the remaining rx units, where rjx may have any value from the set {0, 1,2, ..., (nx — 2)}.
Again, in the second phase, from the ny — 71 respondent units, my — r, units responded, and r,x do not respond,
where ry falls within the range {0,1,2, ..., (my — 2)}. It is assumed that Tk >0, j=12 and rix < (ng — 2),
2k < (my — 2). Non-response may have possible values of (1, — 2) and (mj — 2) in the samples S, and S,
respectively. These probabilities will be referred to as p; and p,. The total number of ways to obtainrj (j = 1,2)

L ng—2 my — 2
non-responses is and
"k 2k

ing probability distributions shown below:

_ ng —2 —r—
P(ryj)= A1k k P;lkq’fk M2 i1k =0,1,2,..., 1 — 2and

. Then, the discrete random variables r1x and r,x have the correspond-

nkq1+2p1 1k
oy [ M= 20\ e mp—rp—2 _
P(ra)= 5o, ok )Pz 9 31k = 0,1,2, .., my — 2

whereq; =1 —pijandg; =1 — py.

Suggested estimator
A wide class of estimators that may be used to estimate the population variance are proposed as follows, assuming
the impact of random non-response on both the study variable Y and the first auxiliary variable X.

L
T=Y WP (1)
k=1
where

Tk _f( h( g"k))’k =12,..,L )

Yy’ ka

In this case, h(s;*f 532 )isa class of estimators of S§ based on information on s} and sz, such that h($%,52)=5%

As we proceed, we will examine the composite class of estimators applicable to individual strata in two-phase
sampling.

2 2 2 a2 #2 2
e (CRR CRC I B (Gt et et} 3)
such that g(S3,, S%,» st sZk) =5,
We assume that g( ;kik , s;kfk sﬁnk) meets the regularity conditions listed below:
® Regardless of the sample chosen, the function g(s sE2sk2 s 2 ) takes on values within a closed convex

xmk Xn
subspace of the four- dlmenswnal real space R* that includes the pomt (8% Sg(k, Sg(k, S%k ).

e In R% the function g(s *2 ) ;f ,52 )1s continuous and bounded.
e The partial derivatives of g(s sy ,5*2

T 2 ) of the first, second, and third orders exist and are continuous
and bounded in R%.
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The class of estimators T} is extensive, as any parametric function g(s*i 12 sx2

S5, ,sg ) that meets the stated
i Xmy Xy 2y

regularity conditions, and has g(S%k, s2 8%, S%k) = S%,k, may generate estimators for the population mean square
of each stratum. Several examples of this class of estimators are:

sy [ 5% y oy 5%
Ty = ymy "k |2 Tox = ymy ny “Eng Ts = §*2 +b §*2 + b2(52 2 _ gx2
3 L | W ol o T 1[5 027 —s20) =5 ]
S
y
Ty = S*’;k [s;fk + b3 (s%k - sjnzk ] where by, b, and b; are the true scalars.
i
k 2
k2 k2 Zk
) Sxmpe ~Sxmy. 32
— ok Tk —
Tsp = S}’mk exp 2 Vk=1,2,..L
%2 +S*2 k

g TNy 552

Calibration techniques have been proposed to acquire the optimum strata weights
The new calibration estimator of the population variance under stratified sampling is provided by

L
T=Y Wil
k=1
— f(F2 2 2 2 _ : . .
where Ty _f(s;,"mk,sjm,(,h(sjnk,s%)),k =1,2,..,L and we obtain the calibrated strata weights W', where
ke {1,2,...,L}. (Wi =wp)?
Based on the following calibration requirements, the distance function (chi-square type) Zi:l 61{7‘%{" is
minimized:
L *
1. ZE:I Wi=1
2. Zle W]fczk:CZ L
* _
3. Zk:l Wk mek—rzk_ Zk:l chx”k_rlk
% 0,252 S Sme—rai
where, Ca=7 Cz= 7 Sy~ Xy —ry, and g1y~ X~y
It is important to note that Qx > 0 are appropriately determined weights that will determine the estimator
form.

In Appendix A, detailed derivations have been given.

