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A general class of improved 
population variance estimators 
under non‑sampling errors using 
calibrated weights in stratified 
sampling
M. K. Pandey 1*, G. N. Singh 1, Tolga Zaman 2, Aned Al Mutairi 3 & Manahil SidAhmed Mustafa 4

This paper proposes a new calibration estimator for population variance within a stratified two-phase 
sampling design. It takes into account random non-response and measurement errors, specifically 
applying this method to estimate the variance in Gas turbine exhaust pressure data. The study 
integrates additional information from two highly positively correlated auxiliary variables to develop 
a general class of estimators tailored for the stratified two-phase sampling scheme. The properties of 
these estimators, in terms of their biases and mean square errors, have been thoroughly examined 
and extensively analyzed through numerical and simulation studies. Furthermore, the calibrated 
weights of the strata are derived. The proposed estimators outperform the natural estimator of 
population variance. Finally, suitable recommendations have been made for survey statisticians 
intending to apply these findings to real-life problems.

In many practical scenarios, estimating population variance is a crucial task with wide-ranging applications, 
spanning various domains including finance, healthcare, and weather forecasting. Actuaries and insurance ana-
lysts heavily rely on population variance estimation to make well-informed decisions. In the realm of weather 
forecasting, grasping the variability in temperature, humidity, and other meteorological factors at diverse loca-
tions is fundamental for precise predictions. To bolster the precision of estimators in sample surveys, auxiliary 
variables play a pivotal role. For instance, when estimating crop yields, incorporating data on the area covered 
by crops can significantly enhance prediction accuracy. Numerous studies, such as1 did work on the use of aux-
iliary information in estimating the finite population variance2, developed a class of estimators using auxiliary 
information for estimating finite population variance, and3 introduced a new procedure for variance estimation 
in simple random sampling using auxiliary information4. further improved the estimation of finite population 
variance using dual supplementary information under stratified random sampling, while6 explored the more 
efficient use of auxiliary information in population variance estimation, presenting a new family of estimators.

Moreover, recent research has delved into variance estimation using auxiliary information, with innovative 
approaches like memory type ratio and product estimators7,8 gaining attention. These endeavors aim to enhance 
the accuracy and reliability of population variance estimation in diverse sampling designs.

However, sample surveys often encounter practical challenges that result in non-response or missing data. 
These challenges encompass non-contact, refusal to cooperate, and various other reasons. When a substantial 
amount of data goes missing, it casts doubt on the reliability of ensuing statistical results. Diverse types of missing 
data patterns, such as missing at random (MAR) and missing completely at random (MCAR), can be observed. 
Particularly noteworthy is the MAR pattern, characterized by the probability of missingness being independent 
of the unobserved data’s value.

In the presence of random non-response or measurement errors, various researchers have addressed the 
need for robust estimators9. introduced a class of estimators using auxiliary information for estimating finite 
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population variance in the presence of measurement errors, while10 developed classes of factor-type estimators 
in the presence of measurement error11. focused on the estimation of the population coefficient of variation in 
the presence of measurement errors, and12 worked on estimating the population mean in the presence of meas-
urement error and non-response under stratified random sampling13. contributed to the estimation of the finite 
population distribution function with the dual use of auxiliary information under non-response, and14 introduced 
a generalized class of estimators for sensitive variables in the presence of measurement error and non-response15. 
explored the estimation of finite population mean using dual auxiliary variables for non-response using simple 
random sampling, while16 and Bhushan (2023) proposed classes of robust estimators to handle correlated meas-
urement errors and new logarithmic type imputation techniques in presence of measurement errors within the 
survey sampling literature. These errors may stem from flawed measuring instruments, shortcomings in survey 
methodology, vague questionnaires, or imprecise measurements.

The calibration approach, pioneered by18, has garnered prominence in statistical practice. Its objective is 
to devise unbiased estimation procedures with minimal dispersion, leveraging auxiliary variables. Subsequent 
researchers, exemplified by19 and20, have fine-tuned and extended calibration estimation procedures, striving to 
minimize the divergence between initial and final weights while adhering to calibration equations and constraints.

