
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports

Deep learning‑based solution
for smart contract vulnerabilities
detection
Xueyan Tang *, Yuying Du , Alan Lai , Ze Zhang & Lingzhi Shi

This paper aims to explore the application of deep learning in smart contract vulnerabilities detection.
Smart contracts are an essential part of blockchain technology and are crucial for developing
decentralized applications. However, smart contract vulnerabilities can cause financial losses and
system crashes. Static analysis tools are frequently used to detect vulnerabilities in smart contracts,
but they often result in false positives and false negatives because of their high reliance on predefined
rules and lack of semantic analysis capabilities. Furthermore, these predefined rules quickly become
obsolete and fail to adapt or generalize to new data. In contrast, deep learning methods do not require
predefined detection rules and can learn the features of vulnerabilities during the training process. In
this paper, we introduce a solution called Lightning Cat which is based on deep learning techniques.
We train three deep learning models for detecting vulnerabilities in smart contract: Optimized‑
CodeBERT, Optimized‑LSTM, and Optimized‑CNN. Experimental results show that, in the Lightning
Cat we propose, Optimized‑CodeBERT model surpasses other methods, achieving an f1‑score of
93.53%. To precisely extract vulnerability features, we acquire segments of vulnerable code functions
to retain critical vulnerability features. Using the CodeBERT pre‑training model for data preprocessing,
we could capture the syntax and semantics of the code more accurately. To demonstrate the feasibility
of our proposed solution, we evaluate its performance using the SolidiFI‑benchmark dataset, which
consists of 9369 vulnerable contracts injected with vulnerabilities from seven different types.

Blockchain is a new application pattern based on technologies such as point-to-point transmission, encryp-
tion algorithm, consensus mechanism1 and distributed data storage2. Since the emergence of Bitcoin, the basic
blockchain system has become widely known among professionals, resulting in the development of numerous
blockchain applications. This is made possible by smart contracts3, which are automated programs running in a
trusted environment provided by the blockchain4. If there are vulnerabilities in smart contracts publicly deployed
on the blockchain, attackers can exploit these vulnerabilities to launch attacks. For example, on June 17, 2016,
The DAO5, the largest crowdfunding project in the blockchain industry at the time, was attacked. The hacker
exploited a reentrancy vulnerability and stole 3.6 million Ether worth around $60 million from The DAO’s asset
pool, which directly led to the Ethereum blockchain splitting into ETH (Ethereum) and ETC (Ethereum Classic).
On April 22, 2018, hackers targeted the BEC6 smart contract, which was based on the ERC-20 standard, using
an integer overflow vulnerability. They transferred a significant amount of BEC tokens to two external accounts
and dumped them, causing the token price to rapidly plummet to zero, disrupting the market. On February 15,
2020, the bZx protocol7, a set of smart contracts built on Ethereum, experienced its first attack. The attacker
profited over three hundred thousand dollars, leading the project to temporarily suspend all functions except
lending. On the 18th, the bZx protocol was targeted again, and the hacker exploited the manipulation of virtual
asset prices through controlling the oracle, resulting in a profit of over 2,000 Ether. The above smart contract
attack incidents demonstrate that due to the control of a substantial amount of cryptocurrency and financial
assets, if smart contracts are targeted and attacked, it will result in unpredictable asset losses. Conducting vul-
nerability detection on smart contracts can help identify and fix potential vulnerabilities in contracts at an early
stage, ensuring their security and protecting against asset theft or other security risks. Therefore, smart contract
vulnerability detection is crucial for ensuring security, preventing financial losses, and maintaining user trust.
It is an essential aspect of smart contract development and deployment processes.

Current methods for detecting smart contract vulnerabilities include human review, static analysis8, fuzz
 testing9, and formal verification10. Well-known detection tools include Oyente11, Mythril12, Securify13, Slither14,
and Smartcheck15. These tools automatically analyze contract code and cover various common types of smart con-
tract security vulnerabilities, such as reentrancy, incorrect tx.origin authorization, timestamp dependency, and

OPEN

Salus Security, Beijing 100020, China. *email: 777728@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47219-0&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

unhandled exceptions. However, they may produce false positives or false negatives because they highly depend
on predefined detection rules and lack the ability to accurately comprehend complex code logic. Additionally,
predefined rules become outdated quickly and cannot adapt or generalize to new data, which is rapidly evolving
in the smart contract domain. In contrast, deep learning approaches learn from data and can continuously update
themselves to stay relevant. In recent years, there has been significant research on using deep learning for smart
contract vulnerability detection16–19. However, some methods tend to overlook critical vulnerability features in
their data processing approaches, and certain models lack semantic analysis capabilities for vulnerability code,
leading to potential false negatives20–22.

This paper proposes a deep learning-based solution called Lightning Cat. The solution includes three deep
learning models, namely optimized CodeBERT, Optimized-LSTM, and Optimized-CNN, which are trained to
detect vulnerabilities in smart contracts. To better identify vulnerability features, code snippets of functions
containing vulnerabilities were obtained to preserve key features. The CodeBERT pre-training model23 was
employed to preprocess the data, enhancing the semantic analysis capabilities24.

The main contributions of this paper can be summarized as follows:

(1) This paper designs a smart contracts vulnerabilities detection solution called Lightning Cat using deep
learning methods. The solution optimizes three deep learning models.

(2) We introduce an effective data preprocessing method that captures the semantic features of smart contract
vulnerabilities. During the data preprocessing stage, we retrieve code snippets of functions containing
vulnerabilities to extract vulnerability features. We also use the CodeBERT pre-trained model for data
preprocessing to enhance the model’s semantic analysis capabilities, with the primary goal of improving
model performance.

(3) Based on the experimental evaluation results, the Lightning Cat proposed in this paper shows better detec-
tion performance than other vulnerability detection tools. The optimized CodeBERT model in Lightning
Cat outperforms Optimized-LSTM and Optimized-CNN models, achieving a recall rate of 93.55%, which
is 11.85% higher than Slither, a precision rate of 96.77%, and an f1-score of 93.53%.

In addition to smart contract vulnerability detection, the Lightning Cat can also be extended to other areas
of code vulnerability detection25. Modern software systems are prone to various types of vulnerabilities, such
as buffer overflow, null pointer dereference, and logic errors. For instance, buffer overflow code vulnerabilities
are characterized by the use of unsafe string manipulation functions like strcpy and strcat without proper input
boundary checks. Null pointer dereference vulnerabilities involve the misuse of dangling pointers by failing
to set a pointer to NULL after freeing the associated memory. Logic errors manifest when incorrect logical
operators are used in conditional statements, such as using = instead of ==. By learning and training on a large
number of code samples, Lightning Cat can extract and comprehend different types of vulnerabilities. It also
employs the CodeBERT pre-trained model for data preprocessing, making it better suited for identifying code
vulnerabilities. As a result, it can detect various kinds of code vulnerabilities, thereby enhancing the security
and dependability of the code.

