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Deep learning‑based solution 
for smart contract vulnerabilities 
detection
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This paper aims to explore the application of deep learning in smart contract vulnerabilities detection. 
Smart contracts are an essential part of blockchain technology and are crucial for developing 
decentralized applications. However, smart contract vulnerabilities can cause financial losses and 
system crashes. Static analysis tools are frequently used to detect vulnerabilities in smart contracts, 
but they often result in false positives and false negatives because of their high reliance on predefined 
rules and lack of semantic analysis capabilities. Furthermore, these predefined rules quickly become 
obsolete and fail to adapt or generalize to new data. In contrast, deep learning methods do not require 
predefined detection rules and can learn the features of vulnerabilities during the training process. In 
this paper, we introduce a solution called Lightning Cat which is based on deep learning techniques. 
We train three deep learning models for detecting vulnerabilities in smart contract: Optimized‑
CodeBERT, Optimized‑LSTM, and Optimized‑CNN. Experimental results show that, in the Lightning 
Cat we propose, Optimized‑CodeBERT model surpasses other methods, achieving an f1‑score of 
93.53%. To precisely extract vulnerability features, we acquire segments of vulnerable code functions 
to retain critical vulnerability features. Using the CodeBERT pre‑training model for data preprocessing, 
we could capture the syntax and semantics of the code more accurately. To demonstrate the feasibility 
of our proposed solution, we evaluate its performance using the SolidiFI‑benchmark dataset, which 
consists of 9369 vulnerable contracts injected with vulnerabilities from seven different types.

Blockchain is a new application pattern based on technologies such as point-to-point transmission, encryp-
tion algorithm, consensus  mechanism1 and distributed data  storage2. Since the emergence of Bitcoin, the basic 
blockchain system has become widely known among professionals, resulting in the development of numerous 
blockchain applications. This is made possible by smart  contracts3, which are automated programs running in a 
trusted environment provided by the  blockchain4. If there are vulnerabilities in smart contracts publicly deployed 
on the blockchain, attackers can exploit these vulnerabilities to launch attacks. For example, on June 17, 2016, 
The  DAO5, the largest crowdfunding project in the blockchain industry at the time, was attacked. The hacker 
exploited a reentrancy vulnerability and stole 3.6 million Ether worth around $60 million from The DAO’s asset 
pool, which directly led to the Ethereum blockchain splitting into ETH (Ethereum) and ETC (Ethereum Classic). 
On April 22, 2018, hackers targeted the  BEC6 smart contract, which was based on the ERC-20 standard, using 
an integer overflow vulnerability. They transferred a significant amount of BEC tokens to two external accounts 
and dumped them, causing the token price to rapidly plummet to zero, disrupting the market. On February 15, 
2020, the bZx  protocol7, a set of smart contracts built on Ethereum, experienced its first attack. The attacker 
profited over three hundred thousand dollars, leading the project to temporarily suspend all functions except 
lending. On the 18th, the bZx protocol was targeted again, and the hacker exploited the manipulation of virtual 
asset prices through controlling the oracle, resulting in a profit of over 2,000 Ether. The above smart contract 
attack incidents demonstrate that due to the control of a substantial amount of cryptocurrency and financial 
assets, if smart contracts are targeted and attacked, it will result in unpredictable asset losses. Conducting vul-
nerability detection on smart contracts can help identify and fix potential vulnerabilities in contracts at an early 
stage, ensuring their security and protecting against asset theft or other security risks. Therefore, smart contract 
vulnerability detection is crucial for ensuring security, preventing financial losses, and maintaining user trust. 
It is an essential aspect of smart contract development and deployment processes.

Current methods for detecting smart contract vulnerabilities include human review, static  analysis8, fuzz 
 testing9, and formal  verification10. Well-known detection tools include  Oyente11,  Mythril12,  Securify13,  Slither14, 
and  Smartcheck15. These tools automatically analyze contract code and cover various common types of smart con-
tract security vulnerabilities, such as reentrancy, incorrect tx.origin authorization, timestamp dependency, and 
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unhandled exceptions. However, they may produce false positives or false negatives because they highly depend 
on predefined detection rules and lack the ability to accurately comprehend complex code logic. Additionally, 
predefined rules become outdated quickly and cannot adapt or generalize to new data, which is rapidly evolving 
in the smart contract domain. In contrast, deep learning approaches learn from data and can continuously update 
themselves to stay relevant. In recent years, there has been significant research on using deep learning for smart 
contract vulnerability  detection16–19. However, some methods tend to overlook critical vulnerability features in 
their data processing approaches, and certain models lack semantic analysis capabilities for vulnerability code, 
leading to potential false  negatives20–22.

This paper proposes a deep learning-based solution called Lightning Cat. The solution includes three deep 
learning models, namely optimized CodeBERT, Optimized-LSTM, and Optimized-CNN, which are trained to 
detect vulnerabilities in smart contracts. To better identify vulnerability features, code snippets of functions 
containing vulnerabilities were obtained to preserve key features. The CodeBERT pre-training  model23 was 
employed to preprocess the data, enhancing the semantic analysis  capabilities24.

The main contributions of this paper can be summarized as follows:

(1) This paper designs a smart contracts vulnerabilities detection solution called Lightning Cat using deep 
learning methods. The solution optimizes three deep learning models.

(2) We introduce an effective data preprocessing method that captures the semantic features of smart contract 
vulnerabilities. During the data preprocessing stage, we retrieve code snippets of functions containing 
vulnerabilities to extract vulnerability features. We also use the CodeBERT pre-trained model for data 
preprocessing to enhance the model’s semantic analysis capabilities, with the primary goal of improving 
model performance.

