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Analytical study of reaction
diffusion Lengyel-Epstein system
by generalized Riccati equation
mapping method

Nauman Ahmed¥%3, Muhammad Z. Baber!, Muhammad Sajid Igbal*°, Amina Annum?,
Syed Mansoor Ali¢, Mubasher Ali?, Ali Akgil?>*#*“ & Sayed M. El Din®

In this study, the Lengyel-Epstein system is under investigation analytically. This is the reaction—
diffusion system leading to the concentration of the inhibitor chlorite and the activator iodide,
respectively. These concentrations of the inhibitor chlorite and the activator iodide are shown in

the form of wave solutions. This is a reactiona€ “diffusion model which considered for the first time
analytically to explore the different abundant families of solitary wave structures. These exact solitary
wave solutions are obtained by applying the generalized Riccati equation mapping method. The single
and combined wave solutions are observed in shock, complex solitary-shock, shock singular, and
periodic-singular forms. The rational solutions also emerged during the derivation. In the Lengyel-
Epstein system, solitary waves can propagate at various rates. The harmony of the system’s diffusive
and reactive effects frequently governs the speed of a single wave. Solitary waves can move at a
variety of speeds depending on the factors and reaction kinetics. To show their physical behavior, the
3D and their corresponding contour plots are drawn for the different values of constants.

Partial differential equations (PDEs) are widely used in sciences like mathematical physics, plasma physics,
optics, quantum, mechanics, numerical analysis, and many engineering fields. The nonlinear PDEs describe
the physical phenomena more accurately. Recently, it has become more important to determine the exact solu-
tions, numerical and analytical solutions of non-linear PDEs with the help of using mathematical tools such as
Maple, Mathematica, and MATLAB that ease solving complex and monotonous algebraic computations. Many
mathematicians have developed methods to identify the exact solutions of nonlinear PDEs, including the Jacobi
elliptic function method!, the generalized Riccati equation mapping method? Rational Homotopy perturbation
method?, and ¢°-model expansion method"?, the homogeneous balance method®, the tanh method’, the inverse
scattering transform®, the exponential-function expansion method’, the Backlund transform'’, the modified
extended Fan subequation method'!, the truncated Painleve expansion'?, and the auxiliary equation method".
Ghanbari, B., et al., used the generalized exponential rational function method!*-??, for the different nonlinear
PDEs to investigated the different type of trigonometric, hyperbolic, exponential and rational solitary waves or
soliton solutions. But in this study, the Generalized Riccati Equation Mapping (GREM) method is used. The
GREM method is a powerful analytical technique for solving a wide range of differential equations, particularly
nonlinear ones. It has several advantages, but it also comes with some limitations and potential disadvantages.
the GREM method is a valuable analytical tool for solving a broad class of nonlinear differential equations. Its
advantages include generality, nonlinearity handling, and the potential to reduce problems to simpler forms.
However, its complexity, problem-specific nature, and computational demands can be disadvantages in certain
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situations. Researchers should consider their familiarity with GREM, the problem’s characteristics, and the
desired level of analytical rigor when deciding whether to use this method. The list of actual applications of non-
linear PDEs of extreme relevance and practical importance is long. One example that is plain sight is dynamic
meteorology and numerical weather forecasting: the weather report you see every night on TV has been obtained
from the numerical solution of a complex set of non-linear PDEs. Mathematical modeling is an essential part
of simulation and design of control systems. Its main purpose is to be a simplified representation of real life, to
mimic the applicable properties of the system being analyzed.