Bias and mean square error of the suggested estimator
We utilize the transformations provided below while taking into account large sample assumptions to analyze
the properties of estimator T:

s;ik = S, (1 + eok)s sj;}nk = %, (1 + £14), s;jk = S5, (1+ &), sjfk = S%, (1 + £31)

such that|e;| <1,Vi=0, 1, 2, 3 and E(€;x)= 0.
According to calculations, the Bias(T) and the MSE(T) of the suggested estimator T, which are accurate to
the first order of approximation, are as follows:

L
. 1 2 [Sx, (fikdook + dasifac + 2daskfar) Chp + 283, Sx, pork (diakfix + disifsk)
Bias(T) = — E Wi ko 2 kK 4 2 (4)
24 +28%, S5, P12k (daakfok + daakfok) + 255, S5, drarforpook + S, daafoxC3,

and

L
MSE(T) =Y Wit [S} ik Co + 3 Sk, Chifak + A3 S5, ok C3y + 2dakponkfokSY, S5, + 257, %, dakpornfux ]
k=1

(5)
where
Ca="a00k-1, C2=loa0k-1, C3="00ak-1
Po1k = A220k-1 P2k = 202k~ 1 P12k = Ao22k-1
[ ;) fuef L - ;), [y L)
mpqa+2p2  Ng ng N ngq1+2p1 Ni
and

Nk
Mapyk

, 1 - 5 5
Iapyk = —————=, Mafyk = — Z(ij — Y0 Xy — X0 (2 — Zi)Y
[a B ¥ Nk
H200k H020k H002k =

Appendix B has detailed derivations.

The suggested estimator’s minimum mean square error under optimal condition.
We note from Eq. (5) that the derivatives d,x and dyi have an impact on the MSE of the estimator T. So, in order
to acquire the derivatives’ optimal values, we minimize the MSE concerning them as follows:
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_ Potk S5,
oy = = (6)
"l Sh
and
_ Po2k SY
dag,, = e
4knpt Cgk Szk (7)

We may obtain the minimum mean square error (Min. MSE)) of the estimator T by substituting the optimal

values of deupt and d4kupt from Egs. (6) and (7), respectively, in Eq. (5) as follows:

, o2 P2
Min.MSE(T) = E W;ZK4S |:f1kcok C(‘)zlkfk - C(‘)ZZk (8)
1k 2k

Effect of measurement error

Y and X actual and observed values are denoted by Ykj» Xkj » and Vkj» Xk, while uy;, and vy; denote the correspond-
ing measurement errors. Then xi; = xi; + vijand yj, = ykj, + uj, resulting in V(yg; ) = V(yk;,) + V (u),
with zero covariance term because the errors are 1ndependent

.. . 2 _
This implies S = s .t suk, so that MSE( ) = MSE(s NE MSE(suk)

L
<. Min.MSE(T) = » ~ MSE(s;, )

>~
—

{MSE (sﬁko) + M(sp, )]

Il
-
=l MH
—

L
= MSE(s;, )+ Y  MSE(sZ,)
k=1

k=1

The expression for Min.MSE was determined as follows: measurement errors occurred only on the study variable
Y and the primary auxiliary variable X, not on the secondary auxiliary variable Z.

o3 o3
Min.MSE(T) = Z witst, |:flkcok 01k f COsz zk} + Z Witsh fikCo (9)
k=1 2k
where
I, 1
Cot = haok — L g = 4?’; and oy = N Z(ukj — ) (v — )’
Mook k=t

Numerical study
An estimator’s performance must first be evaluated in terms of its characteristics before it may be used in practical
scenarios. Therefore, an empirical investigation has been conducted in this part using both real and simulated
data for the suggested estimator.

We are comparing the suggested estimator T and the contemporary estimator 7 to see how well they perform
in random non-response. The estimator 7 is defined as follows:

_\~L *2 2

=) ko Wis Vg

Additionally, we are comparing these estimators with the standard estimator since it is the only available
option when dealing with non-response and measurement errors.

The following are the expressions for its MSE, with and without measurement errors, respectively:

1 1
*4 4 _ I —
MSE(7) = E YNk<7mk o+ 20 Nk>(ﬂ400k 1) (10)

and

1
MSE witsy (| ———— Jaook — 1 Wist £,C2
(*) = Z Sty (mkq2+2p2 Ne >( 400k H}; 7 Suf 1k Cot (11)

The Percenta§Ee Relative Efficiency (PRE) of the proposed estimator T concerning the estimator 7 is given by
PRE —7 * 100
"MSE
Where ]13nqs (é) (11) give the corresponding equations for Min MSE(T) and MSE(t), without or with meas-
urement errors, respectlvely
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The following Qi values have been taken into consideration:

Case A: Q;=1.0

Case B: kawik

Case C: Q=2

Case D: kasgNk

The calibrated stratum weights and PREs, resulting from both the presence and absence of non-response, are
displayed in the tables below, for both simulated and real data.