(3) Based on the experimental evaluation results, the Lightning Cat proposed in this paper shows better detec-
tion performance than other vulnerability detection tools. The optimized CodeBERT model in Lightning 
Cat outperforms Optimized-LSTM and Optimized-CNN models, achieving a recall rate of 93.55%, which 
is 11.85% higher than Slither, a precision rate of 96.77%, and an f1-score of 93.53%.

In addition to smart contract vulnerability detection, the Lightning Cat can also be extended to other areas 
of code vulnerability  detection25. Modern software systems are prone to various types of vulnerabilities, such 
as buffer overflow, null pointer dereference, and logic errors. For instance, buffer overflow code vulnerabilities 
are characterized by the use of unsafe string manipulation functions like strcpy and strcat without proper input 
boundary checks. Null pointer dereference vulnerabilities involve the misuse of dangling pointers by failing 
to set a pointer to NULL after freeing the associated memory. Logic errors manifest when incorrect logical 
operators are used in conditional statements, such as using = instead of ==. By learning and training on a large 
number of code samples, Lightning Cat can extract and comprehend different types of vulnerabilities. It also 
employs the CodeBERT pre-trained model for data preprocessing, making it better suited for identifying code 
vulnerabilities. As a result, it can detect various kinds of code vulnerabilities, thereby enhancing the security 
and dependability of the code.

Related work
In this section, we present related work on the detection of smart contract vulnerabilities, focusing primarily on 
static analysis techniques and deep learning methods.

Static analysis techniques
The  Mythril12 security analysis method is designed to inspect bytecode executed in the Ethereum Virtual Machine 
(EVM). When defects are found in a program, it can help infer potential causes by analyzing input records. This 
assists in identifying existing vulnerabilities and reducing the likelihood of exploiting them. It utilizes taint 
analysis and symbolic execution techniques. However, when performing taint analysis, It faces limitations when 
crossing memory boundaries. This limitation becomes more severe when dealing with reference-style parameter 
invocations. Additionally, Mythril may encounter the state explosion problem when processing complex con-
tracts. Furthermore, symbolic execution is a powerful general method for detecting vulnerabilities, but it may 
consider branches that may not be feasible in actual execution, leading to false positives.

Slither14 is a static code analysis tool used for detecting security vulnerabilities and potential issues in Solid-
ity smart contracts. It integrates numerous detectors capable of identifying different types of vulnerabilities. 
Compared to Mythril, Slither is much more efficient and performs fast detection. However, Slither lacks formal 
semantic analysis, which limits its ability to perform more detailed security analysis and accurately determine 
low-level information such as gas calculations.

SmartCheck15 uses static analysis techniques to detect common security vulnerabilities and coding issues in 
smart contracts. It offers numerous rule sets to identify different types of vulnerabilities and improve contract 
security. However, due to its heavy reliance on logical rules for vulnerability detection, it may generate false posi-
tives and false negatives. Furthermore, it may fail to detect severe programming errors, leading to overlooked 
vulnerabilities or incorrect reporting.

Pre‑training model
The analysis of smart contracts using deep learning methods in our study is essentially a Natural Language Pro-
cessing (NLP)26 task. In general NLP tasks, the input texts are required to be represented as vectors which can be 
further fed into the deep learning models for downstream tasks. With the development of pre-trained models, the 
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text representation in NLP has presented a significant improvement. Pre-trained models can effectively capture 
the semantic information, textual structure and grammar rules as well as provide valuable vector embeddings 
via training on large-scale datasets. They are relatively crucial in NLP. In this research, we employ a pre-trained 
model CodeBERT in transforming smart contracts code based on text into vector embeddings. A distinctive 
feature of CodeBERT is that it has been pre-trained on a vast amount of code and its associated natural language 
comments, which enables it to understand the structure and semantics of the code.

CodeBERT, as a pre-trained model, presents state-of-the-art performances on both natural language process-
ing and programming language processing tasks as downstream tasks. The characteristic of CodeBERT is that 
it has been pre-trained on a vast amount of code and its associated natural language comments, enabling it to 
understand the structure and semantics of the code. Typical pre-trained models like Seq2Seq, Transformer, and 
RoBERTa generally perform well in PL-NL processing tasks. Furthermore, CodeBERT has a gain of around 3.5, 
2, and 1  BLEU27 score over  Seq2Seq28,  Transformer28, and  RoBERTa29 models in code-to-documentation genera-
tion  tasks23, which means CodeBERT possesses better programming language processing ability.

Deep learning for smart contract vulnerabilities detection
From related work, it has been observed that some tools based on static analysis techniques suffer from false 
positives and false negatives, mainly due to their reliance on predefined rules. These tools lack the ability to 
perform syntax and semantic analysis, and the predefined rules can become outdated quickly and cannot adapt 
or generalize to new data. In contrast, deep learning methods do not require predefined detection rules and can 
learn vulnerability features during the training process.

We have found that some literature has utilized deep learning for smart contract vulnerabilities detection. Zhi-
peng  Gao30 and his team developed a deep learning tool that analyzes Solidity smart contracts on the Ethereum 
blockchain, helping developers detect repetitive patterns and known bugs. Zhang et al.18 proposed a Novel Smart 
Contract Vulnerability Detection Method Based on Information Graph and Ensemble Learning. In the same year, 
they also introduced the Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model incorpo-
rating Ensemble Classifiers (SPCBIG-EC) for enhanced smart contract vulnerability detection in IoT  devices19.