Recent advances in calibration techniques, as demonstrated by21, have focused on a class of calibration esti-
mators under stratified random sampling in the presence of various kinds of non-sampling errors22. Explored 
calibration estimation for ratio estimators in stratified sampling for proportion allocation, and23 further advanced 
the finite population distribution function estimation with the dual use of auxiliary information under simple 
and stratified random sampling5. investigated the use of dual ancillary variables to estimate the population mean 
under stratified random sampling, while24 worked on modified estimators of the finite population distribution 
function based on the dual use of auxiliary information under stratified random sampling. These techniques have 
streamlined the optimization of stratum weights in stratified random sampling, ultimately refining estimates, 
particularly when closely related auxiliary variables are integrated.

To underscore the practical significance of this research, let’s consider real-life examples: 

1.	 In healthcare research, when conducting patient surveys to evaluate the effectiveness of medical treatments, 
not all patients may respond, and measurement errors can occur due to self-reporting. Accurate population 
variance estimation in such cases is crucial to making informed decisions about treatment strategies.

2.	 In market research, understanding consumer preferences through surveys is essential for product develop-
ment and marketing strategies. Non-response from certain demographic groups or errors in survey responses 
can distort the estimation of market variances, impacting business decisions.

3.	 In educational assessments, when evaluating the performance of schools or educational programs, student 
participation may vary, and measurement errors can affect the assessment outcomes. Reliable population 
variance estimation is vital for making informed policy decisions and improving education quality.

4.	 By addressing these issues across diverse fields, this innovative framework aims to provide a reliable approach 
for accurately estimating population variances, thereby enhancing decision-making processes in real-life 
scenarios. Additionally, the proposed estimation strategy may be applied to estimate the variance in Gas 
turbine exhaust pressure, as illustrated using real data in a subsequent section of the manuscript.

Survey sampling necessitates addressing uncertainty and imprecision. Neutrosophic statistics, championed by25 
in ’Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis,’ extend clas-
sical statistics for indeterminate data. Aslam’s contributions include ’A New Sampling Plan using Neutrosophic 
Process Loss Consideration’26 and ’Neutrosophic Analysis of Variance: Application to University Students’27, 
among others, illustrating its application in handling vague and imprecise observations in populations or samples.

Motivated by the aforementioned discussions, the present work proposes a wide class of estimators of popula-
tion variance in two-phase sampling for the stratified population in the presence of random non-response and 
measurement errors in sample data. The stratum weights have been optimized using calibration procedures, 
which enables us to get more accurate estimates of the population variance. The performances of the suggested 
class of estimators have been deeply examined through empirical and simulation studies.

Sample structure
Consider a finite population of size N divided into L non-overlapping strata, each containing Nk(k=1,2,..., L) 
units. Let Y, X, and Z be the study variable, first and second auxiliary variables, respectively. Let yki , xki , and zki be 
the ith values of y, x, and z for the k-th (k = 1, 2,..., L) stratum. To estimate the population variance of the study 
variable Y, It is assumed that the information on the second auxiliary Z is readily available for all the population 
units. Hence its population variance is known. However, information on the first auxiliary variable is not available 
for all the units of the population. It is also assumed that the random non-response is observed in the sample 
data on the study and first auxiliary variables Y and X, respectively. In the first phase, a sample, say Snk of size 
nk (k=1,2..., L), is drawn from kth strata using simple random sampling without replacement and observed for 
the variables y and x. Let in the first phase sample of size nk , nk−r1k respond and random non-response observed 
on the r1k units. Again in the second phase, from the nk−r1k respondent units, another simple random sample 
without replacement, say Smk

 , of size mk , is chosen from which mk−r2k units respond and r2k units do not respond.

Notations
From now on, we will use the following notations:

σ 2
Y : The population variance of Y, i.e, the characteristics under study

S2YNk
= 1
Nk−1

∑Nk
j=1(Ykj − ȲNk

)2 : The population mean squares of the kth stratum of the study variable Y.
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S2XNk
= 1
Nk−1

∑Nk
j=1(Xkj − X̄Nk

)2 , S2ZNk=
1

Nk−1

∑Nk
j=1(Zkj − Z̄Nk

)2 : The population mean squares of the kth stratum 
for the auxiliary variables X and Z, respectively.

s∗
2

xnk
= 1

nk−r1k−1

∑nk−r1k
j=1 (xkj − x̄nk−r1k )

2:Depending on the responding part of sample Snk , the sample mean 
square of auxiliary variable X for the kth stratum.