Related work
In this section, we present related work on the detection of smart contract vulnerabilities, focusing primarily on
static analysis techniques and deep learning methods.

Static analysis techniques
The Mythril12 security analysis method is designed to inspect bytecode executed in the Ethereum Virtual Machine
(EVM). When defects are found in a program, it can help infer potential causes by analyzing input records. This
assists in identifying existing vulnerabilities and reducing the likelihood of exploiting them. It utilizes taint
analysis and symbolic execution techniques. However, when performing taint analysis, It faces limitations when
crossing memory boundaries. This limitation becomes more severe when dealing with reference-style parameter
invocations. Additionally, Mythril may encounter the state explosion problem when processing complex con-
tracts. Furthermore, symbolic execution is a powerful general method for detecting vulnerabilities, but it may
consider branches that may not be feasible in actual execution, leading to false positives.

Slither14 is a static code analysis tool used for detecting security vulnerabilities and potential issues in Solid-
ity smart contracts. It integrates numerous detectors capable of identifying different types of vulnerabilities.
Compared to Mythril, Slither is much more efficient and performs fast detection. However, Slither lacks formal
semantic analysis, which limits its ability to perform more detailed security analysis and accurately determine
low-level information such as gas calculations.

SmartCheck15 uses static analysis techniques to detect common security vulnerabilities and coding issues in
smart contracts. It offers numerous rule sets to identify different types of vulnerabilities and improve contract
security. However, due to its heavy reliance on logical rules for vulnerability detection, it may generate false posi-
tives and false negatives. Furthermore, it may fail to detect severe programming errors, leading to overlooked
vulnerabilities or incorrect reporting.

Pre‑training model
The analysis of smart contracts using deep learning methods in our study is essentially a Natural Language Pro-
cessing (NLP)26 task. In general NLP tasks, the input texts are required to be represented as vectors which can be
further fed into the deep learning models for downstream tasks. With the development of pre-trained models, the

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

text representation in NLP has presented a significant improvement. Pre-trained models can effectively capture
the semantic information, textual structure and grammar rules as well as provide valuable vector embeddings
via training on large-scale datasets. They are relatively crucial in NLP. In this research, we employ a pre-trained
model CodeBERT in transforming smart contracts code based on text into vector embeddings. A distinctive
feature of CodeBERT is that it has been pre-trained on a vast amount of code and its associated natural language
comments, which enables it to understand the structure and semantics of the code.

CodeBERT, as a pre-trained model, presents state-of-the-art performances on both natural language process-
ing and programming language processing tasks as downstream tasks. The characteristic of CodeBERT is that
it has been pre-trained on a vast amount of code and its associated natural language comments, enabling it to
understand the structure and semantics of the code. Typical pre-trained models like Seq2Seq, Transformer, and
RoBERTa generally perform well in PL-NL processing tasks. Furthermore, CodeBERT has a gain of around 3.5,
2, and 1 BLEU27 score over Seq2Seq28, Transformer28, and RoBERTa29 models in code-to-documentation genera-
tion tasks23, which means CodeBERT possesses better programming language processing ability.

Deep learning for smart contract vulnerabilities detection
From related work, it has been observed that some tools based on static analysis techniques suffer from false
positives and false negatives, mainly due to their reliance on predefined rules. These tools lack the ability to
perform syntax and semantic analysis, and the predefined rules can become outdated quickly and cannot adapt
or generalize to new data. In contrast, deep learning methods do not require predefined detection rules and can
learn vulnerability features during the training process.

We have found that some literature has utilized deep learning for smart contract vulnerabilities detection. Zhi-
peng Gao30 and his team developed a deep learning tool that analyzes Solidity smart contracts on the Ethereum
blockchain, helping developers detect repetitive patterns and known bugs. Zhang et al.18 proposed a Novel Smart
Contract Vulnerability Detection Method Based on Information Graph and Ensemble Learning. In the same year,
they also introduced the Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model incorpo-
rating Ensemble Classifiers (SPCBIG-EC) for enhanced smart contract vulnerability detection in IoT devices19.

Huang et al.20 proposed a vulnerabilities detection model for smart contracts using a convolutional neural
network. This network converts the binary representation of vulnerable code into RGB images. However, con-
verting binary files to image format makes it challenging to preserve the syntax and semantic information of
the code. Although this approach improves accuracy to some extent31, it suffers from a high false negative rate.

Liao et al.21 used N-gram language modeling and tf-idf feature vectors to characterize smart contract source
code. They trained traditional machine learning models to verify 13 types of vulnerabilities and employed
a gray-box fuzz testing mechanism for real-time transaction validation. However, this method treats certain
critical opcodes as stop words during the representation process, which can result in false negatives and missed
detections.

Yu et al.22 developed the first systematic and modular framework for smart contract vulnerability detection
based on deep learning. They introduced the concept of Vulnerability Candidate Slice (VCS), which focuses on
analyzing the dependencies between diverse data and control program elements. Experimental results showed a
significant improvement of 25.76% in the F1 score using this approach. However, the performance improvement
is not substantial for vulnerability types with limited data and control flow dependencies.

These works provide various methods for data preprocessing aimed at enabling the deep learning models
to extract vulnerability features more effectively. However, some methods may result in the deletion of impor-
tant keywords or the ignoring of critical vulnerability features during data processing32. Additionally, some of
the models used may have an insufficient understanding of the semantic characteristics of vulnerability code
 programs33, which can result in false negatives. To address these issues, we utilized the CodeBERT pre-training
model for data preprocessing. CodeBERT is a Transformer-based pre-training model designed specifically for
learning and processing source code. It demonstrates stronger semantic analysis abilities, providing significant
advantages in smart contract vulnerability detection. Additionally, we introduced the concept of critical vulner-
ability code segments and removed code unrelated to vulnerabilities from the training samples. We retained
only the function code of critical vulnerabilities for learning. This strategy eliminates training noise introduced
by redundant code, reduces model complexity, and improves model performance. During the model training
stage, we utilized three models - optimized CodeBERT, Optimized-LSTM, and Optimized-CNN - to capture
vulnerability features more effectively.

Using the aforementioned methods, our proposed Lightning Cat tool extracts critical features from vulner-
ability code and has strong semantic analysis capabilities, which significantly improves model performance.