Huang et al.20 proposed a vulnerabilities detection model for smart contracts using a convolutional neural 
network. This network converts the binary representation of vulnerable code into RGB images. However, con-
verting binary files to image format makes it challenging to preserve the syntax and semantic information of 
the code. Although this approach improves accuracy to some  extent31, it suffers from a high false negative rate.

Liao et al.21 used N-gram language modeling and tf-idf feature vectors to characterize smart contract source 
code. They trained traditional machine learning models to verify 13 types of vulnerabilities and employed 
a gray-box fuzz testing mechanism for real-time transaction validation. However, this method treats certain 
critical opcodes as stop words during the representation process, which can result in false negatives and missed 
detections.

Yu et al.22 developed the first systematic and modular framework for smart contract vulnerability detection 
based on deep learning. They introduced the concept of Vulnerability Candidate Slice (VCS), which focuses on 
analyzing the dependencies between diverse data and control program elements. Experimental results showed a 
significant improvement of 25.76% in the F1 score using this approach. However, the performance improvement 
is not substantial for vulnerability types with limited data and control flow dependencies.

These works provide various methods for data preprocessing aimed at enabling the deep learning models 
to extract vulnerability features more effectively. However, some methods may result in the deletion of impor-
tant keywords or the ignoring of critical vulnerability features during data  processing32. Additionally, some of 
the models used may have an insufficient understanding of the semantic characteristics of vulnerability code 
 programs33, which can result in false negatives. To address these issues, we utilized the CodeBERT pre-training 
model for data preprocessing. CodeBERT is a Transformer-based pre-training model designed specifically for 
learning and processing source code. It demonstrates stronger semantic analysis abilities, providing significant 
advantages in smart contract vulnerability detection. Additionally, we introduced the concept of critical vulner-
ability code segments and removed code unrelated to vulnerabilities from the training samples. We retained 
only the function code of critical vulnerabilities for learning. This strategy eliminates training noise introduced 
by redundant code, reduces model complexity, and improves model performance. During the model training 
stage, we utilized three models - optimized CodeBERT, Optimized-LSTM, and Optimized-CNN - to capture 
vulnerability features more effectively.

Using the aforementioned methods, our proposed Lightning Cat tool extracts critical features from vulner-
ability code and has strong semantic analysis capabilities, which significantly improves model performance.

Methodology
CodeBERT model has the state-of-the-art performances in tasks related to programming language  processing23. 
It features capturing semantic connections between natural language and programming language. According 
to Yuan et al.34, CodeBERT can achieve 61% of accuracy in software vulnerabilities discovery which is generally 
higher than mainstream models  Word2Vec35,  FastText36 and  GloVe37 (46%, 41% and 29% respectively). In our 
research, smart contracts are based on programming language Solidity. Therefore, we optimize the CodeBERT 
model and employ it in our study. CNN is a commonly used and typical deep learning model with an excellent 
generality in processing images and texts. LSTM is also a deep learning model featuring in processing long texts 
and it can effectively learn time sequence in texts which CNN is not adaptive to do. Both CNN and LSTM have 
achieved significantly high accuracy (0.958 and 0.959 respectively) in source code vulnerabilities detection, 
according to Xu et al.38. We attempt to employ CNN and LSTM models as comparisons with CodeBERT model 
and further analyze the performances of them in our tasks.
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Figure 1 illustrates the complete process of developing a vulnerability detection model called Lightning 
Cat for smart contracts, which consists of three stages. The first stage involves building and preprocessing the 
labeled dataset of vulnerable Solidity code. In the second stage, training three models (Optimized-CodeBERT, 
Optimized-LSTM, and Optimized-CNN) and comparing their performance to determine the best one. Finally, 
in the third stage, the selected model is evaluated using the Sodifi-benchmark dataset to assess its effectiveness 
in detecting vulnerabilities.

Data preprocessing
During the data preprocessing phase, we collect three datasets and subsequently perform data cleaning. Finally, 
we employ the CodeBERT model to encode the data.

Data collection
Our primary training dataset comprises three main sources: 10,000 contracts from the Slither Audited Smart 
Contracts  Dataset39, 20,000 contracts from smartbugs-wild40, and 1,000 typical smart contracts with vulner-
abilities identified through expert audits, overall 31,000 contracts. To effectively compare results with other 
auditing tools, we choose to use the SolidiFI benchmark  dataset41 as our test set, a dataset containing contracts 
containing 9,369 bugs.

Dataset processing
Within our test set SolidiFI-benchmark, there are three static detection tools which are Slither, Mythril, and 
Smatcheck as well as all identified four common vulnerability types which are Re-entrancy, Timestamp-Depend-
ency, Unhandled-Exception, and tx.origin. To ensure the completeness and fairness of the results, our proposed 
Lightning Cat model primarily focused on these four types of vulnerabilities for comparison. Table 1 displays 
the mapping between the four types of vulnerabilities and the three auditing tools.

Considering that a complete contract might consist of multiple Solidity files and a single Solidity file might 
contain several vulnerable code snippets, we utilized the Slither tool to extract 30,000 functions containing these 
four types of vulnerabilities from the data  sources39,40. Additionally, we manually annotate the problematic code 
snippets within the contracts audited by experts, overall 1,909 snippets. The training set comprises 31,909 code 

Figure 1.  Lightning Cat Model Development Process.

Table 1.  Mapping of Four Vulnerability Types.