Reaction-diffusion systems are important in a wide range of disciplines. They arise naturally in chemistry
and chemical engineering where they are used to represent the local mixing of different chemicals as well as the
movement of substances through diffusion. However, they also have applications in the investigation of a variety
of phenomena in the biological, ecological, environmental, life, and image processing sciences. There are many
other types of reaction-diffusion systems in the literature, but Lengyel and Epstein’s model of the chlorite-iodide
malonic acid (CIMA) reaction—diffusion has garnered a lot of interest lately. The revolutionary work by Turing in
1952%, which predicted the existence of stationary symmetry-breaking reaction-diffusion structures, also known
as Turing patterns, is the foundation for the Lengyel-Epstein model. De Kepper’s work in 1990, however, is the
first realization of Turing’s revolutionary work ever**. One of the most important studies on the Lengyel-Epstein
system was done by Ni and Tang®, who demonstrated mathematically and experimentally that the system does
not admit non-constant steady states if the initial reactant concentrations, reactor size, or effective diffusion rate
are not large enough. Mahdy, A. M. investigated the existence and uniqueness of the glioblastoma multiforme
(GBM) and IS interaction models®, Khader, M. M., et. al., considered the fractional PDEs for the numerical
investigation?”. The approximate analytical solutions for the time-fractional Fokkera€* Planck equation (TFFPE)
are obtained”® by Mahdy, A. M. Also financial models are investigated using the Caputoa€® Fabrizio derivative®.
Gepreel, K. A., used the algebraic computational methods for the space-time fractional symmetric regularized
long wave (SRLW equation), and the space-time fractional coupled Sakharova€“ Kuznetsov (SA€“ K) equations®
and fractional nonlinear Rubella ailment disease model are investigated by the numerical technique®** In this
study, they obtained the precise criteria on the system parameters to guarantee that the spatial homogeneous
equilibrium and the spatial homogeneous periodic solutions are Turing-unstable or diffusively unstable. Through
the use of a particular Lyapunov functional, Yi et al. demonstrated in 2009 that the constant equilibrium solution
is globally asymptotically stable®*. The Lengyel-Epstein system’s dynamics are examined in Lisena’s 2014 study,
which also lowers the standards for the steady-state solution’s global asymptotic stability*®. In 2013, Wang et al.
employed numerical illustrations to illustrate the bifurcation and the Hopf bifurcation theorem to pinpoint
the prerequisites for the stability of the equilibrium point. Diffusion-driven instability and bifurcation in the
Lengyel4€“ Epstein system are given by Yi et al. in 2008%°. Computer simulations of three-dimensional Turing
patterns in the Lengyel-Epstein model are given by Shoji and Ohta in 2015%. Synchronization results for a class
of fractional-order spatiotemporal partial differential systems based on the fractional Lyapunov approach are
given by Quannas et al. in 2019%”. Hopf bifurcations in Lengyel Epstein reactiona€* diffusion model with discrete
time delay is given by Merdan in 2015. Bifurcations and pattern formation in a generalized Lengyela€“ Epstein
reaction—diffusion model is given by Mansouri et al. in 2020%.

The novelty of this work is that the Lengyela€“ Epstein reactiona€“ diffusion model is considered analytically
for the very first time. The generalized Riccati equation mapping technique is applied and gains the different
types of wave structures analytically. In the Lengyel-Epstein system, solitary waves can propagate at various rates.
The harmony of the system’s diffusive and reactive effects frequently governs the speed of a single wave. Solitary
waves can move at a variety of speeds depending on the factors and reaction kinetics. Another important aspect
of a single wave is its breadth and amplitude. These are reliant on the reaction kinetics, activator and inhibitor
concentrations, and diffusion coefficients. Solitary waves might be more dispersed and have a lower amplitude,
or they can be quite localized and have a reasonably high amplitude. Solitary waves are capable of intricate inter-
actions with one another. They can either reject one another or combine to generate larger solo waves, passing
past each other unchanged. The specifics of the Lengyel-Epstein model determine the nature of the interaction.
A disturbance in the system can lead to the appearance of these solitary waves. They can develop spontane-
ously or as a result of outside influences, and they frequently do so in areas where the activator concentration
has momentarily increased. In this study, we find some new analytical wave structures by using the generalized
Riccati equation mapping method.

The generalized Riccati equation mapping method

The generalized Riccati equation mapping method is define in the following steps**-+.

Step||
Given nonlinear partial differential equation (NPDE) having independent variables x = (t,x, y, z) and depend-
ent variable w

P(w, we, Wx, Wy, Wg, Waes Waz, Wy Wi -+ +) = 0, (1)

where P is generally a polynomial function of its argument, and the subscripts of dependent variable denotes
the partial derivatives.

