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Leveraging homologous 
hypotheses for increased efficiency 
in tumor growth curve testing
Alan D. Hutson *, Han Yu  & Kristopher Attwood 

In this note, we present an innovative approach called “homologous hypothesis tests” that focuses 
on cross-sectional comparisons of average tumor volumes at different time-points. By leveraging 
the correlation structure between time-points, our method enables highly efficient per time-point 
comparisons, providing inferences that are highly efficient as compared to those obtained from 
a standard two-sample t test. The key advantage of this approach lies in its user-friendliness and 
accessibility, as it can be easily employed by the broader scientific community through standard 
statistical software packages.

Tumor growth modeling in pre-clinical cancer research is a pivotal analysis that has been extensively explored 
in countless research papers. However, the utilization of animal models in this context can impose significant 
financial burdens due to their high costs. Consequently, optimizing testing procedures for growth curve modeling 
becomes crucial to ensure cost-efficiency without compromising accuracy and reliability.

In terms of background, and without loss of generality, let us focus on a two group comparison of an experi-
mental treatment A versus treatment B in terms of comparing changes in tumor volume over time. Figure 1 
depicts a commonly encountered plot in the literature, showcasing the average tumor volume ( mm3 ) for mice 
treated with IL-1Ra versus scrIL-1a. plotted against  time1. The scrIL-1a values are offset for easier readability.

One strategy for modeling rates of change in tumor volume generally assume that the log tumor volume 
has linear relationship with  time2, with time measured on a continuous scale. Zavrakidis et al.2 recommend a 
linear regression model with an autoregressive (AR-1) covariance structure for analyzing log-transformed tumor 
volumes. This model effectively accounts for the correlation among repeated measurements per mouse and 
provides unbiased results in comparing tumor growth rates between treatment groups. However, the accuracy 
of the model’s performance depends on the correct specification of the variance-covariance structure, as mis-
specification can affect the type I error and coverage rates. A similar study was carried forth in patient derived 
xenograft  models3.

A series of nonlinear mixed-effects models that mathematically describe tumor size dynamics in cancer 
patients undergoing anticancer drug treatment has been developed as the Drug Disease Model Resources 
(DDMoRe) repository for oncology  models4. More recently, Forrest et al.5 propose a nonparametric approach 
to overcome the linearity assumptions using regression splines in a generalized additive mixed model to esti-
mate group-level response trends in logarithmically scaled tumor volume. This approach improves the fidel-
ity of describing nonlinear growth scenarios and enhances statistical power for detecting differences between 
treatment regimens. Vaghi et al.6 analyzed tumor growth kinetics using a nonlinear mixed-effects approach and 
found that the Gompertz model provided the best fit to the experimental data. They confirmed a correlation 
between the Gompertz model parameters and proposed a reduced Gompertz function that improved predictive 
accuracy and precision, offering potential clinical applications in personalized tumor age prediction based on 
limited diagnostic data.

Alternatively, when monitoring tumor volume at specific time intervals, a useful approach is the application 
of a standard mixed model analysis of variance. This method treats each time-point as a distinct category and 
incorporates factors such as treatment, time, and their interaction, providing a nonparametric perspective on 
the relationship between time and tumor volume. If a significant overall difference in growth curves is observed, 
the subsequent step involves examining cross-sectional comparisons at each time point as specific contrasts 
within the mixed model. In general, these contrasts are simplified to two-sample t tests assuming normality, 
disregarding the correlation structure between time points. The main objective of these cross-sectional analyses 
is to statistically determine the time point at which the growth curve diverges and ascertain whether the growth 
curves remain separated in subsequent measurements. This information proves valuable in understanding the 
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temporal dynamics of tumor growth and treatment effects. This analytical approach can be argued to be the 
predominant analysis presented in the field of tumor volume growth.

In “Definition of a homologous hypothesis” Section, we provide a precise definition of the homologous 
hypothesis and draw a clear contrast between this approach and the current mean-based tests. Section “Regres-
sion framework for testing a homologous hypothesis” delves into formulating the homologous hypothesis within 
the regression framework, leading to a more concise presentation of the results. Additionally, in “Simulation 
study” section, we offer power comparisons between the homologous hypothesis test and the traditional two-
sample t test, demonstrating the robustness and effectiveness of our method. To illustrate the practicality of 
our approach, we provide a real-life example in “Example” section, followed by concluding remarks in the final 
section. Our intention is to make this methodology accessible and applicable, fostering advancements in tumor 
volume analysis and facilitating broader adoption within the scientific community.