Vulnerability Slither Smartcheck Mythril

Re-entrancy Reentrancy-benign reentrancy-eth reentrancy-
unlimited-gas reentrancy-no-eth SOLIDITY_ETRNANCY

External call to user-supplied address external 
call to fixed address state change after external 
call

Timestamp-dependency Timestamp SOLIDITY_EXACT_TIME VYPER_TIMES-
TAMP_DEPENDENCE Dependence on predictable environment variable

Unhandled-exceptions Unchecked-send unchecked-lowlevel SOLIDITY_UNCHECKED_CALL Unchecked call return value

tx.origin tx-origin SOLIDITY_TX_ORIGIN Use of tx.origin
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snippets. For the test set, we extract 5,434 code snippets related to these four vulnerabilities from the SolidiFI-
benchmark dataset. The processing procedures for the training and test sets can be seen in Fig. 2.

Data cleaning
The length of a smart contract typically depends on its functionality and complexity. Some complex contracts 
can exceed several thousand tokens. However, handling long text has been a long-standing challenge in deep 
 learning42. Transformer-based models can only handle a maximum of 512 tokens. Therefore, we attempted two 
methods to address the issue of text length exceeding 510 tokens.

Direct splitting. The data is split into chunks of 510 tokens each, and all the chunks are assigned the same label. 
For example, if we have a group of Re-entrancy vulnerability code with a length of 2000 tokens, it would be split 
into four chunks, each containing 510 tokens. If there are chunks with fewer than 510 tokens, we pad them with 
zeros. However, the training results show that the model’s loss does not converge. We speculate that this is due to 
the introduction of noise from unrelated chunks, which negatively affects the model’s generalization capability.

Vulnerability function code extraction. Audit experts extracted the function code of vulnerabilities from smart 
contracts and assigned corresponding vulnerability labels. If the extracted code exceeds 510 tokens, it is trun-
cated, and if the code falls short of 510 tokens, it is padded with zeros. This approach ensures consistent input 
data length, addresses the length limitation of Transformer models, and preserves the characteristics of the 
vulnerabilities.

After comparing the two methods, we observed that training on vulnerability-based function code helped 
the model’s loss function converge better. Therefore, we chose to use this data processing method in subsequent 
experiments. Additionally, we removed unrelated characters such as comments and newline characters from 
the functions to enhance the model’s performance. As shown in Fig. 3, we only extracted the function parts 
containing the vulnerability code, reducing the length of the training dataset while maintaining the vulnerability 
characteristics. This approach not only improves the model’s accuracy, but also enhances its generalization ability.

Data encoding
CodeBERT is a pretraining model based on the Transformer architecture, specifically designed for learning and 
processing source code. By undergoing pretraining on extensive code corpora, CodeBERT acquires knowledge 
of the syntax and semantic relationships inherent in source code, as well as the interactive dynamics between 
different code segments.

During the data preprocessing stage, CodeBERT is employed due to its strong representation ability. The 
source code undergoes tokenization, where it is segmented into tokens that represent semantic units. Subse-
quently, the tokenized sequence is encoded into numerical representations, with each token mapped to a unique 
integer ID, forming the input token ID sequence. To meet the model’s input requirements, padding and trunca-
tion operations are applied, ensuring a fixed sequence length. Additionally, an attention mask is generated to 
distinguish relevant positions from padded positions containing invalid information. Thus, the processed data 
includes input IDs and attention masks, transforming the source code text into a numericalized format compat-
ible with the model while indicating the relevant information through the attention mask.

For Optimized-LSTM and Optimized-CNN models, direct processing of input IDs and masks is not feasi-
ble. Therefore, CodeBERT is utilized to further process the data and convert it into tensor representations of 
embedding vectors. The input IDs and attention masks obtained from the preprocessing steps are passed to the 
CodeBERT model to obtain meaningful representations of the source code data. These embedding vectors can 

Figure 2.  Datasets Preprocessing.
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be used as inputs for Optimized-LSTM and Optimized-CNN models, facilitating their integration for subsequent 
vulnerability detection.

Models
In the current stage, our approach involves the utilization of three machine learning models: Optimized-Code-
BERT, Optimized-LSTM, and Optimized-CNN. The CodeBERT model is specifically fine-tuned to enhance its 
compatibility with the target task by accepting preprocessed input IDs and attention masks as input. However, 
in the case of Optimized-LSTM and Optimized-CNN models, we do not conduct any fine-tuning on the Code-
BERT model for data preprocessing.

Model 1: optimized‑CodeBERT
CodeBERT is a specialized application that utilizes the Transformer model for learning code representations in 
code-related tasks. In this paper, we focus on fine-tuning the CodeBERT model to specifically address the needs of 
smart contract vulnerability detection. The CodeBERT model is built upon the Transformer architecture, which 
comprises multiple encoder layers. Prior to entering the encoder layers of CodeBERT, the input data undergoes 
an embedding process. Following the encoding stage of CodeBERT, fully connected layers are added for clas-
sification purposes. The model architecture of our CodeBERT implementation is depicted in Fig. 4.

Word Embedding and Position Encoding In the data preprocessing stage, we have utilized a specialized Code-
BERT tokenizer to process each word into the input information. In this model tranining stage, the tokenizer 
employs embedding methods, which are used to convert text or symbol data into vector representations. This 
processing transforms each word into a 512-dimensional word embedding. In addition, we introduce position 
embedding, which is a technique introduced to assist the model in understanding the positional information 
within the sequence. It associates each position with a specific vector representation to express the relative 
positions of tokens in the sequence. For a given position i and dimension k, the Position Encoding PE(i, k) is 
computed as follows:

Figure 3.  Extraction of Vulnerable Function Code (We partition the smart contract as a whole and extract 
only the functions where the vulnerabilities are present. In the provided image, we focus on the ”withdrawALL” 
function, which serves as our training dataset. If a contract contains multiple vulnerabilities, we extract multiple 
corresponding functions).
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    Here, d represents the dimension of the input sequence. The formula utilizes sine and cosine functions to gener-
ate position vectors, injecting positional information into the embeddings. The exponential term i

100002k/d
 controls 

the rate of change of the position encoding, ensuring differentiation among positions. By adding the Position 
Encoding to the Word Embedding, positional information is integrated into the embedded representation of 
the input sequence. This enables CodeBERT to better comprehend the semantics and contextual relationships 
of different positions in the code. The processing steps are illustrated in Fig. 5.