Methodology
CodeBERT model has the state-of-the-art performances in tasks related to programming language processing23.
It features capturing semantic connections between natural language and programming language. According
to Yuan et al.34, CodeBERT can achieve 61% of accuracy in software vulnerabilities discovery which is generally
higher than mainstream models Word2Vec35, FastText36 and GloVe37 (46%, 41% and 29% respectively). In our
research, smart contracts are based on programming language Solidity. Therefore, we optimize the CodeBERT
model and employ it in our study. CNN is a commonly used and typical deep learning model with an excellent
generality in processing images and texts. LSTM is also a deep learning model featuring in processing long texts
and it can effectively learn time sequence in texts which CNN is not adaptive to do. Both CNN and LSTM have
achieved significantly high accuracy (0.958 and 0.959 respectively) in source code vulnerabilities detection,
according to Xu et al.38. We attempt to employ CNN and LSTM models as comparisons with CodeBERT model
and further analyze the performances of them in our tasks.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Figure 1 illustrates the complete process of developing a vulnerability detection model called Lightning
Cat for smart contracts, which consists of three stages. The first stage involves building and preprocessing the
labeled dataset of vulnerable Solidity code. In the second stage, training three models (Optimized-CodeBERT,
Optimized-LSTM, and Optimized-CNN) and comparing their performance to determine the best one. Finally,
in the third stage, the selected model is evaluated using the Sodifi-benchmark dataset to assess its effectiveness
in detecting vulnerabilities.

Data preprocessing
During the data preprocessing phase, we collect three datasets and subsequently perform data cleaning. Finally,
we employ the CodeBERT model to encode the data.

Data collection
Our primary training dataset comprises three main sources: 10,000 contracts from the Slither Audited Smart
Contracts Dataset39, 20,000 contracts from smartbugs-wild40, and 1,000 typical smart contracts with vulner-
abilities identified through expert audits, overall 31,000 contracts. To effectively compare results with other
auditing tools, we choose to use the SolidiFI benchmark dataset41 as our test set, a dataset containing contracts
containing 9,369 bugs.

Dataset processing
Within our test set SolidiFI-benchmark, there are three static detection tools which are Slither, Mythril, and
Smatcheck as well as all identified four common vulnerability types which are Re-entrancy, Timestamp-Depend-
ency, Unhandled-Exception, and tx.origin. To ensure the completeness and fairness of the results, our proposed
Lightning Cat model primarily focused on these four types of vulnerabilities for comparison. Table 1 displays
the mapping between the four types of vulnerabilities and the three auditing tools.

Considering that a complete contract might consist of multiple Solidity files and a single Solidity file might
contain several vulnerable code snippets, we utilized the Slither tool to extract 30,000 functions containing these
four types of vulnerabilities from the data sources39,40. Additionally, we manually annotate the problematic code
snippets within the contracts audited by experts, overall 1,909 snippets. The training set comprises 31,909 code

Figure 1. Lightning Cat Model Development Process.

Table 1. Mapping of Four Vulnerability Types.

Vulnerability Slither Smartcheck Mythril

Re-entrancy Reentrancy-benign reentrancy-eth reentrancy-
unlimited-gas reentrancy-no-eth SOLIDITY_ETRNANCY

External call to user-supplied address external
call to fixed address state change after external
call

Timestamp-dependency Timestamp SOLIDITY_EXACT_TIME VYPER_TIMES-
TAMP_DEPENDENCE Dependence on predictable environment variable

Unhandled-exceptions Unchecked-send unchecked-lowlevel SOLIDITY_UNCHECKED_CALL Unchecked call return value

tx.origin tx-origin SOLIDITY_TX_ORIGIN Use of tx.origin

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

snippets. For the test set, we extract 5,434 code snippets related to these four vulnerabilities from the SolidiFI-
benchmark dataset. The processing procedures for the training and test sets can be seen in Fig. 2.

Data cleaning
The length of a smart contract typically depends on its functionality and complexity. Some complex contracts
can exceed several thousand tokens. However, handling long text has been a long-standing challenge in deep
 learning42. Transformer-based models can only handle a maximum of 512 tokens. Therefore, we attempted two
methods to address the issue of text length exceeding 510 tokens.

Direct splitting. The data is split into chunks of 510 tokens each, and all the chunks are assigned the same label.
For example, if we have a group of Re-entrancy vulnerability code with a length of 2000 tokens, it would be split
into four chunks, each containing 510 tokens. If there are chunks with fewer than 510 tokens, we pad them with
zeros. However, the training results show that the model’s loss does not converge. We speculate that this is due to
the introduction of noise from unrelated chunks, which negatively affects the model’s generalization capability.

Vulnerability function code extraction. Audit experts extracted the function code of vulnerabilities from smart
contracts and assigned corresponding vulnerability labels. If the extracted code exceeds 510 tokens, it is trun-
cated, and if the code falls short of 510 tokens, it is padded with zeros. This approach ensures consistent input
data length, addresses the length limitation of Transformer models, and preserves the characteristics of the
vulnerabilities.

After comparing the two methods, we observed that training on vulnerability-based function code helped
the model’s loss function converge better. Therefore, we chose to use this data processing method in subsequent
experiments. Additionally, we removed unrelated characters such as comments and newline characters from
the functions to enhance the model’s performance. As shown in Fig. 3, we only extracted the function parts
containing the vulnerability code, reducing the length of the training dataset while maintaining the vulnerability
characteristics. This approach not only improves the model’s accuracy, but also enhances its generalization ability.

Data encoding
CodeBERT is a pretraining model based on the Transformer architecture, specifically designed for learning and
processing source code. By undergoing pretraining on extensive code corpora, CodeBERT acquires knowledge
of the syntax and semantic relationships inherent in source code, as well as the interactive dynamics between
different code segments.

During the data preprocessing stage, CodeBERT is employed due to its strong representation ability. The
source code undergoes tokenization, where it is segmented into tokens that represent semantic units. Subse-
quently, the tokenized sequence is encoded into numerical representations, with each token mapped to a unique
integer ID, forming the input token ID sequence. To meet the model’s input requirements, padding and trunca-
tion operations are applied, ensuring a fixed sequence length. Additionally, an attention mask is generated to
distinguish relevant positions from padded positions containing invalid information. Thus, the processed data
includes input IDs and attention masks, transforming the source code text into a numericalized format compat-
ible with the model while indicating the relevant information through the attention mask.

For Optimized-LSTM and Optimized-CNN models, direct processing of input IDs and masks is not feasi-
ble. Therefore, CodeBERT is utilized to further process the data and convert it into tensor representations of
embedding vectors. The input IDs and attention masks obtained from the preprocessing steps are passed to the
CodeBERT model to obtain meaningful representations of the source code data. These embedding vectors can

Figure 2. Datasets Preprocessing.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

be used as inputs for Optimized-LSTM and Optimized-CNN models, facilitating their integration for subsequent
vulnerability detection.