s∗
2

xmk
= 1

mk−r2k−1

∑mk−r2k
j=1 (xkj − x̄mk−r2k )

2 : Depending on the responding part of sample Smk
 , the sample mean 

square of auxiliary variable X for the kth stratum.
s∗

2

ynk
= 1

nk−r1k−1

∑nk−r1k
j=1 (ykj − ȳnk−r1k )

2 : Depending on the responding part of sample Snk , the sample mean 
square of study variable Y for the kth stratum.

s∗
2

ymk
= 1

mk−r2k−1

∑mk−r2k
j=1 (ykj − ȳmk−r2k )

2 : Depending on the responding part of sample Smk
 , the sample mean 

square of study variable Y for the kth stratum.
s∗

2

znk
= 1

nk−r1k−1

∑nk−r1k
j=1 (zkj − z̄nk−r1k )

2 : Depending on the responding part of sample Snk , the sample mean 
square of auxiliary variable Z for the kth stratum.

s∗
2

zmk
= 1

mk−r2k−1

∑mk−r2k
j=1 (zkj − z̄mk−r2k )

2 : Depending on the responding part of sample Smk
 , the sample mean 

square of auxiliary variable Z for the kth stratum.
Wk = Nk

N  : The original weight of the kth stratum, k= 1, 2,....,L
W∗

k  : The weight obtained by calibration of the kth stratum, k= 1, 2,....,L
Qk : The independent weight of the kth stratum, k= 1, 2,....,L

Non‑response probability model
The kth stratum is considered based on the random non-response model proposed by Singh and Joarder28. In 
the first phase, a sample of size nk taken from the population, nk − r1k units responded, while random non-
response was observed on the remaining r1k units, where r1k may have any value from the set {0, 1, 2, ..., (nk − 2)} . 
Again, in the second phase, from the nk − r1k respondent units, mk − r2k units responded, and r2k do not respond, 
where r2k falls within the range {0, 1, 2, ..., (mk − 2)} . It is assumed that rjk ≥ 0 , j = 1, 2 and r1k ≤ (nk − 2) , 
r2k ≤ (mk − 2) . Non-response may have possible values of (nk − 2) and (mk − 2) in the samples Snk and Smk

 , 
respectively. These probabilities will be referred to as p1 and p2 . The total number of ways to obtain rjk ( j = 1, 2 ) 

non-responses is 
(

nk − 2

r1k

)

 and 
(

mk − 2

r2k

)

 . Then, the discrete random variables r1k and r2k have the correspond-

ing probability distributions shown below:

P(r1k) = nk−r1k
nkq1+2p1

(

nk − 2

r1k

)

p
r1k
1 q

nk−r1k−2

1 ; r1k = 0, 1, 2, ..., nk − 2 and

P(r2k) = mk−r2k
nkq2+2p2

(

mk − 2

r2k

)

p
r2k
2 q

mk−r2k−2

2 ; r2k = 0, 1, 2, ...,mk − 2

where q1 = 1− p1 and q2 = 1− p2.

Suggested estimator
A wide class of estimators that may be used to estimate the population variance are proposed as follows, assuming 
the impact of random non-response on both the study variable Y and the first auxiliary variable X.

where

In this case, h(s∗2xnk , s
∗2
znk

) is a class of estimators of S2X based on information on s∗2xnk and s2znk such that h(S2X,S2Z)=S2X
.

As we proceed, we will examine the composite class of estimators applicable to individual strata in two-phase 
sampling.

such that g (S2Yk , S
2
Xk
, S2Xk

, S2Zk )=S
2
Yk

We assume that g(s∗2ymk
, s∗2xmk

, s∗2xnk
, s2znk

) meets the regularity conditions listed below:

•	 Regardless of the sample chosen, the function g(s∗2ymk
, s∗2xmk

, s∗2xnk
, s2znk

) takes on values within a closed convex 
subspace of the four-dimensional real space R4 that includes the point (S2Yk , S

2
Xk
, S2Xk

, S2Zk ).•	 In R4 , the function g(s∗2ymk
, s∗2xmk

, s∗2xnk
, s2znk

) is continuous and bounded.
•	 The partial derivatives of g(s∗2ymk

, s∗2xmk
, s∗2xnk

, s2znk
) of the first, second, and third orders exist and are continuous 

and bounded in R4.