Encoder layers The CodeBERT model performs deep representation learning by stacking multiple encoder 
layers. Each encoder layer comprises two sub-layers: multi-head self-attention and feed-forward neural network. 
The self-attention mechanism helps encode the relationships and dependencies between different positions in 
the input sequence. The feed-forward neural network is responsible for independently transforming and map-
ping the features at each position.

The multi-head self-attention mechanism calculates attention weights, denoted as wij , for each position i in 
the input code sequence. The attention weights are computed using the following equation:

PE(i, k) =







sin
�

i
100002k/d

�

if k is even

cos
�

i
100002k/d

�

if k is odd

Figure 4.  Our Optimized-CodeBERT Model Architecture.
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    Here, qi represents the query at position i, kj denotes the key at position j, and d is the dimension of the queries 
and keys. The output of the self-attention mechanism at position i, denoted as oi , is obtained by multiplying the 
attention weights wij with their corresponding values vj and summing them up:

where n is the length of the input sequence.

wij = Softmax

(

qi · kj√
d

)

oi =
n

∑

j=1

wij · vj

Figure 5.  Word and Position Embedding Process.
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Each encoder layer also contains a feed-forward neural network sub-layer, which processes the output of the 
self-attention sub-layer using the following equation:

    Here, x represents the output of the self-attention sub-layer, and W1, b1 and W2, b2 are the parameters of the 
feed-forward neural network.

Fully connected layers To output the classification labels, we added fully connected layers. Firstly, we added a 
new linear layer with 100 features on top of the existing linear layer. To avoid the limited capacity of a single linear 
layer, we utilized the ReLU activation function. Additionally, to prevent overfitting, we introduced a dropout 
layer with a dropout rate of 0.1 after the activation layer. Lastly, we used a linear layer with four features for the 
output. During the fine-tuning process, the parameters of these new layers were updated.

Model 2: optimized‑LSTM
The Optimized-LSTM model is specifically designed for processing sequential data, capable of capturing temporal 
dependencies and syntactic-semantic  information43. For the task of smart contract vulnerability detection, our 
constructed Optimized-LSTM model provides a serialization-based representation of Solidity source code, taking 
into account the order of statements and function calls. The Optimized-LSTM model captures the syntax, seman-
tics, and dependencies within the code, enabling an understanding of the logical structure and execution flow. 
Compared to traditional RNNs, the Optimized-LSTM model we constructed addresses the issue of vanishing or 
exploding gradients when handling long  sequences44. This is accomplished through the key mechanism of gated 
cells, which enable selective retention or forgetting of previous states. The model consists of shared components 
across time steps, including the cell, input gate, output gate, and forget gate. In the Optimized-LSTM model, we 
have defined an LSTM layer and a fully connected layer, with the LSTM layer being the core component. Within 
the LSTM layer, the input x(t) , the output from the previous time step h(t−1) , and the cell state from the previous 
time step c(t−1) are fed into an LSTM unit. This unit contains a forget gate f (t) , an input gate i(t) , and an output 
gate o(t) , as shown in Fig. 6.

In the model, we utilize a bidirectional Optimized-LSTM, where the forward Optimized-LSTM and backward 
Optimized-LSTM are independent and concatenated at the final step. This allows for better capture of long-term 
dependencies and local correlations within the sequence. During the forward propagation of the model, the 
input x is first passed through the Optimized-LSTM layer to obtain the output h and the final cell state c. Since 
the lengths of the data instances may vary, we calculate the average output by averaging the outputs at each time 
step in h. Then, the average output is fed into a fully connected layer to obtain the final prediction output y. We 
used the cross-entropy loss function L for training, which is defined as:

FFN(x) = ReLU(x ·W1 + b1) ·W2 + b2

Figure 6.  The Architecture of Optimized-LSTM.
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    Here, N represents the number of classes, y(i,j) denotes the probability of the jth class in the true label of sample 
i, and ŷ(i,j) represents the probability of sample i being predicted as the jth class by the model.

Model 3: optimized‑CNN
The Convolutional Neural Network (CNN) is a feedforward neural network that exhibits remarkable advantages 
when processing two-dimensional data, such as the two-dimensional structures represented by  code45. In our 
model design, we transform the code token sequence into a matrix, and CNN efficiently extracts local features 
of the code and captures the spatial structure, effectively capturing the syntax structure, relationships between 
code blocks, and important patterns within the code.

The Optimized-CNN primarily consists of convolutional layers, pooling layers, fully connected layers, and 
activation functions. Its core idea is to extract features from input data through convolution operations, reduce 
the dimensionality of feature maps through pooling layers, and ultimately perform classification or regression 
tasks through fully connected  layers46. The key module of the Optimized-CNN is the convolutional layer, which 
is computed as follows:

    Here, x(i,j,k) represents the element value of the input data at the i-th row, j-th column, and k-th channel, w(k,l,m) 
represents the weight value of the k-th channel, l-th row, and m-th column of the convolutional kernel, and b rep-
resents the bias term. σ denotes the activation function, and in this case, we use the Rectified Linear Unit (ReLU).