Steplli
By using the wave transformation, Eq. (1) have the following ansatz

Scientific Reports |

(2023) 13:20033 | https://doi.org/10.1038/s41598-023-47207-4 nature portfolio



www.nature.com/scientificreports/

w = W(n),wheren =x+y — wt, ()
where 7 is a real function to be determined. Substituting Egs. (2) into (1) then we get an ordinary differential
equation (ODE) as

Q(W> Wy], Wym)"') =0. (3)

Step il
Suppose that the solution of Eq. (3) is in the polynomial form

W) = Z ajp (), (4)

where a; are constants that are determine later and n is positive integer that is obtained by the help of balancing
principle. The ¢ (1) represents the solution of the given generalized riccati equation.

d () =7+ pp(1) + x> (), (5)

where 7, p and x are all real constants. Substituting the Egs. (4) with (5) into the regarding ODE and remove
all the coefficients of ¢ will obtain a system of algebraic equations, from which we can get the parameters
aj,= (j =1,--- ,n) and 7. Solving the algebraic equations, with the known solutions of Eq. (4), one can be
easily obtain the non-travelling wave solutions to the NPDE Eq. (1). We can obtain the following twenty seven
solutions to Eq. (3) such as

Type 1: For p?> — 4t > 0and pt # 0 orpx # 0) the solutions of Eq. (5) are,

b = p+mtanh(vp _4’)‘:7)}, ©

¢ = p+\/74fxcoth(vp _4’)‘:7)}, %

by = —5—lp -+ /0 = dr(tanh (/> — ) £ sech(/p? = ), ®
b1= =5 1p+ VP — AT (coth(v/p? — ) & esch(/p? —dr )] ©)

¢s = —f[2p+ m(tanh< Vp? = X ) icoth(@ﬂ))], (10)

1 V(A2 + B2)(p? — 41 y) — A\/p? — 4t xcosh(/p? — 4T 1)
¢ = Y —p+ >

Asinh(y/p? — 4t xn) + B

b = 1 e V(A% + B2)(p2 — 41 y) + A\/p? — 4t xcosh(/p? — 4T 1) 12)
2x Asinh(y/p2 — 4t xn) + B ’
where A and B are two non zero real constants and satisfies B> — A% > 0.
/n2_
2y cosh (Pf‘lf)(n)
¢ = , (13)
/n2_ / —
\/mmnh(pfmn) — pcosh(ﬂn>
/n2_
—2xsinh (pf‘hxn)
o = N T\ (14)
psinh(%n) —\/p?%— 4rxcosh(¥n>
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Zxcosh(ivpz;uxn) (15)
15
¢10 = ,
V% — 4t xsinh(y/p? — 4t xn) — pcosh(/p? — 4t xn) £i\/p? — 41y
2xsinh(7”ﬁ2_4”n>
én = (16)

—psinh(y/p? — 4t xn) 4+ /p? — 4t xcosh(y/p? — 4t xn) + /p? — ATy
4xsinh <7” p24_4ZX 77) cosh <7” p24_4rx 77)

b2 = )
—2psinh(7vpz4_4”r)>cosh( T ATx > + 24/ p? —4txcosh2( Np2—drx ) — /0% —4ty
(17)
Type 2: when p? — 47 < Oand pt # 0, (ortx # 0) the solutions of Eq. (5) are,
¢13=— p+mtan<v Y= P n)} (18)
_ 2
b= 2o+ Vi e (=2 ) 19)
1
¢15 = M [—p + /4ty — p(tan(v/4Tx — p*n) £ sec(v/4Ty — pzn))} (20)
b5 = o o+ ViaTx = P2 (cor( o — ) escl/ar = ] 1)
1 Aty — p? VAt — p?
b7 = i —2p+vA4tx —pz((tan<ﬁpn>> —cot<);pn)>], (22)
1 +/(A2 — B2) (4T — p?) — A\/4tx — p*cos(r/4Tx — p2n)
dp1s=—|—p+ - ; (23)
2 Asin(\/4tx — p?n) + B
1 +/(A2 — B2) (4T — p?) + A\/4tx — p*cos(r/4Tx — p n)
$r9=——|—p— (24)
Asin(y/4tx — p*n) + B
where A and B are two non zero real constants and satisfies A> — B> > 0.
2Xcos(7‘ 4T§7p2 77)
$20 = — , (25)
ATty — pzsin(7Wn) + rcos(7Wn)
2xsin(7Wn>
¢ = , (26)
—rsin(iv 4T§7p2 T)) + /4ty — ,Ozcos(iV 42(7’72 77)
2)(cos(7v p22—41’)( 71) @27)
27
¢ =— ,
Vaty — p2sin(y/4tx — p2n) + tcos(v/4Tx — p?n) + iv/AT) — p?
2xsin(7"4ré(_p2n>
$23 = (28)