Study based on simulated data
We conducted a simulation relevant to our theoretical findings using the statistical computing software R. To
achieve our objectives, we used the MASS package’s function mvrnorm to generate data from poisson distributions
with given parameters and a given correlation coeflicient for the study and the auxiliary variables. To generate
data from other acceptable distributions, use the function genCorGen included in the package simstudy. The
measurement errors were generated using a univariate standard normal distribution with the function rnorm.
Table 1 shows the population parameters for the generated data.

The resulting calibrated stratum weights and PREs in presence of non-response and in absence of non-
response are shown in Tables 2, 3 and 4, respectively.

Study based on real data

The information in this section demonstrates the practical application of the proposed class of estimators. The
dataset utilized is accessible within the UCI machine learning repository, titled “Gas Turbine CO and NOx Emis-
sion Data Set” This dataset comprises 36,733 instances featuring 11 sensor measurements from a gas turbine
situated in the northwestern region of Turkey, aggregated over an hour using average or sum calculation methods
for the analysis of CO and NOx (NO + NO2) flue gas emissions. To conduct the analysis mentioned above, the
specific file utilized is gto11.csv.

Real data Simulated data

Parameters | Stratum 1 | Stratum 2 | Stratum 3 | Stratum4 | Stratum 1 | Stratum2 | Stratum 3 | Stratum 4
N 2500 2600 2311 8000 10000 15000 5000 8000

Ny 875 910 809 800 3000 3000 2000 800

my 625 650 578 500 2000 2000 1200 500

Mk—ryy 750 780 693 750 2500 2500 1600 750

M —ryy 500 520 462 450 1600 1600 900 450

Pxyk 0.90 0.89 0.97 0.6 0.9 0.8 0.8 0.6

Dk 0.83 0.92 0.93 0.6 0.9 0.8 0.8 0.6

Pyzk 0.75 0.83 0.92 0.6 0.9 0.8 0.8 0.6

Table 1. Population parameters..

Case | Stratum | Qi Wi wy
1 1 0.2631579 | 0.44807455
2 1 0.3947368 | 0.36962453
A 3 1 0.1315789 | 0.13017106
4 1 0.2105263 | 0.05212985
1 3.800 0.2631579 | 0.43883647
2 2.533 0.3947368 | 0.38908713
B 3 7.600 0.1315789 | 0.13022077
4 4.750 0.2105263 | 0.04185563
1 24.990 | 0.2631579 | 0.44804409
2 25.009 |0.3947368 | 0.36968872
¢ 3 25.060 |0.1315789 |0.13017123
4 24970 |0.2105263 | 0.05209596
1 25.370 |0.2631579 | 0.44812328
2 24.740 | 0.3947368 | 0.36952187
P 3 24.860 |0.1315789 |0.13017080
4 25.300 |[0.2105263 | 0.05218405

Table 2. Calibrated strata weights for simulated data..
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In the absence of measurement error In the presence of measurement error

p1 23 Case A Case B Case C Case D Case A Case B Case C Case D

0.05 0.05 |123.0381 | 122.6552 |123.0369 |123.0401 | 122.9925 |122.6105 | 122.9913 |122.9945
0.05 0.10 | 123.1304 | 122.7438 |123.1291 |123.1323 | 123.0845 | 122.6989 | 123.0833 | 123.0865
0.05 0.15 |123.2208 | 122.8308 | 123.2195 |123.2227 |123.1747 |122.7857 | 123.1735 |123.1767
0.05 0.20 |123.3094 | 1229161 |123.3081 |123.3114 |123.2631 | 122.8707 | 123.2619 |123.2651
0.10 0.05 |121.7219 |121.3717 |121.7208 |121.7237 |121.6794 |121.3300 | 121.6783 |121.6811
0.10 0.10 | 121.8941 |121.5380 |121.8929 |121.8959 |121.8511 |121.4959 |121.8500 | 121.8529
0.10 0.15 | 122.0630 | 121.7013 | 122.0619 | 122.0649 |122.0197 |121.6588 |122.0185 |122.0215
0.10 0.20 | 122.2289 |121.8617 |122.2277 |122.2308 |122.1852 |121.8189 |122.1840 |122.1870
0.15 0.05 |120.2839 |119.9687 |120.2828 |120.2855 |120.2446 |119.9302 |120.2436 | 120.2462
0.15 0.10 | 120.5415 |120.2182 |120.5404 |120.5431 |120.5016 |120.1791 | 120.5006 |120.5033
0.15 0.15 | 120.7947 |120.4634 |120.7936 |120.7963 |120.7542 |120.4238 | 120.7532 |120.7559
0.15 0.20 | 121.0436 |120.7046 |121.0425 |121.0453 |121.0026 |120.6644 |121.0015 |121.0043
0.20 0.05 | 118.7063 |118.4288 |118.7054 |118.7077 |118.6706 |118.3937 |118.6697 |118.6720
0.20 0.10 | 119.0554 |118.7673 |119.0544 |119.0568 |119.0189 |118.7314 |119.0179 |119.0203
0.20 0.15 |119.3990 |119.1007 |119.3981 |119.4005 |119.3618 |119.0641 |119.3608 |119.3633
0.20 0.20 |119.7374 |119.4290 |119.7364 |119.7389 |119.6993 |119.3917 |119.6984 |119.7009