The output of the convolutional layer is passed to the pooling layer for further processing. The commonly 
used pooling methods are Max Pooling and Average Pooling. In this case, we employ Max Pooling, and the 
calculation formula is as follows:

    Pooling operations can reduce the dimensionality of feature maps, model parameters, and to some extent 
alleviate overfitting issues. Finally, a fully connected layer is used to compute the model, which is expressed as:

    Here, x represents the output of the previous layer, W and b denote the weights and bias terms, and σ is the 
activation function. By stacking multiple convolutional layers, pooling layers, and fully connected layers, we 
construct a Optimized-CNN model as shown in Fig. 7, which has powerful feature extraction and classification 
capabilities for smart contract classification.

Experiments
To ensure a fair evaluation of different methods, we trained and tested them in identical environments. All 
experiments were performed on a computer featuring an Intel Xeon(R) Silver 4210R CPU clocked at 2.4GHz, 
dual RTX A5000 GPUs, and 128GB of RAM, running on the Windows operating system, utilizing the PyCharm 
software, the PyTorch framework, and the Python programming language.

Parameter settings
Then, we do the tuning process with respect to each hyperparameter. For Optimized-CodeBERT model, we 
employed the AdamW  optimizer47 and conducted a grid search to find the optimal settings for hyperparameters. 
The hyperparameters and their corresponding search ranges were as follows: learning rate: (3e-5, 1e-4, 3e-4), 

Li = −
N
∑

j=1

yi,j log ŷi,j .

yi,j = σ

(

K
∑

k=1

L
∑

l=1

M
∑

m=1

wk,l,mxi+l−1,j+m−1,k + b

)

yi,j =
M

max
m=1

N
max
n=1

xi+m−1,j+n−1

y = σ(Wx + b)

Figure 7.  The Architecture of Optimized-CNN.
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batch size: (32, 64, 128, 256), dropout rate: (0.1, 0.2, 0.3, 0.4, 0.5), L2 regularization: (1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 
1e-1), learning rate decay gamma: (0.98, 0.99), number of fully connected layers: (1, 2, 3), and number of epochs: 
(10, 20, 30, 40, 50, 60). The cross-entropy loss was calculated using the BCEWithLogitsLoss method. The best 
parameter settings corresponding to the final results are shown in Table 2.

For Optimized-LSTM Model, the best parameter settings are shown in Table 3.
For Optimized-CNN Model, the best parameter settings are shown in Table 4.

Metrics
To evaluate our methods, we use various performance metrics, including accuracy, F1 score, recall, and precision. 
Accuracy is indeed the ratio of correctly predicted instances (both true positives and true negatives) to the total 
number of instances. It provides a general measure of overall correctness.

    F1 score is another important metric that combines both precision and recall. It considers the trade-off between 
them and provides a balance between the two. F1 score is particularly useful when the dataset is imbalanced or 
when both precision and recall are important.

Accuracy = True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

Table 2.  Parameters of the Optimized-CodeBERT Model.

Model parameters Configuration

Layer of MLP 2

Epoch 60

Batch size 128

Learning rate 1e − 3

Dropout 0.1

Optimizer Adam

Loss function BCEWithLogitsLoss

Learning rate decay gamma 0.98

L2 regularization 1e-4

Table 3.  Parameters of the Optimized-LSTM Model.

Layer parameters Configuration

Learning rate 0.0001

Input dimension 768

Hidden dimension 128

Number of layers 2

Bidirectional True

Batch first True

Dropout 0.5

Output dimension 4

Table 4.  Parameters of the Optimized-CNN Model.

Layer parameters Configuration

Learning rate 0.0001

Conv1d_1 in_channels=768, out_channels=256, kernel_size=3

Conv1d_2 in_channels=256, out_channels=128, kernel_size=3

Conv1d_3 in_channels=128, out_channels=64, kernel_size=3

MaxPool1d kernel_size=2

Linear_1 in_channels=64, out_channels=32

Linear_2 in_channels=32, out_channels=6
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    Precision, also known as positive predictive value, measures the proportion of correctly predicted posi-
tive instances (true positives) out of all instances predicted as positive. It focuses on the accuracy of positive 
predictions.

    Recall, also known as sensitivity or true positive rate, calculates the proportion of correctly predicted positive 
instances (true positives) out of all actual positive instances. It focuses on the ability of the model to identify all 
positive instances.

Results
We used SolidiFI-benchmark as the testing dataset, and the comparison results of the metrics of the three models 
in Lightning Cat are shown in Table 5.

Clearly, the performance of Optimized-CodeBERT is the best among all models (as shown in Table 5), with 
the highest scores in all metrics. Its F1-score is 30.48% higher than that of Optimized-LSTM and 22.91% higher 
than that of Optimized-CNN.

In addition, we obtained the metrics results of the three models for four types of vulnerabilities, as shown 
in Table 6.

From Table 6, it can be seen that among the four types of vulnerabilities, Optimized-CodeBERT has the best 
detection performance for Timestamp-Dependency and Unhandled-Exceptions. However, for the Re-entrancy 
vulnerability, the Recall of Optimized-CodeBERT is lower than that of Optimized-LSTM and Optimized-CNN. 
When detecting the tx.origin vulnerability, Optimized-CodeBERT has higher Accuracy, Recall, and F1 than the 
other two models, while its Precision is 0.07% lower than that of Optimized-CNN. The three models use the same 
training set, but their detection performance differs because they have different modeling and generalization 
capabilities. Overall, Optimized-CodeBERT has better detection performance.

We obtained the vulnerability detection results of different methods in the SolidiFI-benchmark testing dataset, 
and the true positive results detected by each method are shown in Table 7. ”NA” indicates vulnerabilities that 
cannot be identified by the corresponding method.