Models
In the current stage, our approach involves the utilization of three machine learning models: Optimized-Code-
BERT, Optimized-LSTM, and Optimized-CNN. The CodeBERT model is specifically fine-tuned to enhance its
compatibility with the target task by accepting preprocessed input IDs and attention masks as input. However,
in the case of Optimized-LSTM and Optimized-CNN models, we do not conduct any fine-tuning on the Code-
BERT model for data preprocessing.

Model 1: optimized‑CodeBERT
CodeBERT is a specialized application that utilizes the Transformer model for learning code representations in
code-related tasks. In this paper, we focus on fine-tuning the CodeBERT model to specifically address the needs of
smart contract vulnerability detection. The CodeBERT model is built upon the Transformer architecture, which
comprises multiple encoder layers. Prior to entering the encoder layers of CodeBERT, the input data undergoes
an embedding process. Following the encoding stage of CodeBERT, fully connected layers are added for clas-
sification purposes. The model architecture of our CodeBERT implementation is depicted in Fig. 4.

Word Embedding and Position Encoding In the data preprocessing stage, we have utilized a specialized Code-
BERT tokenizer to process each word into the input information. In this model tranining stage, the tokenizer
employs embedding methods, which are used to convert text or symbol data into vector representations. This
processing transforms each word into a 512-dimensional word embedding. In addition, we introduce position
embedding, which is a technique introduced to assist the model in understanding the positional information
within the sequence. It associates each position with a specific vector representation to express the relative
positions of tokens in the sequence. For a given position i and dimension k, the Position Encoding PE(i, k) is
computed as follows:

Figure 3. Extraction of Vulnerable Function Code (We partition the smart contract as a whole and extract
only the functions where the vulnerabilities are present. In the provided image, we focus on the ”withdrawALL”
function, which serves as our training dataset. If a contract contains multiple vulnerabilities, we extract multiple
corresponding functions).

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

 Here, d represents the dimension of the input sequence. The formula utilizes sine and cosine functions to gener-
ate position vectors, injecting positional information into the embeddings. The exponential term i

100002k/d
 controls

the rate of change of the position encoding, ensuring differentiation among positions. By adding the Position
Encoding to the Word Embedding, positional information is integrated into the embedded representation of
the input sequence. This enables CodeBERT to better comprehend the semantics and contextual relationships
of different positions in the code. The processing steps are illustrated in Fig. 5.

Encoder layers The CodeBERT model performs deep representation learning by stacking multiple encoder
layers. Each encoder layer comprises two sub-layers: multi-head self-attention and feed-forward neural network.
The self-attention mechanism helps encode the relationships and dependencies between different positions in
the input sequence. The feed-forward neural network is responsible for independently transforming and map-
ping the features at each position.

The multi-head self-attention mechanism calculates attention weights, denoted as wij , for each position i in
the input code sequence. The attention weights are computed using the following equation:

PE(i, k) =

sin
�

i
100002k/d

�

if k is even

cos
�

i
100002k/d

�

if k is odd

Figure 4. Our Optimized-CodeBERT Model Architecture.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

 Here, qi represents the query at position i, kj denotes the key at position j, and d is the dimension of the queries
and keys. The output of the self-attention mechanism at position i, denoted as oi , is obtained by multiplying the
attention weights wij with their corresponding values vj and summing them up:

where n is the length of the input sequence.

wij = Softmax

(

qi · kj√
d

)

oi =
n

∑

j=1

wij · vj

Figure 5. Word and Position Embedding Process.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Each encoder layer also contains a feed-forward neural network sub-layer, which processes the output of the
self-attention sub-layer using the following equation:

 Here, x represents the output of the self-attention sub-layer, and W1, b1 and W2, b2 are the parameters of the
feed-forward neural network.

Fully connected layers To output the classification labels, we added fully connected layers. Firstly, we added a
new linear layer with 100 features on top of the existing linear layer. To avoid the limited capacity of a single linear
layer, we utilized the ReLU activation function. Additionally, to prevent overfitting, we introduced a dropout
layer with a dropout rate of 0.1 after the activation layer. Lastly, we used a linear layer with four features for the
output. During the fine-tuning process, the parameters of these new layers were updated.

Model 2: optimized‑LSTM
The Optimized-LSTM model is specifically designed for processing sequential data, capable of capturing temporal
dependencies and syntactic-semantic information43. For the task of smart contract vulnerability detection, our
constructed Optimized-LSTM model provides a serialization-based representation of Solidity source code, taking
into account the order of statements and function calls. The Optimized-LSTM model captures the syntax, seman-
tics, and dependencies within the code, enabling an understanding of the logical structure and execution flow.
Compared to traditional RNNs, the Optimized-LSTM model we constructed addresses the issue of vanishing or
exploding gradients when handling long sequences44. This is accomplished through the key mechanism of gated
cells, which enable selective retention or forgetting of previous states. The model consists of shared components
across time steps, including the cell, input gate, output gate, and forget gate. In the Optimized-LSTM model, we
have defined an LSTM layer and a fully connected layer, with the LSTM layer being the core component. Within
the LSTM layer, the input x(t) , the output from the previous time step h(t−1) , and the cell state from the previous
time step c(t−1) are fed into an LSTM unit. This unit contains a forget gate f (t) , an input gate i(t) , and an output
gate o(t) , as shown in Fig. 6.

In the model, we utilize a bidirectional Optimized-LSTM, where the forward Optimized-LSTM and backward
Optimized-LSTM are independent and concatenated at the final step. This allows for better capture of long-term
dependencies and local correlations within the sequence. During the forward propagation of the model, the
input x is first passed through the Optimized-LSTM layer to obtain the output h and the final cell state c. Since
the lengths of the data instances may vary, we calculate the average output by averaging the outputs at each time
step in h. Then, the average output is fed into a fully connected layer to obtain the final prediction output y. We
used the cross-entropy loss function L for training, which is defined as:

FFN(x) = ReLU(x ·W1 + b1) ·W2 + b2

Figure 6. The Architecture of Optimized-LSTM.

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

 Here, N represents the number of classes, y(i,j) denotes the probability of the jth class in the true label of sample
i, and ŷ(i,j) represents the probability of sample i being predicted as the jth class by the model.

Model 3: optimized‑CNN
The Convolutional Neural Network (CNN) is a feedforward neural network that exhibits remarkable advantages
when processing two-dimensional data, such as the two-dimensional structures represented by code45. In our
model design, we transform the code token sequence into a matrix, and CNN efficiently extracts local features
of the code and captures the spatial structure, effectively capturing the syntax structure, relationships between
code blocks, and important patterns within the code.