—psin(\/4tx — p2n) + /4t x — p*cos(\/4Tx — p2n) £ /4T — 02
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—p2 / —n2
4xsin(74ti( L n)cos<74rf L 77)

P24 = . (29)
—2psin(4+_p2n) cos<7v4tff_pzn> +2+/41tx — p2cos? (7Wn> — 4ty — p?
Type 3: when p = 0 and x 7 # 0, the solutions of Eq. (5) are,
—pb
= - > 30
¢ 7[b + cosh(pn) — sinh(pn)] (30)
plcosh(pn) + sinh(pn)]
¢ = — - , (31)
t[b + cosh(pn) + sinh(pn)]
where b is any arbitrary constant.
Type 4: When t # 0and x = p = 0, the solutions of Eq. (5) are,
by = 1
A (32)

where ¢ is an arbitrary constant.

Application to Lengyel-Epstein reaction diffusion system

In this section, we investigate the analytical solutions of the Lengyel-Epstein system by using the generalized
Riccati equation mapping method. Here we illustrate this couple system to achieve the analytical solution of the
Lengyel-Epstein system?3-35:4546

4uy
u,:A(u)—l—a—u—il_{_uz, (33)
uv
vi = o[cAW) + b(u — W)]- (34)

where u and v are the concentration of the inhibitor chlorite and the activator iodide, respectively. a, b and ¢
are the constants. By the wave transformation Eq. (2) we convert the Eqs. (33) and (34) onto the ODE:s as follows

U—20"—at+u+ 29 35
wU — - —— =0,
1+ U2 (35)
! ’ UV
V —20cV' —b(U—- ——) =0.
w oc ( 1+U2) (36)

Now, we suppose that the solution of Egs. (35) and (36) as

N
UE =Yy o), (37)
i=0
N .
VE) =) 5QE). (38)
i=0
So, it is satisfies the auxiliary ODE as
Q@) =7+ p2E) +x26)*, (39)
Now substituting the value of N by using the homogeneous balancing
U(€) = o0 + 012 (1), (40)
V(E) =80 +812m) + 82 (41)

By finding the derivatives of the Eqs. (40) and (41) along with Eq. (39) and putting in the Egs. (35) and (36),
and get the system of equations. After solving the system of equation we get the solutions as follows;

. 28, p2482—4808,—8;
Case 1: Form the Eq. (35) we gainog = — ——2L— o = ———22 w= L
Q- (35) we gain 0o = — 7 e 01 = ~ 520 ’
28,62 88062 2682 83
a=5 (-2l + 09T 4 PLEN I S L 1) N .FortheEq. (36)
2 V48052—82p  AS48052—8%p  A[4808:—07p = A[28082—87  A[4808:—0F  A/48052—67

we gain 8 = ¢ + 1,81 = 20001, 8, = 0, p = %,w = 4“;7:)’”.
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Type 1: When p? — 4ty > 0and py # 0(ortx # 0), we obtained hyperbolic solutions. Substituting the
values of constants in Egs. (40) and (41) and by the help of general solution that are mentioned in methodology
we obtained the different form of solutions.

By putting constant values along with Eq. (6) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

2,52 _

5, 52<p+\/p2—4rxtanh(%\/p2—4rx(w +x+y>))

up(x, y,t) = — + ,
\/4808, — 82 \/4808; — 82

2
2 2.2 2.2
o o't 1 joit 4coott 01T
vl(x,y,t):a(,z—i-l—i-b(lz( (172 —4txtanh<2 ;2 —4rx(aol+x+y)>+10>
0

0

2.2 2.2
010 o7t ot 4coortt o1t
-5 1 _4rxtanh 12 —41’)((714—)64—}1) +).
X 00 2 oy o) o)

By putting constant values along with Eq. (7) and wave transformation Eq. (2) in the Eqgs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

28, p2+82—4808,—8
5 62(,0-}-\/,0 —4rxcoth<%\/ X(W—i—x—l—y»)
u(x,y,1) = — )
\/48082 — 51 \/45052 — (S%X