Table 7 displays the vulnerability detection results for different types of vulnerabilities. ”Injected bugs” rep-
resents the actual quantity of vulnerabilities, and ”tp” (true positive) represents the number of detected vulner-
abilities. From Table 7, it can be seen that among these auditing tools (Manticore, Mythril, Oyente, Security, 

F1 score = 2× Precision× Recall

Precision+ Recall

Precision = True Positives

True Positives+ False Positives

Recall = True Positives

True Positives+ False Negatives

Table 5.  Comparison of Metrics Results of Three Models.

Metriccs F1 (%) Accuracy (%) Precision (%) Recall (%)

Optimized-CodeBERT 93.53 96.77 96.77 93.55

Optimized-LSTM 63.05 81.96 73.61 64.06

Optimized-CNN 70.62 85.54 71.61 71.36

Table 6.  Comparison of the Metrics Results for Each Type of Vulnerability.

Vulnerability Method Accuracy(%) Precision(%) Recall(%) F1(%)

Re-entrancy

Optimized-CodeBERT 93.58 85.45 89.20 87.29

Optimized-LSTM 75.08 49.80 100 66.49

Optimized-CNN 91 73.31 100 84.60

Timestamp-Dependency

Optimized-CodeBERT 97.29 90.43 99.92 94.94

Optimized-LSTM 85.08 75.49 61.12 67.55

Optimized-CNN 75.27 51.62 42.795 46.79

Unhandled-Exceptions

Optimized-CodeBERT 96.23 100 100 99.96

Optimized-LSTM 84.63 100 39.23 56.35

Optimized-CNN 80.53 61.52 61.43 61.47

tx.origin

Optimized-CodeBERT 99.98 99.93 85.08 91.94

Optimized-LSTM 83.03 69.17 55.91 61.84

Optimized-CNN 95.38 100 81.21 89.63
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Slither), Slither detected the most actual vulnerabilities. In terms of the detection results of all methods, Slither, 
Optimized-LSTM, and Optimized-CNN detected the most true positive for the Re-entrancy vulnerability, while 
Optimized-CodeBERT detected the most vulnerabilities for the three types of vulnerabilities (Timestamp_
Dependency, Unhandle_Exceptions, tx.origin).

To better compare the detection performance of different methods, we will only compare the methods that 
can detect the four types of vulnerabilities. The comparison results of the Recall of different methods are shown 
in Fig. 8.

Figure 8 illustrates the comparison of Recall results among different methods, measuring the classification 
models’ capability to accurately identify true positive samples. The figure compares the recall rates of six methods, 
namely Mythril, Smartcheck, Slither, Optimized-CodeBERT, Optimized-LSTM, and Optimized-CNN. The find-
ings indicate that the Optimized-CodeBERT model exhibits the highest recall at 93.55%, surpassing Slither by 
11.85%. This highlights the Optimized-CodeBERT model’s exceptional accuracy and reliability in detecting and 
identifying true positive samples. Conversely, the Optimized-LSTM and Optimized-CNN models demonstrate 
relatively lower recall rates of 64.06% and 71.36%, respectively, suggesting potential challenges or limitations in 
recognizing true positive samples.

Based on the insights gained from Fig. 8, it is evident that the Optimized-CodeBERT method excels in recall, 
displaying superior proficiency in identifying true positive samples. These findings offer valuable guidance for 
model selection and practical applications.

In order to comprehensively compare the performances of three models, we set different thresholds (i.e. 
0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9) for three models. The precision and recall values under these thresholds and 
precision-recall curves of three models are presented in the Fig. 9. The precision-recall curve is created by plot-
ting precision values on the y-axis and recall values on the x-axis. Each point on the curve represents a different 
threshold used for classifying the positive class. Thresholds refer to the probability thresholds used by the clas-
sification model to determine which class an instance belongs to. According to the result shown in the Fig. 9, 
Optimised -CodeBERT presents a better performance in our tasks.

We further conduct McNemmar  test48 to compare the accuracy differences between the Optimised-Code-
BERT model and the Optimsed-LSTM (shown in Table 8) as well as Optimised-CNN models (shown in Table 9). 

Table 7.  True Positive Detection Results of Different Methods.

Security bug Re-entrancy Timestamp dep Unhandle exp tx.origin

Injected bugs 1343 1381 1374 1336

Manticore 93 NA NA NA

Mythril 258 571 618 891

Oyente 335 0 322 NA

Securify 1111 NA 701 NA

Smartcheck 0 479 49 97

Slither 1343 844 917 1336

Optimized-CodeBERT 1198 1380 1169 1336

Optimized-LSTM 1343 844 539 747

Optimized-CNN 1343 591 844 1085

Figure 8.  Enter Caption.
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Optimised-CodeBERT presents extreme significance in accuracy difference with both Optimised-LSTM and 
Optimised-CNN in terms of vulnerabilities classes Re-entrancy, Timestamp-Dependency and Unhandled-
Exceptions but little significance with these two models in terms of vulnerability class tx.origin. We speculate 
that this is because the features of the tx.origin vulnerability are relatively conspicuous, making it easier for the 
model to recognize and classify.

Discussion and future work

Q1:  Scope of Vulnerability Detection and limitation.

In this research, we introduce a solution named ”Lightning Cat”. For the purpose of comparison with static 
analysis tools, we particularly focus on detecting four specific types of smart contract vulnerabilities: Re-entrancy, 
Timestamp-Dependency, Unhandled-Exceptions, and tx.origin. Through our comparative analysis, we observe 
instances where the static analysis tools fail to detect certain vulnerabilities. Our experimental results indicate 
that our proposed Optimized-CodeBERT outperforms the static detection tools mentioned in this paper, both 
in terms of recall and overall TP. At present, the Lightning Cat is equipped to detect these four categories of 
vulnerabilities.