Definition of a homologous hypothesis
Let Yxi ,ij denote the tumor volume for the ith animal, i = 1, 2, · · · , n , at the jth time-point, j = 1, 2, · · · ,m , and let 
xi indicate the treatment assignment for the ith animal ( xi = 0 for treatment A, xi = 1 for treatment B), with the 
total sample size denoted as n = n0 + n1 . In cross-sectional analyses the null hypothesis of interest is to compare 
the mean tumor volume between treatment A and treatment B at specific time, given as

where E(Y0,j) and E(Y1,j) are the expected values for tumor volumes for treatment A and treatment B at time j. 
The alternative hypothesis may be two-sided or one-sided depending upon the needs of the analyst. This test 
is generally carried out on the raw values or log-transformed tumor volume values using a two-sample t test.

Now, let us assume a linear relationship between between the mean tumor volume at time point j and time-
point j − 1 for treatment groups A and B, respectively, and given as follows:

where ρ0,j is the correlation between Y0,j and Y0,j−1 , ρ1,j is the correlation between Y1,j and Y1,j−1 , σY0,j and σY0,j−1
 

are the standard deviations for Y0,j and Y0,j−1 , respectively, and σY1,j and σY1,j−1
 are the standard deviations for 

Y1,j and Y1,j−1 , respectively.
An immediate examination of Eqs.  (2) and (3) reveals that E[Y0,j|Y0,j−1 = E(Y0,j−1)] = E(Y0,j) and 

E[Y1,j|Y1,j−1 = E(Y1,j−1)] = E(Y1,j) . This interesting relationship suggests a potentially more efficient 
approach for testing (1), leveraging the correlation between Y0,j and Y0,j−1 , as well as Y1,j and Y1,j−1 . Fur-
thermore, it is worth noting that E(Y0,j|Y0,j−1 = y0,j−1) = E(Y0,j) holds true when ρ0,j = 0 , and similarly, 
E(Y1,j|Y1,j−1 = y1,j−1) = E(Y1,j) when ρ1,j = 0 . In other words, no additional information is gained in cases 
where there is no correlation between time points. However, in general, tumor growth curve models exhibit a 
high degree of correlation between adjacent time points. The sets of dependence relationships between tumor 
volumes over time form the basis for our concept of a homologous hypothesis as an alternative to the standard 
cross-sectional hypothesis at (1) for comparing two means.

(1)H0 : E(Y0,j) = E(Y1,j),

(2)E(Y0,j|Y0,j−1 = y0,j−1) = E(Y0,j)+ ρ0,j
σY0,j

σY0,j−1

(y0,j−1 − E(Y0,j−1)),

(3)E(Y1,j|Y1,j−1 = y1,j−1) = E(Y1,j)+ ρ1,j
σY1,j

σY1,j−1

(y1,j−1 − E(Y1,j−1)),

Figure 1.  Example tumor growth curve.
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Definition of a homologous hypothesis
We define the homologous null hypothesis for time point j, j > 1 , as follows:

where ȳ0,j−1 =
∑n

i=1 Yxi ,ij−1(1− xi)/n0 and ȳ1,j−1 =
∑n

i=1 Yxi ,ij−1xi/n1 are the moment estimators for the 
expected tumor volumes E(Y0,j−1) and E(Y1,j−1) , respectively, at time-point j − 1.

The similarity between the standard cross-sectional null hypothesis at (1) and the homologous null hypothesis 
at (4) may be seen by noting that

i.e., E(Y0,j|Y0,j−1ȳ0,j−1) is within a neighborhood of E(Y0,j) and E(Y1,j|Y0,j−1ȳ1,j−1) is within a neighborhood 
of E(Y1,j).

In particular, through standard central limit arguments with bounded variances assumed, we have 
ȳ0,j−1

p
→ E(Y0,j−1) and ȳ1,j−1

p
→ E(Y1,j−1) as n → ∞ . Therefore, in an asymptotic sense, the homologous 

hypothesis stated in (4) can be considered equivalent to the standard cross-sectional hypothesis in (1). In other 
words we can rewrite the homologous null hypothesis at (4) as

The standard cross-sectional null hypothesis at (1) and the homologous null hypothesis at (4) exhibit subtle 
differences, except when ρ0,j = 0 and ρ1,j = 0 . However, the primary reason for rejecting the homologous null 
hypothesis lies in the discrepancies between the population mean growth tumor volumes E(Y1,j)− E(Y0,j) at time 
j. Emphasizing this point, if the investigator is willing to accept these subtle distinctions between the standard 
cross-sectional null hypothesis and the homologous null hypothesis substantial gains in statistical efficiency may 
be achieved. This can be accomplished by capitalizing on the correlation structure between successive tumor 
growth values over time. This in turn can reduce sample size requirements dramatically, where certain animal 
models may cost several thousand dollars per unit.