2
) o} olt? 1 [o?t2 4cooqtt o017
vz(x,y,t)zao—i—l—i—w - — 41y coth 3 — —4tx T+x+y +
0

o/}
2.2 2.2
010 ot 1 joit 4coortt 01T
- 12 —4tycoth| - 12 —4‘[)((714—)6-?—}/) +— ).
X oy 2 oy o) o)

By putting constant values along with Eq. (8) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

ey t) = o 2 (/7 —ary tanh (V7 —dex

V40082 — 82 /4802 — 81

t(28,0% + 82 — 4808, — 8 (28,07 4 82 — 4808, — 8
><<( 20 ! 0% =) +x+y| | +isech| v/p? —4ryx (2620 ! b2 = &) +x+y ,
20

82,0 $

) 012 o1t 01212 0121:2 4cooitt
V3(x,y,t)=ao—|—l+m — + 5~ —4tx tanh 5 —4tx T—i—x—k)f

oo g (<) 0

2
2.2 2.2
ot 4coott o100 [ 01T orT
+isech - —4rx<7l+x+y> SR LA 12 — 4ty

oy fofi} X 00 (o)

oft? 4coott . olt? 4coott
tanh 5 —4tx| ——— +x+y) | +isech 7 —dtx| —+x+y .
(o) oo (<)) (o))

By putting constant values along with Eq. (9) and wave transformation Eq. (2) in the Eqgs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

ug(x,y,t) = — a + % (p-i— VpE—A4ty (coth(\/p —4ty

V4502 — 52 /4805 — 81
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d2p S0

) 0109 olt? oft? 4coott
va(x, y,t) =0y +1— —— — —4Tx coth > —A4tx| ———+x+y
X o

t(2820% + 82 — 4808, — 8 t(28,0% + 82 — 48082 — &
( ( ! = 2) +x+y>>+csch(\/p2—4tx< ( 20”0 0% 2) +x+y >

O'O 0

olr? 4coortt o1t o} olr?
+csch s —drx| ——— +x+y +—+—= > —4tx
oh) (o)) oo 4)( (o)
2
oit? 4coott oit? 4coott 01T
coth s —4tx| ———+x+y) | +csch s —dtx| ———+x+y +— .
o) (o) o) (o) (o))

By putting constant values along with Eq. (10) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

8 s 1
us(x,y,t) = — . 2 (2/0 +Vp?—dryx (tanh(ix/p2 —4ry

+
\/45052 _ 82 2\/45032 — 8

2 2 2 2
(“”Z’) 01 = dbobs — o) +x+y>> +c0th<im<t(252p 01 — 4082 — o) +x+y>)>>,

82p S0

o) 2x

1 [o?t? 4cooitt 2017 ot olt?
+coth| — > —dtx| ——— +x+y + + 3 5 —4tx
4 [ oo oo 16)( (<)
2

tanh 1 [o?t2 i 4coott ot + coth 1 [oft? i 4coott et
anh| ~ - —_— +x coth| - - — +x .
4 0‘02 X ag 4 4 0'02 X (o)) 4

By putting constant values along with Eq. (11) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

201T 010 o212 1 |o2t2 4cooitt
vs(x,y,t)zaoz—i—1+ 1 _10< 12 —4rx<tanh(4 ;2 —4rx(671+x+y)
0

5 5
V4502 — 82 \[480%; — 87 x

2,52 _
\/(G2 + H?)(p? —4tx) — G\/p? — 47:)(cosh(\/p2 — 4ty (w +x +y>>
2 4808y —
Gsinh(M(‘(252/"2*'532/)45052 8) +x +y>> +H

2.2 2.2 2.2 -
) \/(G2 +H2)(% —ary) - G\/";(); —4txcosh<\/{r(17§ —dry (Rt +x+y))

V(1) = 0 + 1+ 1
4y . oft? dcooytt
Gsinh L —4rx(070‘+x+y) +H

)
%

2.2 2.2 2.2
2 2\ (o1t _ [ ot 4cooytt
_01r>2+0100 \/(G +H )( o 4”) G\/ o 4tXCOSh<\/ o 4IX( L +x+y>> _ ot
O 2 O
0 X Gsinh< 16;52 —4TX(4MUZI" +x+y)> +H 0
0