The Optimized-CNN primarily consists of convolutional layers, pooling layers, fully connected layers, and
activation functions. Its core idea is to extract features from input data through convolution operations, reduce
the dimensionality of feature maps through pooling layers, and ultimately perform classification or regression
tasks through fully connected layers46. The key module of the Optimized-CNN is the convolutional layer, which
is computed as follows:

 Here, x(i,j,k) represents the element value of the input data at the i-th row, j-th column, and k-th channel, w(k,l,m)
represents the weight value of the k-th channel, l-th row, and m-th column of the convolutional kernel, and b rep-
resents the bias term. σ denotes the activation function, and in this case, we use the Rectified Linear Unit (ReLU).

The output of the convolutional layer is passed to the pooling layer for further processing. The commonly
used pooling methods are Max Pooling and Average Pooling. In this case, we employ Max Pooling, and the
calculation formula is as follows:

 Pooling operations can reduce the dimensionality of feature maps, model parameters, and to some extent
alleviate overfitting issues. Finally, a fully connected layer is used to compute the model, which is expressed as:

 Here, x represents the output of the previous layer, W and b denote the weights and bias terms, and σ is the
activation function. By stacking multiple convolutional layers, pooling layers, and fully connected layers, we
construct a Optimized-CNN model as shown in Fig. 7, which has powerful feature extraction and classification
capabilities for smart contract classification.

Experiments
To ensure a fair evaluation of different methods, we trained and tested them in identical environments. All
experiments were performed on a computer featuring an Intel Xeon(R) Silver 4210R CPU clocked at 2.4GHz,
dual RTX A5000 GPUs, and 128GB of RAM, running on the Windows operating system, utilizing the PyCharm
software, the PyTorch framework, and the Python programming language.

Parameter settings
Then, we do the tuning process with respect to each hyperparameter. For Optimized-CodeBERT model, we
employed the AdamW optimizer47 and conducted a grid search to find the optimal settings for hyperparameters.
The hyperparameters and their corresponding search ranges were as follows: learning rate: (3e-5, 1e-4, 3e-4),

Li = −
N
∑

j=1

yi,j log ŷi,j .

yi,j = σ

(

K
∑

k=1

L
∑

l=1

M
∑

m=1

wk,l,mxi+l−1,j+m−1,k + b

)

yi,j =
M

max
m=1

N
max
n=1

xi+m−1,j+n−1

y = σ(Wx + b)

Figure 7. The Architecture of Optimized-CNN.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

batch size: (32, 64, 128, 256), dropout rate: (0.1, 0.2, 0.3, 0.4, 0.5), L2 regularization: (1e-6, 1e-5, 1e-4, 1e-3, 1e-2,
1e-1), learning rate decay gamma: (0.98, 0.99), number of fully connected layers: (1, 2, 3), and number of epochs:
(10, 20, 30, 40, 50, 60). The cross-entropy loss was calculated using the BCEWithLogitsLoss method. The best
parameter settings corresponding to the final results are shown in Table 2.

For Optimized-LSTM Model, the best parameter settings are shown in Table 3.
For Optimized-CNN Model, the best parameter settings are shown in Table 4.

Metrics
To evaluate our methods, we use various performance metrics, including accuracy, F1 score, recall, and precision.
Accuracy is indeed the ratio of correctly predicted instances (both true positives and true negatives) to the total
number of instances. It provides a general measure of overall correctness.

 F1 score is another important metric that combines both precision and recall. It considers the trade-off between
them and provides a balance between the two. F1 score is particularly useful when the dataset is imbalanced or
when both precision and recall are important.

Accuracy = True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

Table 2. Parameters of the Optimized-CodeBERT Model.

Model parameters Configuration

Layer of MLP 2

Epoch 60

Batch size 128

Learning rate 1e − 3

Dropout 0.1

Optimizer Adam

Loss function BCEWithLogitsLoss

Learning rate decay gamma 0.98

L2 regularization 1e-4

Table 3. Parameters of the Optimized-LSTM Model.

Layer parameters Configuration

Learning rate 0.0001

Input dimension 768

Hidden dimension 128

Number of layers 2

Bidirectional True

Batch first True

Dropout 0.5

Output dimension 4

Table 4. Parameters of the Optimized-CNN Model.

Layer parameters Configuration

Learning rate 0.0001

Conv1d_1 in_channels=768, out_channels=256, kernel_size=3

Conv1d_2 in_channels=256, out_channels=128, kernel_size=3

Conv1d_3 in_channels=128, out_channels=64, kernel_size=3

MaxPool1d kernel_size=2

Linear_1 in_channels=64, out_channels=32

Linear_2 in_channels=32, out_channels=6

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

 Precision, also known as positive predictive value, measures the proportion of correctly predicted posi-
tive instances (true positives) out of all instances predicted as positive. It focuses on the accuracy of positive
predictions.

 Recall, also known as sensitivity or true positive rate, calculates the proportion of correctly predicted positive
instances (true positives) out of all actual positive instances. It focuses on the ability of the model to identify all
positive instances.

Results
We used SolidiFI-benchmark as the testing dataset, and the comparison results of the metrics of the three models
in Lightning Cat are shown in Table 5.

Clearly, the performance of Optimized-CodeBERT is the best among all models (as shown in Table 5), with
the highest scores in all metrics. Its F1-score is 30.48% higher than that of Optimized-LSTM and 22.91% higher
than that of Optimized-CNN.

In addition, we obtained the metrics results of the three models for four types of vulnerabilities, as shown
in Table 6.

From Table 6, it can be seen that among the four types of vulnerabilities, Optimized-CodeBERT has the best
detection performance for Timestamp-Dependency and Unhandled-Exceptions. However, for the Re-entrancy
vulnerability, the Recall of Optimized-CodeBERT is lower than that of Optimized-LSTM and Optimized-CNN.
When detecting the tx.origin vulnerability, Optimized-CodeBERT has higher Accuracy, Recall, and F1 than the
other two models, while its Precision is 0.07% lower than that of Optimized-CNN. The three models use the same
training set, but their detection performance differs because they have different modeling and generalization
capabilities. Overall, Optimized-CodeBERT has better detection performance.

We obtained the vulnerability detection results of different methods in the SolidiFI-benchmark testing dataset,
and the true positive results detected by each method are shown in Table 7. ”NA” indicates vulnerabilities that
cannot be identified by the corresponding method.

Table 7 displays the vulnerability detection results for different types of vulnerabilities. ”Injected bugs” rep-
resents the actual quantity of vulnerabilities, and ”tp” (true positive) represents the number of detected vulner-
abilities. From Table 7, it can be seen that among these auditing tools (Manticore, Mythril, Oyente, Security,

F1 score = 2× Precision× Recall

Precision+ Recall

Precision = True Positives

True Positives+ False Positives

Recall = True Positives

True Positives+ False Negatives

Table 5. Comparison of Metrics Results of Three Models.