Furthermore, if the parameters for Eqs. (2) and (3) are estimated via standard least-squares regression of Y0,j 
on Y0,j−1 and Y1,j on Y1,j−1 we arrive at the following estimators:

where ȳ0,j−1 and ȳ1,j−1 are defined above,

Now, it should be clear from (8) and (9) that the sample estimators for the conditional and unconditional are 
identically the sample mean at time j, i.e.,

However,

(4)H0 : E(Y0,j|Y0,j−1 = ȳ0,j−1) = E(Y1,j|Y1,j−1 = ȳ1,j−1),

(5)E(Y0,j|Y0,j−1 = ȳ0,j−1) = E(Y0,j)+ ρ0,j
σY0,j

σY0,j−1

(ȳ0,j−1 − E(Y0,j−1)),

(6)E(Y1,j|Y1,j−1 = ȳ1,j−1) = E(Y1,j)+ ρ1,j
σY1,j

σY1,j−1

(ȳ1,j−1 − E(Y1,j−1)), .

(7)H0 : E(Y0,j)− E(Y1,j) = op(1).

(8)Ê(Y0,j|Y0,j−1 = y0,j−1) = ȳ0,j + ρ̂0,j
σ̂Y0,j

σ̂Y0,j−1

(y0,j−1 − ȳ0,j−1),

(9)Ê(Y1,j|Y1,j−1 = y1,j−1) = ȳ1,j + ρ̂1,j
σ̂Y1,j

σ̂Y1,j−1

(y1,j−1 − ȳ1,j−1),

ȳ0,j =Ê(Y0,j) =

∑n
i=1 Yxi ,ij(1− xi)

n0
and ȳ1,j = Ê(Y1,j) =

∑n
i=1 Yxi ,ijxi

n1

σ̂ 2
Y0,j

=

∑n
i=1(1− xi)(Yxi ,ij − ȳ0,j)

2

n0 − 1
and σ̂ 2

Y0,j−1
=

∑n
i=1(1− xi)(Yxi ,ij−1 − ȳ0,j−1)

2

n0 − 1
,

σ̂ 2
Y1,j

=

∑n
i=1 xi(Yxi ,ij − ȳ1,j)

2

n1 − 1
and σ̂ 2

Y1,j−1
=

∑n
i=1 xi(Yxi ,ij−1 − ȳ1,j−1)

2

n1 − 1
,

ρ̂0,j =

∑n
i=1(1− xi)(Yxi ,ij − ȳ0,j)(Yxi ,ij−1 − ȳ0,j−1)

√

∑n
i=1(1− xi)(Yxi ,ij − ȳ0,j)2

√

∑n
i=1(1− xi)(Yxi ,ij−1 − ȳ0,j−1)2

ρ̂1,j =

∑n
i=1 xi(Yxi ,ij − ȳ1,j)(Yxi ,ij−1 − ȳ1,j−1)

√

∑n
i=1 xi(Yxi ,ij − ȳ1,j)2

√

∑n
i=1 xi(Yxi ,ij−1 − ȳ1,j−1)2

.

(10)Ê(Y0,j|Y0,j−1 = ȳ0,j−1) = Ê(Y0,j) = ȳ0,j ,

(11)Ê(Y1,j|Y1,j−1 = ȳ1,j−1) = Ê(Y1,j) = ȳ1,j .
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Thus if the correlation between tumor volumes at time point j and j − 1 is strong a high degree of efficiency 
can be gained in terms of testing the homologous hypothesis stated at (4) as compared to the standard cross-
sectional hypothesis in (1).

The variance estimates for Ê(Y0,j|Y0,j−1 = ȳ0,j−1) and Ê(Y1,j|Y1,j−1 = ȳ1,j−1) at (10) and (11), respectively, 
follow from standard least- squares theory and are as follows:

where

and Ê(Y0,j|Y0,j−1 = y0,j−1) and Ê(Y1,j|Y1,j−1 = y1,j−1) are given at (8) and (9), respectively.