(1)T =

L
∑

k=1

W∗2
k Tk

(2)Tk = f (s∗2ymk
, s∗2xmk

, h(s∗2xnk
, s2znk

)), k = 1, 2, ..., L

(3)Tk = f (s∗2ymk
, s∗2xmk

, h(s∗2xnk
, s2znk

)) = g(s∗2ymk
, s∗2xmk

, s∗2xnk
, s2znk

)
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The class of estimators Tk is extensive, as any parametric function g(s∗2ymk
, s∗2xmk

, s∗2xnk
, s2znk

) that meets the stated 
regularity conditions, and has g (S2Yk , S

2
Xk
, S2Xk

, S2Zk ) = S2Yk , may generate estimators for the population mean square 
of each stratum. Several examples of this class of estimators are:

T1k =
s∗2ymk

s∗2xmk

[

s∗2xnk
s∗2znk

]

s2Zk,     T2k =
s∗2ymk

s∗2xmk

[

s∗2xnk
s∗2znk

s2Zk

]

,     T3k = s∗2ymk
+ b1

[(

s∗2xnk
+ b2(s

2
Zk

− s∗2znk

)

− s∗2xmk

]

T4k =
s∗2ymk

s∗2ynk

[

s∗2xnk
+ b3(s

2
Zk

− s∗2znk

]

 where b1 , b2 and b3 are the true scalars.

T5k = s∗2ymk
exp

( s∗2xnk
−s∗2xmk

s2Zk
s∗2znk

s∗2xnk
+s∗2xmk

s2Zk
s∗2znk

)

     ∀k = 1, 2, ...L

Calibration techniques have been proposed to acquire the optimum strata weights
The new calibration estimator of the population variance under stratified sampling is provided by

where Tk = f (s∗2ymk
, s∗2xmk

, h(s∗2xnk
, s2znk

)), k = 1, 2, ..., L and we obtain the calibrated strata weights W∗
k  , where 

k ∈ {1, 2, ..., L}.
Based on the following calibration requirements, the distance function (chi-square type) 

∑L
k=1

(W∗
k−Wk)

2

QkWk
 is 

minimized: 

1.	
∑L

k=1 W
∗
k=1

2.	
∑L

k=1 W
∗
k czk=CZ

3.	
∑L

k=1 W
∗
k cxmk−r2k

 = 
∑L

k=1 Wkcxnk−r1k

where, czk=
szk
z̄k

 , CZ=SZ
Z̄

 , cxnk−r1k
=
sxnk−r1k
x̄nk−r1k

 and cxmk−r2k
=
sxmk−r2k
x̄mk−r2k

.
It is important to note that Qk > 0 are appropriately determined weights that will determine the estimator 

form.
In Appendix A, detailed derivations have been given.

Bias and mean square error of the suggested estimator
We utilize the transformations provided below while taking into account large sample assumptions to analyze 
the properties of estimator T:

such that |ǫik| ≤ 1, ∀ i= 0, 1, 2, 3 and E(ǫik) = 0.
According to calculations, the Bias(T) and the MSE(T) of the suggested estimator T, which are accurate to 

the first order of approximation, are as follows:

and

where
C2
0k=�400k-1,                   C2

1k=�040k-1,                 C2
2k=�004k-1

ρ01k = �220k-1,                 ρ02k = �202k-1,               ρ12k = �022k-1

f1k=
(

1
mkq2+2p2

− 1
Nk

)

,      f2k=
(

1
nk

− 1
Nk

)

,            f3k=
(

1
nkq1+2p1

− 1
Nk

)

and

Appendix B has detailed derivations.

The suggested estimator’s minimum mean square error under optimal condition.
We note from Eq. (5) that the derivatives d2k and d4k have an impact on the MSE of the estimator T. So, in order 
to acquire the derivatives’ optimal values, we minimize the MSE concerning them as follows:

T =

L
∑

k=1

W∗2
k Tk

s∗2ymk
= S2Yk (1+ ε0k), s∗2xmk

= S2Xk
(1+ ε1k), s∗2znk

= S2Zk (1+ ε2k), s∗2xnk
= S2Xk

(1+ ε3k)

(4)Bias(T) =
1

2

L
∑

k=1

W∗2
k

[

S4Xk

(

f1kd22k + d33kf3k + 2d23kf3k
)