While the proposed solution, which captures vulnerability feature information by extracting vulnerability 
code functions, has shown promising results in scenarios with text length constraints, we also acknowledge 
limitations in our current approach when addressing cross-code and cross-function vulnerabilities. The code 
interactions and contextual information related to these vulnerabilities might span multiple functions or modules, 
making them challenging to be captured by our current method. In the future, We aim to expand the detection 
capabilities of our model. Additionally, there’s potential to extend the application of Lightning Cat to other 
vulnerability code detection scenarios.

Figure 9.  Precision-recall curves for three models :(a) is Optimised-CodeBERT, (b) is Optimised-CNN and (c) 
is Optimised-LSTM.

Table 8.  McNemmar Test (Accuracy Difference between Optimised-CodeBERT and Optimised-LSTM).

Vulnerability type Discordant pairs (B) Continuity correction (C) Chi-squared value ( X2) p-value Accuracy difference

Re-entrancy 2638 1 1761.44 ≈ 0 Extremely significant

Timestamp-dependency 147 1 285.33 ≈ 0 Extremely significant

tx.origin 1 1 0 ≈ 1 Not significant

Unhandled-exceptions 205 1 203.25 ≈ 0 Extremely significant

Table 9.  McNemmar Test (Accuracy Difference between Optimised-CodeBERT and Optimised-CNN).

Vulnerability type Discordant pairs (B) Continuity correction (C) Chi-squared value ( X2) p-value Accuracy difference

Re-entrancy 489 1 377.33 ≈ 0 Extremely significant

Timestamp-dependency 136 1 315 ≈ 0 Extremely significant

tx.origin 1 1 0 ≈ 1 Not significant

Unhandled-exceptions 530 1 1056 ≈ 0 Extremely significant
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Q2:  Expanding Lightning Cat to Other Areas of Code Vulnerability Detection.

Lightning Cat plans to expand its vulnerability detection capabilities. Using examples of vulnerabilities such 
as Buffer Overflow, Null Pointer Dereference, and Logic Errors, here’s how the expansion process unfolds:

Acquiring datasets containing code with these vulnerability features is the first step, which can be obtained 
from open-source code repositories or proprietary databases. Code mutation techniques may also be considered 
for data augmentation. During data preprocessing, CodeBERT will be used to convert code into fixed-length 
vectors suitable for the model’s input format. Subsequently, the model undergoes fine-tuning through transfer 
learning, with iterative adjustments to hyperparameters based on dataset characteristics to enhance performance. 
Validation using appropriate vulnerability test sets ensures model accuracy and robustness. Finally, to address 
newly emerging vulnerabilities, Lightning Cat periodically collects new vulnerability data and updates model 
parameters to effectively respond to these new issues.

Q3:  What if malicious actors use this technology to discover vulnerabilities for illicit gain?

Automatic vulnerability detection technology holds immense potential in enhancing the security of smart 
contracts. However, it is a double-edged sword. On the one hand, it can assist developers in swiftly identifying 
and rectifying vulnerabilities in software, thereby elevating its security. On the other hand, if such technology 
falls into the hands of malicious actors, they might exploit it to uncover undisclosed vulnerabilities and launch 
attacks. To address this, proactive measures are essential.

Developers should regularly conduct code audits and undergo secure coding training as well as adopt respon-
sible vulnerability disclosure policies. It’s encouraged that researchers and developers, upon discovering security 
vulnerabilities, initially notify the relevant organizations or individuals privately. This provides them ample 
time for rectification before the information is made public. Concurrently, regular updates and maintenance 
of software and dependency libraries are crucial to ensure known security vulnerabilities which are addressed 
collaboratively. While it might reduce the use of the tool, considerations could be made to impose certain 
restrictions on open-source automatic detection tools, such as limiting the use of advanced features or requir-
ing user authentication. Undoubtedly, enhancing the security of smart contracts requires collective effort. The 
open-source community should foster collaboration among its members. This can be achieved by sharing best 
security practices, tools, and resources.

Conclusion
This paper introduces Lightning Cat, which uses deep learning methods to detect vulnerabilities in smart con-
tracts, including three models: Optimized-CodeBERT, Optimized-LSTM, and Optimized-CNN. Based on 
experimental results, the Optimized-CodeBERT model achieved the best overall performance. We optimized 
and compared three models, and found that Optimized-CodeBERT achieved the best results in evaluation 
metrics such as Accuracy, Precision, and F1-score. This research utilized the CodeBERT pre-trained model for 
data preprocessing, which improved the ability of code semantic analysis. In data preprocessing, we extracted 
problem code segments functions, which not only considered the key features of smart contract vulnerability 
code but also solved the length limitation problem of deep learning for processing long texts. This approach 
avoids issues such as unclear features due to excessively long texts or overfitting due to excessively short texts, 
thereby improving the model’s performance. The results show that the proposed method has more reasonable 
data preprocessing and model optimization, resulting in better detection performance.

This paper analyzed the detection performance of each type of vulnerability and found that the Optimized-
CodeBERT model outperformed Slither, Optimized-LSTM, and Optimized-CNN in detecting three types of 
vulnerabilities, but was inferior in one type. This is because different models have different structures, param-
eters, and learning algorithms, which affect their modeling and generalization abilities. Therefore, in future 
work, we aim to improve the performance of the three models in Lightning Cat and extend the application of 
our proposed Lightning Cat to more code security fields beyond smart contract vulnerabilities detection (Sup-
plementary Information).

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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