By putting constant values along with Eq. (12) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

ug(x, y,t) = —

-0,
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8

81
V450 — 87 \[4805; — 87 x
\/(Hz —G2)(p? —4tx) + G\/p? — 4txcosh<\/p2 — 41y <w +x+y>)

— —p |,

2 2 _ _
Gsinh (y/p? =4ty (—‘(25“’ PiBoh) 4y y))+H

2.2
——4rxcosh %—M 45001 fr +x+y) (H*-G?) (01 —4{)()
% % ot

u7(x,y,t) = —

2

4 o
Gsmh( —74 X( degoite +x+y)>+H
v7(x,y,t) =
Y 4x2
2.2 2.2
G <\/%—41X(‘“ﬁ%"+x+y)>+ (HZ—G2)<%—4TX>
o7
o100 | — —_ =
Gsinh ﬁ74rx(w+x+ ) +H %
og o0 Y )
+ +od+1.

X

By putting constant values along with Eq. (13) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the soliton solutions of Egs. (33) and (34) such as

2,62 _
( ) 51 452XCOSh<% /p2—4fx<w +x+)/>)
ug(x,y,t) = — - »
/4808, — 82 \/4808, — 82 <s/,02 4t xsinh(Z) — pcosh(Z))
t(282p% 467 —4808,—8
where Z = /p? — 4ty ((ngz—p“z) +x+y).
2.2
4alaoxcosh(%, / ‘7{175 —4tTy (4600%” +x —l—y))
0
2.2 2
ot : 1 011' _ 4coortt _ ot
7/ p 4rxs1nh(2 = 41)(( +x +y>> % cosh(Z)

2
4012x2cosh2(% alr _4TX(4cm71tr +x+y>)

0

+ 7>
2 2
(1 JpAnaa 4r)(s1nh( A — 4ty (4“’“1” +x —|—y>) - —‘:T”cosh(Z))
(TO 0 0

— 4Ty (4“7‘71” +x —|—y> By putting constant values along with Eq. (14) and wave

vg(x,y,t) = 002 + 1+

where Z =

1
2
0
transformation Eq. (2) in the Egs. (40) and (41) we get the soliton solutions of Egs. (33) and (34) such as

2,52 _
5, a8 xsinh (1y/p7 —ary (HEREHEIN) |y )
+ >
\/ 4808, — 82 \/ 4808, — 82 <psinh(Z) —\/p? - 4rxcosh(Z)>
2,52 _
where Z = 1\/p? — 4ty (W +x+y).

2
40100xsinh(%@/ —4r)((4“ml” +x+y>)
0
0272 oo
ousinh(% (lrg X(4 1T +x+y)> —
- :77 — 4t xcosh(2)

M9(x»y, t) = -

vo(x,y,t) =05 +1—

00
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4(712)(2sinh2 % 41')( 4““” T4 x —I—y))

2.2
G]‘ESiHh(% %—4{ mml” +x+y)>
Ler
0
% -4 / — 4t xcosh(Z)

+ 2)

where Z =

% 02 — 4Ty (4”6%” +x —|—y>. By putting constant values along with Eq. (15) and wave
transformation Eq. (2) in the Egs. (40) and (41) we get the soliton solutions of Egs. (33) and (34) such as
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where Z =

formation Eq. (2) in the Egs. (40) and (41) we get the soliton solutions of Egs. (33) and (34) such as
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where Z = 4 / i 4ty (45"”1” +x+ y) By putting constant values along with Eq. (17) and wave trans-
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formation Eq. (2) in the Eqs. (40) and (41) we get the soliton solutions of Egs. (33) and (34) such as

2 2 _ _
81 86zxsinh<i\/p2—4rx (W +x+y>>cosh(Z)

\/48082 -2 \/48082 -5 (—\/pz —4rx +2+/p? — 4T xcosh?®(Z) — 2,osinh(Z)cosh(Z)>
8202 +8%—4808,—8
where Z = {1/p? _4”((% +x+y>.

2.2
1602 x2sinh? <§ "(170§ — 41y (—4”;;1” +x+ y) ) cosh?(Z)

2
2 . 2
"1’ — 2(7y _ 201tsinh(Z)cosh(2) Glf
(2 o2 4t xcosh”(Z) — o p 4.5)()

up(x,y,t) = —

>

via(x,p,t) =05 + 1+

Scientific Reports |

(2023) 13:20033 | https://doi.org/10.1038/s41598-023-47207-4 nature portfolio



www.nature.com/scientificreports/

80901 xsinh (i 41)( 4“’“‘ L px+ y) ) cosh(Z)

201 tsinh(Z)cosh —41)( deo 1“ +x+y
o2t? 2 o2
24/ =5 —4rxcosh™(Z) — _
0

2
AT 41y

+

0

2.2
1 [oft 4cooyt
where Z = 7./°5 —4rx(%0”+x+y>.