Metriccs F1 (%) Accuracy (%) Precision (%) Recall (%)

Optimized-CodeBERT 93.53 96.77 96.77 93.55

Optimized-LSTM 63.05 81.96 73.61 64.06

Optimized-CNN 70.62 85.54 71.61 71.36

Table 6. Comparison of the Metrics Results for Each Type of Vulnerability.

Vulnerability Method Accuracy(%) Precision(%) Recall(%) F1(%)

Re-entrancy

Optimized-CodeBERT 93.58 85.45 89.20 87.29

Optimized-LSTM 75.08 49.80 100 66.49

Optimized-CNN 91 73.31 100 84.60

Timestamp-Dependency

Optimized-CodeBERT 97.29 90.43 99.92 94.94

Optimized-LSTM 85.08 75.49 61.12 67.55

Optimized-CNN 75.27 51.62 42.795 46.79

Unhandled-Exceptions

Optimized-CodeBERT 96.23 100 100 99.96

Optimized-LSTM 84.63 100 39.23 56.35

Optimized-CNN 80.53 61.52 61.43 61.47

tx.origin

Optimized-CodeBERT 99.98 99.93 85.08 91.94

Optimized-LSTM 83.03 69.17 55.91 61.84

Optimized-CNN 95.38 100 81.21 89.63

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Slither), Slither detected the most actual vulnerabilities. In terms of the detection results of all methods, Slither,
Optimized-LSTM, and Optimized-CNN detected the most true positive for the Re-entrancy vulnerability, while
Optimized-CodeBERT detected the most vulnerabilities for the three types of vulnerabilities (Timestamp_
Dependency, Unhandle_Exceptions, tx.origin).

To better compare the detection performance of different methods, we will only compare the methods that
can detect the four types of vulnerabilities. The comparison results of the Recall of different methods are shown
in Fig. 8.

Figure 8 illustrates the comparison of Recall results among different methods, measuring the classification
models’ capability to accurately identify true positive samples. The figure compares the recall rates of six methods,
namely Mythril, Smartcheck, Slither, Optimized-CodeBERT, Optimized-LSTM, and Optimized-CNN. The find-
ings indicate that the Optimized-CodeBERT model exhibits the highest recall at 93.55%, surpassing Slither by
11.85%. This highlights the Optimized-CodeBERT model’s exceptional accuracy and reliability in detecting and
identifying true positive samples. Conversely, the Optimized-LSTM and Optimized-CNN models demonstrate
relatively lower recall rates of 64.06% and 71.36%, respectively, suggesting potential challenges or limitations in
recognizing true positive samples.

Based on the insights gained from Fig. 8, it is evident that the Optimized-CodeBERT method excels in recall,
displaying superior proficiency in identifying true positive samples. These findings offer valuable guidance for
model selection and practical applications.

In order to comprehensively compare the performances of three models, we set different thresholds (i.e.
0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9) for three models. The precision and recall values under these thresholds and
precision-recall curves of three models are presented in the Fig. 9. The precision-recall curve is created by plot-
ting precision values on the y-axis and recall values on the x-axis. Each point on the curve represents a different
threshold used for classifying the positive class. Thresholds refer to the probability thresholds used by the clas-
sification model to determine which class an instance belongs to. According to the result shown in the Fig. 9,
Optimised -CodeBERT presents a better performance in our tasks.

We further conduct McNemmar test48 to compare the accuracy differences between the Optimised-Code-
BERT model and the Optimsed-LSTM (shown in Table 8) as well as Optimised-CNN models (shown in Table 9).

Table 7. True Positive Detection Results of Different Methods.

Security bug Re-entrancy Timestamp dep Unhandle exp tx.origin

Injected bugs 1343 1381 1374 1336

Manticore 93 NA NA NA

Mythril 258 571 618 891

Oyente 335 0 322 NA

Securify 1111 NA 701 NA

Smartcheck 0 479 49 97

Slither 1343 844 917 1336

Optimized-CodeBERT 1198 1380 1169 1336

Optimized-LSTM 1343 844 539 747

Optimized-CNN 1343 591 844 1085

Figure 8. Enter Caption.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Optimised-CodeBERT presents extreme significance in accuracy difference with both Optimised-LSTM and
Optimised-CNN in terms of vulnerabilities classes Re-entrancy, Timestamp-Dependency and Unhandled-
Exceptions but little significance with these two models in terms of vulnerability class tx.origin. We speculate
that this is because the features of the tx.origin vulnerability are relatively conspicuous, making it easier for the
model to recognize and classify.

Discussion and future work

Q1: Scope of Vulnerability Detection and limitation.

In this research, we introduce a solution named ”Lightning Cat”. For the purpose of comparison with static
analysis tools, we particularly focus on detecting four specific types of smart contract vulnerabilities: Re-entrancy,
Timestamp-Dependency, Unhandled-Exceptions, and tx.origin. Through our comparative analysis, we observe
instances where the static analysis tools fail to detect certain vulnerabilities. Our experimental results indicate
that our proposed Optimized-CodeBERT outperforms the static detection tools mentioned in this paper, both
in terms of recall and overall TP. At present, the Lightning Cat is equipped to detect these four categories of
vulnerabilities.

While the proposed solution, which captures vulnerability feature information by extracting vulnerability
code functions, has shown promising results in scenarios with text length constraints, we also acknowledge
limitations in our current approach when addressing cross-code and cross-function vulnerabilities. The code
interactions and contextual information related to these vulnerabilities might span multiple functions or modules,
making them challenging to be captured by our current method. In the future, We aim to expand the detection
capabilities of our model. Additionally, there’s potential to extend the application of Lightning Cat to other
vulnerability code detection scenarios.

Figure 9. Precision-recall curves for three models :(a) is Optimised-CodeBERT, (b) is Optimised-CNN and (c)
is Optimised-LSTM.

Table 8. McNemmar Test (Accuracy Difference between Optimised-CodeBERT and Optimised-LSTM).

Vulnerability type Discordant pairs (B) Continuity correction (C) Chi-squared value (X2) p-value Accuracy difference

Re-entrancy 2638 1 1761.44 ≈ 0 Extremely significant

Timestamp-dependency 147 1 285.33 ≈ 0 Extremely significant

tx.origin 1 1 0 ≈ 1 Not significant

Unhandled-exceptions 205 1 203.25 ≈ 0 Extremely significant

Table 9. McNemmar Test (Accuracy Difference between Optimised-CodeBERT and Optimised-CNN).

Vulnerability type Discordant pairs (B) Continuity correction (C) Chi-squared value (X2) p-value Accuracy difference

Re-entrancy 489 1 377.33 ≈ 0 Extremely significant

Timestamp-dependency 136 1 315 ≈ 0 Extremely significant

tx.origin 1 1 0 ≈ 1 Not significant

Unhandled-exceptions 530 1 1056 ≈ 0 Extremely significant

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Q2: Expanding Lightning Cat to Other Areas of Code Vulnerability Detection.