C2
1k + 2S2YkS

2
Xk
ρ01k

(

d12kf1k + d13kf3k
)

+2S2Xk
S2Zkρ12k

(

d24kf2k + d34kf2k
)

+ 2S2YkS
2
Zk
d14kf2kρ02k + S4Zkd44f2kC

2
2k

]

(5)

MSE(T) =

L
∑

k=1

W∗4
k

[

S4Yk f1kC
2
0k + d2

2kS
4
Xk
C2
1kf4k + d2

4kS
4
Zk
f2kC

2
2k + 2d4kρ02kf2kS

2
Yk
S2Zk + 2S2YkS

2
Xk
d2kρ01kf4k

]

�αβγ k =
µαβγ k

√

µα
200kµ

β

020kµ
γ

002k

, µαβγ k =
1

Nk

Nk
∑

j=1

(Ykj − Ȳk)
α(Xkj − X̄k)

β(Zkj − Z̄k)
γ
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and

We may obtain the minimum mean square error (Min. MSE)) of the estimator T by substituting the optimal 
values of d2kopt and d4kopt from Eqs. (6) and (7), respectively, in Eq. (5) as follows:

Effect of measurement error
Y and X actual and observed values are denoted by ykja , xkja , and ykjo , xkjo , while ukj , and vkj denote the correspond-
ing measurement errors. Then xkja = xkjo + vkj and ykja = ykjo + ukj , resulting in V(ykja ) = V(ykjo)+ V(ukj) , 
with zero covariance term because the errors are independent.

This implies s2yka = s2yko + s2uk , so that MSE(s2yka ) = MSE(s2yko)+MSE(s2uk ).

The expression for Min.MSE was determined as follows: measurement errors occurred only on the study variable 
Y and the primary auxiliary variable X, not on the secondary auxiliary variable Z.

where

Numerical study
An estimator’s performance must first be evaluated in terms of its characteristics before it may be used in practical 
scenarios. Therefore, an empirical investigation has been conducted in this part using both real and simulated 
data for the suggested estimator.

We are comparing the suggested estimator T and the contemporary estimator τ to see how well they perform 
in random non-response. The estimator τ is defined as follows:

τ=
∑L

k=1 W
∗2
k s∗2ymk

Additionally, we are comparing these estimators with the standard estimator since it is the only available 
option when dealing with non-response and measurement errors.

The following are the expressions for its MSE, with and without measurement errors, respectively:

and

The Percentage Relative Efficiency (PRE) of the proposed estimator T concerning the estimator τ is given by
PRE= MSE(τ )

Min.MSE(T) ∗ 100

Where Eqs. (8)–(11) give the corresponding equations for Min MSE(T) and MSE(τ ), without or with meas-
urement errors, respectively.

(6)d2kopt = −
ρ01k

C2
1k

S2Yk
S2Xk

(7)d4kopt = −
ρ02k

C2
2k

S2Yk
S2Zk

(8)Min.MSE(T) =

L
∑

k=1

W∗4
k S4Yk

[

f1kC
2
0k −

ρ2
01k

C2
1k

f4k −
ρ2
02k

C2
2k

f2k

]

∴ Min.MSE(T) =

L
∑

k=1

MSE(s2yka )

=

L
∑

k=1

[

MSE(s2yko)+M(s2uk )

]

=

L
∑

k=1

MSE(s2yko)+

L
∑

k=1

MSE(s2uk )

(9)Min.MSE(T) =

L
∑

k=1

W∗4
k S4Yk

[

f1kC
2
0k −

ρ2
01k

C2
1k

f4k −
ρ2
02k

C2
2k

f2k

]

+

L
∑

k=1

W∗4
k S4uk f1kC

′2
0k

C
′2
0k = �

′

40k − 1, �
′

40k =
µ

′

40k
√

µ
′2
20k

and µ
′

abk =
1

Nk

Nk
∑

j=1

(ukj − ūk)
a(vkj − v̄k)

b

(10)MSE(τ ) =

L
∑

k=1

W∗4
k S4YNk

(

1

mkq2 + 2p2
−

1

Nk

)

(�400k − 1)

(11)MSE(τ ) =

L
∑

k=1

W∗4
k S4YNk

(

1

mkq2 + 2p2
−

1

Nk

)

(�400k − 1)+

L
∑

k=1

W∗4
k S4ukf1kC

′2
0k
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The following Qk values have been taken into consideration:
Case A: Qk=1.0
Case B: Qk= 1

WkCase C: Qk=Z̄k
Case D: Qk=S2ZNk
The calibrated stratum weights and PREs, resulting from both the presence and absence of non-response, are 

displayed in the tables below, for both simulated and real data.