Type 2: Whent2 — 4p) < Oandtp # 0(ortx # 0), we obtained trigonometric solutions. Substituting the

values of constants in Egs. (40) and (41) and by the help of general solution that are mentioned in methodology
we obtained the different form of solutions.

By putting constant values along with Eq. (18) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (19) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (20) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (21) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (22) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (23) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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By putting constant values along with Eq. (24) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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where G and H are two non-zero real constants and satisfies G> — H? > 0.
By putting constant values along with Eq. (25) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the solitary wave solutions of Egs. (33) and (34) such as
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where G = , [4Tx — 02 (4“7“1” +x -|-y) By putting constant values along with Eq. (26) and wave
transformation Eq. (2) in the Eqs. (40) and (41) we get the solitary wave solutions of Egs. (33) and (34) such as
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transformation Eq (2) in the Egs. (40) and (41) we get the solitary wave solutions of Egs. (33) and (34) such as
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where Z = | /4t x — +x+ y) By putting constant values along with Eq. (28) and wave trans-

formation Eq. (2) in the Eqs (40) and (41) we get the solitary wave solutions of Egs. (33) and (34) such as
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where Z = | [4tx — +x+ y) By putting constant values along with Eq. (29) and wave trans-

formation Eq. (2) in the Egs. (40) and (41) we get the solitary wave solutions of Egs. (33) and (34) such as
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Type 3: When x=0 and 7p # 0, we obtained hyperbolic function solutions. By putting constant values
along with Eq. (30) and wave transformation Eq. (2) in the Egs. (40) and (41) we get the hyperbolic function
solutions of Egs. (33) and (34) such as

U4 (%, y,t) = —

>

vaa(x,y,t) = o5 + 1+

+

(.9, 1) a + 2d32p
uzs(Xx, y,1) = — 2_ _ >

V405 =8 /4005, — s3q(d — sinh (p (LR 4y 1y ) cosh(2))

2,62 _
where Z = p(w +x+y>.
ot Lot
Vas(X, Y, 1) = 2
L s ) Ult(4caalt1+ +)/> Ult(4caalt1+ +)/>
q*o; | —sinh — |t cosh — | t+ d
2d012r

+o0g + L.

- 4coaltr+ + 4cooltr+ +
q(—sinh(gﬂ( > * y)) +cosh<w( o0 * y) +d

By putting constant values along with Eq. (31) and wave transformation Eq. (2) in the Egs. (40) and (41) we
get the hyperbolic function solutions of Eqs. (33) and (34) such as
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Type 4: When p # 0 and 7 x = 0,we obtained rational solutions. By putting constant values along with
Eq. (32) and wave transformation Eq. (2) in the Eqgs. (40) and (41) we get the rational solutions of Eqgs. (33) and
(34) such as
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where d; is an arbitrary constant*.

Graphical behaviors

In this section, we discuss the graphical behavior of the solutions that are successfully obtained by using the
GREM method for the reaction-diffusion Lengyel-Epstein system. In summary, the GREM technique is a useful
tool to obtain the exact solitary wave solutions and control theory, especially for linear time-invariant systems.
Its applicability to a wide variety of control issues is constrained by the linearity assumption, complexity, and
limits mentioned earlier. When selecting whether to adopt GREM or look into other control approaches, engi-
neers should take into account the unique characteristics of their systems and the issue at hand. Many physical
significances are explained by sketching some three-dimensional diagrams and their corresponding contours
for the acquired solutions. These figures give us a better understanding of the behavior of these solutions. The
different solutions are plotted in 3D and their corresponding contour representations on the MATHEMATICA
11.1 for the different values of constants. These results are very helpful in the dynamic study of this chemical
reaction model. The Figs. 1, 2, 3 and 4 show the kink type soliton behavior for the inhibitor chlorite using the
range of space and temporal parameters [—-10,10] and [-2,2] respectively. The Figs. 5, 6, 7, 8 and 9 show the
solitary wave behaviors for the range of space and temporal parameters [ 1,1]. The Figs. 10 and 11 are the lump
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Figure 1. The plots u; for the values of constants § = 1.995,8; = 0.209,8, =2.1,p =4.1,t =198, x = 1.9
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Figure 2. The 3D and 2D graphs for the values of u3 for the values of parameters §, = 1.909, §; = 0.00209,
8, =10.1,p=29,7 =0.8,x =0.9,and y = 1.3.
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Figure 3. The plots ug for the values of constants §o = 0.9,6; = 0.9,8; = 30.1,p = 5.9,7 = 1.8, x = 1.9,and
y=13