Lightning Cat plans to expand its vulnerability detection capabilities. Using examples of vulnerabilities such
as Buffer Overflow, Null Pointer Dereference, and Logic Errors, here’s how the expansion process unfolds:

Acquiring datasets containing code with these vulnerability features is the first step, which can be obtained
from open-source code repositories or proprietary databases. Code mutation techniques may also be considered
for data augmentation. During data preprocessing, CodeBERT will be used to convert code into fixed-length
vectors suitable for the model’s input format. Subsequently, the model undergoes fine-tuning through transfer
learning, with iterative adjustments to hyperparameters based on dataset characteristics to enhance performance.
Validation using appropriate vulnerability test sets ensures model accuracy and robustness. Finally, to address
newly emerging vulnerabilities, Lightning Cat periodically collects new vulnerability data and updates model
parameters to effectively respond to these new issues.

Q3: What if malicious actors use this technology to discover vulnerabilities for illicit gain?

Automatic vulnerability detection technology holds immense potential in enhancing the security of smart
contracts. However, it is a double-edged sword. On the one hand, it can assist developers in swiftly identifying
and rectifying vulnerabilities in software, thereby elevating its security. On the other hand, if such technology
falls into the hands of malicious actors, they might exploit it to uncover undisclosed vulnerabilities and launch
attacks. To address this, proactive measures are essential.

Developers should regularly conduct code audits and undergo secure coding training as well as adopt respon-
sible vulnerability disclosure policies. It’s encouraged that researchers and developers, upon discovering security
vulnerabilities, initially notify the relevant organizations or individuals privately. This provides them ample
time for rectification before the information is made public. Concurrently, regular updates and maintenance
of software and dependency libraries are crucial to ensure known security vulnerabilities which are addressed
collaboratively. While it might reduce the use of the tool, considerations could be made to impose certain
restrictions on open-source automatic detection tools, such as limiting the use of advanced features or requir-
ing user authentication. Undoubtedly, enhancing the security of smart contracts requires collective effort. The
open-source community should foster collaboration among its members. This can be achieved by sharing best
security practices, tools, and resources.

Conclusion
This paper introduces Lightning Cat, which uses deep learning methods to detect vulnerabilities in smart con-
tracts, including three models: Optimized-CodeBERT, Optimized-LSTM, and Optimized-CNN. Based on
experimental results, the Optimized-CodeBERT model achieved the best overall performance. We optimized
and compared three models, and found that Optimized-CodeBERT achieved the best results in evaluation
metrics such as Accuracy, Precision, and F1-score. This research utilized the CodeBERT pre-trained model for
data preprocessing, which improved the ability of code semantic analysis. In data preprocessing, we extracted
problem code segments functions, which not only considered the key features of smart contract vulnerability
code but also solved the length limitation problem of deep learning for processing long texts. This approach
avoids issues such as unclear features due to excessively long texts or overfitting due to excessively short texts,
thereby improving the model’s performance. The results show that the proposed method has more reasonable
data preprocessing and model optimization, resulting in better detection performance.

This paper analyzed the detection performance of each type of vulnerability and found that the Optimized-
CodeBERT model outperformed Slither, Optimized-LSTM, and Optimized-CNN in detecting three types of
vulnerabilities, but was inferior in one type. This is because different models have different structures, param-
eters, and learning algorithms, which affect their modeling and generalization abilities. Therefore, in future
work, we aim to improve the performance of the three models in Lightning Cat and extend the application of
our proposed Lightning Cat to more code security fields beyond smart contract vulnerabilities detection (Sup-
plementary Information).

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author
upon reasonable request.

Received: 24 June 2023; Accepted: 10 November 2023

References
 1. Aggarwal, S. & Kumar, N. Cryptographic consensus mechanisms. In Advances in Computers Vol. 121 (eds Aggarwal, S. & Kumar,

N.) 211–226 (Elsevier, 2021).
 2. Sunyaev, A. Distributed Ledger Technology (Springer International Publishing, 2020).
 3. Zou, W. et al. Smart contract development: Challenges and opportunities. IEEE Trans. Software Eng. 47, 2084–2106. https:// doi.

org/ 10. 1109/ TSE. 2019. 29423 01 (2021).
 4. Wang, W. et al. Smart contract token-based privacy-preserving access control system for industrial internet of things. Digit. Com‑

mun. Netw. 9, 337–346. https:// doi. org/ 10. 1016/j. dcan. 2022. 10. 005 (2023).
 5. The dao smart contract. https:// ether scan. io/ addre ss/ 0xbb9 bc244 d7981 23fde 783fc c1c72 d3bb8 c1894 13 (2016).
 6. The bectoken smart contract. https:// ether scan. io/ addre ss/ 0xc5d 105e6 37113 98af9 bbff0 92d4b 6769c 82f79 3d (2018).
 7. The bzrxtoken smart contract. https:// ether scan. io/ addre ss/ 0x56d 81108 8235F 11C89 20698 a204A 5010a 788f4 b3 (2020).

https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1016/j.dcan.2022.10.005
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d
https://etherscan.io/address/0x56d811088235F11C8920698a204A5010a788f4b3

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

 8. Kalra, S., Goel, S., Dhawan, M. & Sharma, S. Zeus: analyzing safety of smart contracts. In Ndss, 1–12 (2018).
 9. Jiang, B., Liu, Y. & Chan, W. K. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, 259–269 (2018).
 10. Park, D., Zhang, Y., Saxena, M., Daian, P. & Roşu, G. A formal verification tool for ethereum vm bytecode. In Proceedings of the

2018 26th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineer‑
ing, 912–915 (2018).

 11. Luu, L., Chu, D.-H., Olickel, H., Saxena, P. & Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 254–269 (2016).

 12. Ruskin, L. Mythril# 8. Mythril 2, 1 (1980).
 13. Tsankov, P. et al. Securify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, 67–82 (2018).
 14. Feist, J., Grieco, G. & Groce, A. Slither: A static analysis framework for smart contracts. In 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB) (eds Feist, J. et al.) 8–15 (IEEE, 2019).
 15. Tikhomirov, S. et al. Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st international workshop on

emerging trends in software engineering for blockchain, 9–16 (2018).
 16. Chen, L. Z. W. C. W. Z. J. C. Z. Z. C. H. Cbgru: A detection method of smart contract vulnerability based on a hybrid model. Sen‑

sors22 (2022).
 17. Liu, Z., Jiang, M., Zhang, S., Zhang, J. & Liu, Y. A smart contract vulnerability detection mechanism based on deep learning and

expert rules. IEEE Access (2023).
 18. Zhang, L. et al. A novel smart contract vulnerability detection method based on information graph and ensemble learning. Sen‑

sorshttps:// doi. org/ 10. 3390/ s2209 3581 (2022).
 19. Zhang, L. et al. Spcbig-ec: A robust serial hybrid model for smart contract vulnerability detection. Sensorshttps:// doi. org/ 10. 3390/

s2212 4621 (2022).
 20. Huang, T. H.-D. Hunting the ethereum smart contract: Color-inspired inspection of potential attacks. arXiv preprint arXiv: 1807.