Study based on simulated data
We conducted a simulation relevant to our theoretical findings using the statistical computing software R. To 
achieve our objectives, we used the MASS package’s function mvrnorm to generate data from poisson distributions 
with given parameters and a given correlation coefficient for the study and the auxiliary variables. To generate 
data from other acceptable distributions, use the function genCorGen included in the package simstudy . The 
measurement errors were generated using a univariate standard normal distribution with the function rnorm . 
Table 1 shows the population parameters for the generated data.

The resulting calibrated stratum weights and PREs in presence of non-response and in absence of non-
response are shown in Tables 2, 3 and 4, respectively.

Study based on real data
The information in this section demonstrates the practical application of the proposed class of estimators. The 
dataset utilized is accessible within the UCI machine learning repository, titled “Gas Turbine CO and NOx Emis-
sion Data Set.” This dataset comprises 36,733 instances featuring 11 sensor measurements from a gas turbine 
situated in the northwestern region of Turkey, aggregated over an hour using average or sum calculation methods 
for the analysis of CO and NOx (NO + NO2) flue gas emissions. To conduct the analysis mentioned above, the 
specific file utilized is gt2011.csv.

Table 1.   Population parameters..

Parameters

Real data Simulated data

Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 1 Stratum 2 Stratum 3 Stratum 4

Nk 2500 2600 2311 8000 10000 15000 5000 8000

nk 875 910 809 800 3000 3000 2000 800

mk 625 650 578 500 2000 2000 1200 500

nk−r1k 750 780 693 750 2500 2500 1600 750

mk−r2k 500 520 462 450 1600 1600 900 450

ρxyk 0.90 0.89 0.97 0.6 0.9 0.8 0.8 0.6

ρxzk 0.83 0.92 0.93 0.6 0.9 0.8 0.8 0.6

ρyzk 0.75 0.83 0.92 0.6 0.9 0.8 0.8 0.6

Table 2.   Calibrated strata weights for simulated data..

Case Stratum Qk Wk W∗

k

A

1 1 0.2631579 0.44807455

2 1 0.3947368 0.36962453

3 1 0.1315789 0.13017106

4 1 0.2105263 0.05212985

B

1 3.800 0.2631579 0.43883647

2 2.533 0.3947368 0.38908713

3 7.600 0.1315789 0.13022077

4 4.750 0.2105263 0.04185563

C

1 24.990 0.2631579 0.44804409

2 25.009 0.3947368 0.36968872

3 25.060 0.1315789 0.13017123

4 24.970 0.2105263 0.05209596

D

1 25.370 0.2631579 0.44812328

2 24.740 0.3947368 0.36952187

3 24.860 0.1315789 0.13017080

4 25.300 0.2105263 0.05218405
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We employed the subsequent set of primary and auxiliary variables in this study:
Y: Gas turbine exhaust pressure (GTEP)
X: Air filter difference pressure (AFDP)
Z: Turbine inlet temperature (TIT)
The stratification is organized based on the Ambient temperature (AT) in the following manner:
Stratum 1: from 2.1163-12.707 C
Stratum 2: from 12.708-21.759 C
Stratum 3: from 21.760-34.532 C
In real-world circumstances, the goal is to estimate the variance as precisely as possible. However, complete 

data is typically not always available. Therefore, we consider the case where some data on the study variable is 
unavailable. The statistical characteristics of the population are detailed in Table 1, while the calibrated weights 
for the strata are listed in Table 5. The PRE (Precentage Relative Efficiency) for both the non-response and absence 
of non-response cases is presented in Tables 6 and 7, respectively.

Discussion
After conducting a detailed numerical study, we have identified the following key points: 

1.	 The strata weights produced by the calibration procedures exhibit slight discrepancies from the actual ones, 
as evident in Tables 2 and 5. Nevertheless, our findings indicate that the calibration technique effectively 
enhances the stratum weights, resulting in more accurate estimates.