T
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Figure 4. The plots uj for the values of constants 8o = 0.01,8; = 0.09,8; = 0.1,p = 2.9,7 = 1.8, x = 0.9,
andy =1
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Figure 5. The plots us for the values of constants §o = 1.909,8; = 0.9, = 1.1,p =4.9,7 = 1.8, x = 1.9,and
y=1
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ug(x, y, t)

Figure 6. The plots ug for the values of constants 8o = 1,8; = 1.9,8, =5.1,p =29,7 =18, x =19,y =1
andH =G =2.
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Figure 7. The plots uy for the values of constants 8o = 1,8; = 1.9,8, =5.1,p =29,7 =18, x =19,y =1,
andH =G = 2.

Vg (X, v, t)

Figure 8. The plots v for the values of constants c = 2.1, p = 2.9,0 = 1.9,09 = 1.2,01 = 0.9,7 = 1.8,
x=19y=1,H=G=3,
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Figure 9. The plots v; for the values of constants ¢ = 1.1, p = 2.9,0 = 1.9,09 = 1.2,01 = 0.9,7 = 1.8,
x=19y=1landH=G=3.
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Figure 10. The plots u;7 for the values of constants §g = 2.1,8; = 0.009,6, = 1.1,p =1.9,7 = 1.8, x = 2.9,
andy =1

o ©
=
=

u1g(x, v, t) 00

& /
7
o,
] o~
= =
o =]

B e —
-1.0 -05 0.0 05 1.0

Figure 11. The plots u;g for the values of constants §, = 2.2,8; =2.9,8, = 1.1,p = 0.09,7 = 1.8,
x=19y=1andH=G=3.
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Figure 12. The plots v, for the values of constants ¢ = 0.00001, p = 3,0 = 0.9,09 = 0.01,07 = 1.9,
7=0.8,x =1.0%and y =1
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Figure 13. The plots v for the values of constants ¢ = 0.01, p = 3,0 = 0.9,0¢9 = 0.02,0; = 1.9,
7=0.8,x =1.09%and y =1

Figure 14. The plots vs for the values of constants ¢ = 0.01, p = 2.9,0 = 1.9,0¢ = 0.02,07 = 0.09
T=18x=19%andy=1

solitons using the range of space and temporal parameters [-2,2] and [-10,10] respectively. The Figs. 12, 13, 14
and 15 are plotted for the range of space and temporal parameters [—10,10].

Conclusions

In this study, we find the analytical wave solutions for the Lengyel-Epstein reaction-diffusion system. The reac-
tion—diffusion The Lengyel-Epstein model represents the concentration of the inhibitor chlorite and the activator
iodide, respectively. These concentrations of the inhibitor chlorite and the activator iodide are shown in the form
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Figure 15. The plots v for the values of constantsc = 0.1, p = 4.9,0 = 1.9,0¢9 = 0.02,07 = 0.9,
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of wave solutions. The generalized Riccati equation mapping method is used to find the analytical solutions. The
Generalized Riccati Equation Mapping (GREM) method is a powerful analytical technique for solving a wide
range of differential equations, particularly nonlinear ones. The shock, complicated solitary-shock, shock singular,
and periodic-singular wave solutions are seen for both single and mixed wave solutions. The derivation also leads
to reasonable solutions. Solitary waves in the Lengyel-Epstein system can spread at different rates. The balance
between a system’s diffusive and reactive effects typically controls how quickly a single wave travels. Depending
on the variables and the kinetics of the response, solitary waves can move at a variety of speeds. Many physical
significances are explained by sketching some three-dimensional diagrams and their corresponding contours
for the acquired solutions. These figures give us a better understanding of the behavior of these solutions. These
results are very helpful in the dynamic study of this chemical reaction model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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