01868 (2018).
 21. Liao, J.-W., Tsai, T.-T., He, C.-K. & Tien, C.-W. Soliaudit: Smart contract vulnerability assessment based on machine learning and

fuzz testing. In 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS) (ed. Liao,
J.-W.) 458–465 (IEEE, 2019).

 22. Yu, X., Zhao, H., Hou, B., Ying, Z. & Wu, B. Deescvhunter: A deep learning-based framework for smart contract vulnerability
detection. In 2021 International Joint Conference on Neural Networks (IJCNN) (eds Yu, X. et al.) 1–8 (IEEE, 2021).

 23. Feng, Z. et al. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv: 2002. 08155 (2020).
 24. Salloum, S. A., Khan, R. & Shaalan, K. A survey of semantic analysis approaches. In Proceedings of the International Conference on

Artificial Intelligence and Computer Vision (AICV2020) (eds Salloum, S. A. et al.) 61–70 (Springer, 2020).
 25. Al-Boghdady, A., El-Ramly, M. & Wassif, K. Idetect for vulnerability detection in internet of things operating systems using

machine learning. Sci. Rep. 12, 17086 (2022).
 26. Nadkarni, P. M., Ohno-Machado, L. & Chapman, W. W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc.

18, 544–551 (2011).
 27. Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation. In Proceedings of

the 40th annual meeting of the Association for Computational Linguistics, 311–318 (2002).
 28. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. Adv. Neural Inform. Process. Syst.27

(2014).
 29. Liu, Y. et al. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv: 1907. 11692 (2019).
 30. Gao, Z. When deep learning meets smart contracts. In Proceedings of the 35th IEEE/ACM International Conference on Automated

Software Engineering, ASE ’20, 1400-1402, https:// doi. org/ 10. 1145/ 33248 84. 34189 18 (Association for Computing Machinery, New
York, NY, USA, 2021).

 31. Alvarez, J. L. H., Ravanbakhsh, M. & Demir, B. S2-cgan: Self-supervised adversarial representation learning for binary change
detection in multispectral images. In IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium (ed.
Alvarez, J. L. H.) 2515–2518 (IEEE, 2020).

 32. Liao, S. & Grishman, R. Using document level cross-event inference to improve event extraction. In Proceedings of the 48th annual
meeting of the association for computational linguistics, 789–797 (2010).

 33. Zhang, Y. et al. Delesmell: Code smell detection based on deep learning and latent semantic analysis. Knowl.‑Based Syst. 255,
109737 (2022).

 34. Yuan, X., Lin, G., Tai, Y. & Zhang, J. Deep neural embedding for software vulnerability discovery: Comparison and optimization.
Secur. Commun. Netw. 2022, 1–12 (2022).

 35. Church, K. W. Word2vec. Nat. Lang. Eng. 23, 155–162 (2017).
 36. Joulin, A. et al. Fasttext. zip: Compressing text classification models. arXiv preprint arXiv: 1612. 03651 (2016).
 37. Pennington, J., Socher, R. & Manning, C. D. Glove: Global vectors for word representation. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP), 1532–1543 (2014).
 38. Xu, A., Dai, T., Chen, H., Ming, Z. & Li, W. Vulnerability detection for source code using contextual lstm. In 2018 5th International

Conference on Systems and Informatics (ICSAI), 1225–1230, https:// doi. org/ 10. 1109/ ICSAI. 2018. 85993 60 (2018).
 39. Rossini, M. Slither audited smart contracts dataset. https:// huggi ngface. co/ datas ets/ mwrit escode/ slith er- audit ed- smart- contr acts

(2022).
 40. Smartbugs-wild. https:// github. com/ smart bugs/ smart bugs- wild (2019).
 41. Ghaleb, A. & Pattabiraman, K. How effective are smart contract analysis tools? evaluating smart contract static analysis tools using

bug injection. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (2020).
 42. Hofstätter, S., Zamani, H., Mitra, B., Craswell, N. & Hanbury, A. Local self-attention over long text for efficient document retrieval.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021–2024
(2020).

 43. Huang, Z., Xu, W. & Yu, K. Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv: 1508. 01991 (2015).
 44. Sherstinsky, A. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D 404,

132306 (2020).
 45. Malek, S., Melgani, F. & Bazi, Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom.

32, e2977 (2018).
 46. Harbola, S. & Coors, V. One dimensional convolutional neural network architectures for wind prediction. Energy Convers. Manag.

195, 70–75 (2019).
 47. Tato, A. & Nkambou, R. Improving adam optimizer. https:// openr eview. net/ forum? id= HJfpZ q1DM (2018).
 48. Lachenbruch, P. A. Mcnemar test. Wiley StatsRef: Statistics Reference Online (2014).

https://doi.org/10.3390/s22093581
https://doi.org/10.3390/s22124621
https://doi.org/10.3390/s22124621
http://arxiv.org/abs/1807.01868
http://arxiv.org/abs/1807.01868
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3324884.3418918
http://arxiv.org/abs/1612.03651
https://doi.org/10.1109/ICSAI.2018.8599360
https://huggingface.co/datasets/mwritescode/slither-audited-smart-contracts
https://github.com/smartbugs/smartbugs-wild
http://arxiv.org/abs/1508.01991
https://openreview.net/forum?id=HJfpZq1DM

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:20106 | https://doi.org/10.1038/s41598-023-47219-0

www.nature.com/scientificreports/

Author contributions
X.T. conceived the design and proposed questions. Y.D. was responsible for model design and overall planning.
A.L. was responsible for overall planning and revised the manuscript. Z.Z. conducted model reproduction and
optimization. L.S. wrote the introduction and conducted literature review. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 47219-0.

Correspondence and requests for materials should be addressed to X.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning-based solution for smart contract vulnerabilities detection
	Related work
	Static analysis techniques
	Pre-training model
	Deep learning for smart contract vulnerabilities detection

	Methodology
	Data preprocessing
	Data collection
	Dataset processing
	Data cleaning
	Direct splitting.
	Vulnerability function code extraction.

	Data encoding

	Models
	Model 1: optimized-CodeBERT
	Model 2: optimized-LSTM
	Model 3: optimized-CNN

	Experiments
	Parameter settings
	Metrics
	Results
	Discussion and future work

	Conclusion
	References