Table 3. PRE of T w.r.t. 7 for simulated poisson data.

Stratum PRE (In the absence of measurement error) | PRE (In the presence of measurement error)
Case I 124.2297 124.1813

Case II 123.8176 123.7701

Case II1 124.2284 124.18

Case IV 124.2318 124.1834

Table 4. In the absence of non-response, PRE is observed from simulated data when p; = p, = 0.

We employed the subsequent set of primary and auxiliary variables in this study:
Y: Gas turbine exhaust pressure (GTEP)
X: Air filter difference pressure (AFDP)
Z: Turbine inlet temperature (TIT)
The stratification is organized based on the Ambient temperature (AT) in the following manner:
Stratum 1: from 2.1163-12.707 C
Stratum 2: from 12.708-21.759 C
Stratum 3: from 21.760-34.532 C

In real-world circumstances, the goal is to estimate the variance as precisely as possible. However, complete
data is typically not always available. Therefore, we consider the case where some data on the study variable is
unavailable. The statistical characteristics of the population are detailed in Table 1, while the calibrated weights
for the strata are listed in Table 5. The PRE (Precentage Relative Efficiency) for both the non-response and absence

of non-response cases is presented in Tables 6 and 7, respectively.

Discussion
After conducting a detailed numerical study, we have identified the following key points:

The strata weights produced by the calibration procedures exhibit slight discrepancies from the actual ones,
as evident in Tables 2 and 5. Nevertheless, our findings indicate that the calibration technique effectively
enhances the stratum weights, resulting in more accurate estimates.

Table 3 reveals a consistent pattern: when pj, p> €(0.05, 0.1), the suggested estimator consistently outper-
forms the existing estimator, regardless of the presence or absence of measurement errors. This observation
is further supported by the real data presented in Table 6.

Further analysis of Tables 3 and 6 reveals that an increase in the value of p,, while keeping p; constant, results
in a higher PRE. This observation is a significant outcome of our research. Additionally, when p, remains
fixed and p; increases, the PRE decreases, aligning with our expectations.

Tables 4 and 7 demonstrate that the proposed estimator yields a higher Percentage Relative Efficiency (PRE)
than the conventional estimator in the absence of non-response also, underscoring the effectiveness of our
method, even without non-response.

It is noteworthy that as the correlation coefficient’s value increases, the PRE also increases. Conversely, a
decrease in the correlation coefficient leads to a decrease in PRE.
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Case Stratum | Qi Wi we
1 1 0.2061856 | 0.3209746
A 2 1 0.6185567 | 0.5243500
3 1 0.1752577 | 0.1546754
1 4.85 0.2061856 | 0.2566935
B 2 1.6167 0.6185567 | 0.5356455
3 5.7059 0.1752577 | 0.2076610
1 0.00092 0.2061856 | 0.3258734
C 2 0.00092 0.6185567 | 0.5187164
3 0.0009196857 | 0.1752577 | 0.1554102
1 0.0045425256 | 0.2061856 | 0.1816363
D 2 0.0031285169 | 0.6185567 | 0.6199598
3 0.0046467310 | 0.1752577 | 0.1984039

Table 5. Calibrated strata weights for real data.