2.	 Table 3 reveals a consistent pattern: when p1 , p2 ∈(0.05, 0.1), the suggested estimator consistently outper-
forms the existing estimator, regardless of the presence or absence of measurement errors. This observation 
is further supported by the real data presented in Table 6.

3.	 Further analysis of Tables 3 and 6 reveals that an increase in the value of p2 , while keeping p1 constant, results 
in a higher PRE. This observation is a significant outcome of our research. Additionally, when p2 remains 
fixed and p1 increases, the PRE decreases, aligning with our expectations.

4.	 Tables 4 and 7 demonstrate that the proposed estimator yields a higher Percentage Relative Efficiency (PRE) 
than the conventional estimator in the absence of non-response also, underscoring the effectiveness of our 
method, even without non-response.

5.	 It is noteworthy that as the correlation coefficient’s value increases, the PRE also increases. Conversely, a 
decrease in the correlation coefficient leads to a decrease in PRE.

Table 3.   PRE of T w.r.t. τ for simulated poisson data.

p1 p2

In the absence of measurement error In the presence of measurement error

Case A Case B Case C Case D Case A Case B Case C Case D

0.05 0.05 123.0381 122.6552 123.0369 123.0401 122.9925 122.6105 122.9913 122.9945

0.05 0.10 123.1304 122.7438 123.1291 123.1323 123.0845 122.6989 123.0833 123.0865

0.05 0.15 123.2208 122.8308 123.2195 123.2227 123.1747 122.7857 123.1735 123.1767

0.05 0.20 123.3094 122.9161 123.3081 123.3114 123.2631 122.8707 123.2619 123.2651

0.10 0.05 121.7219 121.3717 121.7208 121.7237 121.6794 121.3300 121.6783 121.6811

0.10 0.10 121.8941 121.5380 121.8929 121.8959 121.8511 121.4959 121.8500 121.8529

0.10 0.15 122.0630 121.7013 122.0619 122.0649 122.0197 121.6588 122.0185 122.0215

0.10 0.20 122.2289 121.8617 122.2277 122.2308 122.1852 121.8189 122.1840 122.1870

0.15 0.05 120.2839 119.9687 120.2828 120.2855 120.2446 119.9302 120.2436 120.2462

0.15 0.10 120.5415 120.2182 120.5404 120.5431 120.5016 120.1791 120.5006 120.5033

0.15 0.15 120.7947 120.4634 120.7936 120.7963 120.7542 120.4238 120.7532 120.7559

0.15 0.20 121.0436 120.7046 121.0425 121.0453 121.0026 120.6644 121.0015 121.0043

0.20 0.05 118.7063 118.4288 118.7054 118.7077 118.6706 118.3937 118.6697 118.6720

0.20 0.10 119.0554 118.7673 119.0544 119.0568 119.0189 118.7314 119.0179 119.0203

0.20 0.15 119.3990 119.1007 119.3981 119.4005 119.3618 119.0641 119.3608 119.3633

0.20 0.20 119.7374 119.4290 119.7364 119.7389 119.6993 119.3917 119.6984 119.7009

Table 4.   In the absence of non-response, PRE is observed from simulated data when p1 = p2 = 0..

Stratum PRE (In the absence of measurement error) PRE (In the presence of measurement error)

Case I 124.2297 124.1813

Case II 123.8176 123.7701

Case III 124.2284 124.18

Case IV 124.2318 124.1834
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The recommended estimator successfully mitigates the adverse effects of random non-response and measure-
ment errors in two-phase stratified sampling. When additional information on two positively related variables is 
available, the advantages are evident. We anticipate the evolution of more estimators within the proposed class, 
allowing survey statisticians to provide even more precise estimates.

Conclusions
Our research has illuminated several critical contributions and practical applications:

The calibration technique significantly enhances the accuracy of stratum weights, leading to more precise 
estimates, even in the presence of minor deviations from the actual weights. The proposed estimator consistently 
outperforms its counterparts within specific parameter ranges, showcasing its robustness in handling measure-
ment errors. The superior Percentage Relative Efficiency (PRE) of our proposed estimator, even in scenarios 

Table 5.   Calibrated strata weights for real data.