In the absence of measurement error In the presence of measurement error

p1 P2 Case A Case B Case C Case D Case A Case B Case C CaseD
0.05 0.05 |264.5064 |280.9632 |261.8853 |293.3473 |262.4120 |278.5422 | 259.8380 | 290.6966
0.05 0.10 |268.6831 |284.3495 |266.1682 |296.1447 |266.5021 |281.8539 |264.0328 |293.430
0.05 0.15 |272.8552 | 287.7074 |270.4512 |298.9049 |270.5860 |285.1367 |268.2260 |296.1271
0.05 0.20 |277.0228 |291.0372 |274.7343 |301.6286 |274.6639 |288.3911 |272.4175 |298.7875
0.10 0.05 |241.0445 | 254.7055 |238.8611 |264.8419 |239.4063 |252.8268 |237.2576 |262.7989
0.10 0.10 | 246.0068 | 259.1428 |243.8921 |268.9041 |244.2764 |257.1770 |242.1959 |266.7791
0.10 0.15 | 251.0106 | 263.5895 |248.9701 |272.9584 |249.1849 |261.5345 |247.1779 |270.7499
0.10 0.20 | 256.0565 | 268.0456 |254.0956 |277.0046 |254.1324 |265.8995 |252.2041 |274.7114
0.15 0.05 |219.3091 |230.6233 |217.4957 |238.9029 |218.0470 |229.1854 |216.2590 |237.3481
0.15 0.10 |224.8071 |235.7881 |223.0355 |243.8426 |223.4541 |234.2603 |221.7079 |242.1996
0.15 0.15 | 230.4004 |241.0149 |228.6758 |248.8245 |228.9519 |239.3935 |227.2525 |247.0903
0.15 0.20 |236.0913 |246.3046 |234.4191 |253.8493 |234.5427 |244.5859 |232.8954 |252.0208
0.20 0.05 |199.1163 |208.4569 |197.6162 |215.1987 |198.1634 |207.3767 |196.6817 |214.0359
0.20 0.10 |204.9445 |214.0888 |203.4670 |220.7086 |203.9063 |212.9220 |202.4475 |219.4593
0.20 0.15 |210.9229 |219.8402 |209.4726 |226.3199 |209.7939 |218.5820 |208.3624 |224.9796
0.20 0.20 |217.0573 |225.7149 |215.6391 |232.0353 |215.8316 |224.3602 |214.4322 |230.5994

Table 6. PRE of T w.r.t. T for real data.

Stratum PRE (In the absence of measurement error) | PRE (In the presence of measurement error)
Case I 286.7866 284.2111

Case II 307.7331 304.693

Case IIT 283.4925 280.983

Case IV 323.7506 320.3699

Table 7. In the absence of non-response, PRE is observed from real data when p; = p, =0.

The recommended estimator successfully mitigates the adverse effects of random non-response and measure-
ment errors in two-phase stratified sampling. When additional information on two positively related variables is
available, the advantages are evident. We anticipate the evolution of more estimators within the proposed class,
allowing survey statisticians to provide even more precise estimates.

Conclusions
Our research has illuminated several critical contributions and practical applications:

The calibration technique significantly enhances the accuracy of stratum weights, leading to more precise
estimates, even in the presence of minor deviations from the actual weights. The proposed estimator consistently
outperforms its counterparts within specific parameter ranges, showcasing its robustness in handling measure-
ment errors. The superior Percentage Relative Efficiency (PRE) of our proposed estimator, even in scenarios
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without non-response, highlights its effectiveness in improving estimation accuracy. We've observed that the
correlation coefficient and the values of p; and p play significant roles in the performance of the estimator. The
versatility of our estimation approach extends its applicability across diverse fields, including the estimation of
variance in simulated data. The results obtained from simulated data are further validated through the analysis of
real-world data, such as gas turbine exhaust pressure, confirming the applicability and reliability of our proposed
methodology in practical scenarios.

Our study provides valuable methodologies to enhance population variance estimation, particularly in practi-
cal scenarios rife with non-response and measurement errors. The consistent and outstanding performance of
our proposed estimators corroborates their effectiveness and reliability within the domain of survey statistics.
Moreover, incorporating neutrosophic statistics aligns with the need to address uncertainty and imprecision in
survey data, further reinforcing the effectiveness of our proposed methodology. The validation of our simulated
data against real-world datasets substantiates the applicability and trustworthiness of our proposed methodol-
ogy in practical, real-life scenarios.

Data availibility

Secondary data used in the manuscript is freely available from the UCI Machine Learning Repository dataset
named ‘Gas Turbine CO and NOx Emission Data Set. For the above analysis, we have chosen the file ‘gty011.csv'.
The data can be accessed from https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+
data+set.
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