Case Stratum Qk Wk W∗

k

A

1 1 0.2061856 0.3209746

2 1 0.6185567 0.5243500

3 1 0.1752577 0.1546754

B

1 4.85 0.2061856 0.2566935

2 1.6167 0.6185567 0.5356455

3 5.7059 0.1752577 0.2076610

C

1 0.00092 0.2061856 0.3258734

2 0.00092 0.6185567 0.5187164

3 0.0009196857 0.1752577 0.1554102

D

1 0.0045425256 0.2061856 0.1816363

2 0.0031285169 0.6185567 0.6199598

3 0.0046467310 0.1752577 0.1984039

Table 6.   PRE of T w.r.t. τ for real data.

p1 p2

 In the absence of measurement error  In the presence of measurement error

Case A Case B Case C Case D Case A Case B Case C Case D

0.05 0.05 264.5064 280.9632 261.8853 293.3473 262.4120 278.5422 259.8380 290.6966

0.05 0.10 268.6831 284.3495 266.1682 296.1447 266.5021 281.8539 264.0328 293.430

0.05 0.15 272.8552 287.7074 270.4512 298.9049 270.5860 285.1367 268.2260 296.1271

0.05 0.20 277.0228 291.0372 274.7343 301.6286 274.6639 288.3911 272.4175 298.7875

0.10 0.05 241.0445 254.7055 238.8611 264.8419 239.4063 252.8268 237.2576 262.7989

0.10 0.10 246.0068 259.1428 243.8921 268.9041 244.2764 257.1770 242.1959 266.7791

0.10 0.15 251.0106 263.5895 248.9701 272.9584 249.1849 261.5345 247.1779 270.7499

0.10 0.20 256.0565 268.0456 254.0956 277.0046 254.1324 265.8995 252.2041 274.7114

0.15 0.05 219.3091 230.6233 217.4957 238.9029 218.0470 229.1854 216.2590 237.3481

0.15 0.10 224.8071 235.7881 223.0355 243.8426 223.4541 234.2603 221.7079 242.1996

0.15 0.15 230.4004 241.0149 228.6758 248.8245 228.9519 239.3935 227.2525 247.0903

0.15 0.20 236.0913 246.3046 234.4191 253.8493 234.5427 244.5859 232.8954 252.0208

0.20 0.05 199.1163 208.4569 197.6162 215.1987 198.1634 207.3767 196.6817 214.0359

0.20 0.10 204.9445 214.0888 203.4670 220.7086 203.9063 212.9220 202.4475 219.4593

0.20 0.15 210.9229 219.8402 209.4726 226.3199 209.7939 218.5820 208.3624 224.9796

0.20 0.20 217.0573 225.7149 215.6391 232.0353 215.8316 224.3602 214.4322 230.5994

Table 7.   In the absence of non-response, PRE is observed from real data when p1 = p2 = 0.

Stratum PRE (In the absence of measurement error) PRE (In the presence of measurement error)

Case I 286.7866 284.2111

Case II 307.7331 304.693

Case III 283.4925 280.983

Case IV 323.7506 320.3699
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without non-response, highlights its effectiveness in improving estimation accuracy. We’ve observed that the 
correlation coefficient and the values of p1 and p2 play significant roles in the performance of the estimator. The 
versatility of our estimation approach extends its applicability across diverse fields, including the estimation of 
variance in simulated data. The results obtained from simulated data are further validated through the analysis of 
real-world data, such as gas turbine exhaust pressure, confirming the applicability and reliability of our proposed 
methodology in practical scenarios.

Our study provides valuable methodologies to enhance population variance estimation, particularly in practi-
cal scenarios rife with non-response and measurement errors. The consistent and outstanding performance of 
our proposed estimators corroborates their effectiveness and reliability within the domain of survey statistics. 
Moreover, incorporating neutrosophic statistics aligns with the need to address uncertainty and imprecision in 
survey data, further reinforcing the effectiveness of our proposed methodology. The validation of our simulated 
data against real-world datasets substantiates the applicability and trustworthiness of our proposed methodol-
ogy in practical, real-life scenarios.

Data availibility
Secondary data used in the manuscript is freely available from the UCI Machine Learning Repository dataset 
named ‘Gas Turbine CO and NOx Emission Data Set.’ For the above analysis, we have chosen the file ‘gt2011.csv′ . 
The data can be accessed from https://​archi​ve.​ics.​uci.​edu/​datas​et/​551/​gas+​turbi​ne+​co+​and+​nox+​emiss​ion+​
data+​set.
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