Regression framework for testing a homologous hypothesis
We can create a more streamlined approach for testing the homologous hypothesis

at time point j, j > 1 , using a regression framework. Combining Eqs. (5) and (6) into a single regression frame-
work at time j we arrive at the model

where as before Yxi ,ij denotes the tumor volume for the ith animal, i = 1, 2, · · · , n , at the jth time-point, 
j = 1, 2, · · · ,m , xi indicates the treatment assignment for the ith animal ( xi = 0 for treatment A, xi = 1 for 
treatment B) and the ǫi ’s are assumed independent and identically distributed (i.i.d.), ǫi ∼ N(0, σ 2

j ) . As will be 
evident from the discussion below, the regression framework provides a streamlined approach for estimating 
the standard errors of our quantities of interest and utilizing the well-known classical inferential framework.

Defining the regression model at (19) allows us to reformulate our conditional estimators 
Ê(Y0,j|Y0,j−1 = ȳ0,j−1) at (8) and Ê(Y1,j|Y1,j−1 = ȳ1,j−1) at (9) as follows:

where β̂0,j , β̂1,j , β̂2,j and β̂3,j are standard least-squares regression slope estimators. This approach leads to the 
mean difference estimator

In terms of matrix formulation let

(12)Var [Y0,j|Y0,j−1 = y0,j−1)] = Var (Y0,j)(1− ρ2
0,j),

(13)Var [Y1,j|Y1,j−1 = y1,j−1)] = Var (Y1,j)(1− ρ2
1,j).

(14)V̂ar (Ê(Y0,j|Y0,j−1 =ȳ0,j−1)) =
MSE0

n0
,

(15)V̂ar (Ê(Y1,j|Y1,j−1 =ȳ1,j−1)) =
MSE1

n0
,

(16)MSE0 =

∑n0
i [Y0,ij − Ê(Y0,j|Y0,j−1 = y0,ij−1)]

2

n0 − 2
,

(17)MSE1 =

∑n1
i [Y1,ij − Ê(Y1,j|Y1,j−1 = y1,ij−1)]

2

n1 − 2
,

(18)H0 : E(Y0,j|Y0,j−1 = ȳ0,j−1) = E(Y1,j|Y1,j−1 = ȳ1,j−1),

(19)Yxi ,ij = β0,j + β1,jxi + β2,jyxi ,j−1 + β3,jxiyxi ,j−1 + ǫij , i = 1, 2, · · · , n,

(20)Ê(Y0,j|Y0,j−1 = ȳ0,j−1) =β̂0,j + β̂2,j ȳ0,j−1 = ȳ0,j ,

(21)Ê(Y1,j|Y1,j−1 = ȳ1,j−1) =β̂0,j + β̂1,j + (β̂2,j + β̂3,j)ȳ1,j−1 = ȳ1,j ,

(22)

D̂j =Ê(Y1,j|Y1,j−1 = ȳ1,j−1) = ȳ1,j−1)− Ê(Y0,j|Y0,j−1 = ȳ0,j−1)

=β̂1,j + β̂2,j(ȳ1,j−1 − ȳ0,j−1)+ β̂3,j ȳ1,j−1.

=ȳ1,j − ȳ0,j

(23)Yj =



























Y0,1j

Y0,2j

.

.

.

Y0,n0j

Y1,n0+1j

Y1,n0+2j

.

.

.

Y1,n0+n1j



























Xj =



























1 0 y0,1j−1 0
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.

.
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.
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1 1 y1,n0+n1j−1 y1,n0+n1j−1



























.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19890  | https://doi.org/10.1038/s41598-023-47202-9

www.nature.com/scientificreports/

The regression model at (19) may be re-written compactly in matrix form as

where the vector of ǫij ’s are i.i.d. N(0, σ 2
j ) and Yj and Xj are given at (23).

It follows from standard linear model least-squares theory that the 4× 1 vector of regression coefficient 
estimators has the following form:

To obtain the regression form of the estimator D̂j at (22) first define the 1× 4 vector:

Then

The sample variance of D̂j (27) based on standard linear models formulations is given as:

where SSEj = Y
′
jYj − β̂

′

jX
′
jYj , MSEj = SSEj/(n− 4), and s2(β̂ j) = MSEj(X

′
jXj)

−1.
Under model assumptions stated at ( 24 ) we have that

where D̂j is defined at (28) and s2
D̂j

 is defined at (28). The distributional result at (29) follows from standard least-
squares theory. The homologous hypothesis test is available within the R homologous package available at GitHub 
(https:// github. com/ hyu- ub/ homol ogous).

Simulation study
Study 1
We conducted a simulation study using the regression model specified in Eq. (19). To simplify our analysis, 
we assumed that β0,j is set to zero, without any loss of generality. In Tables 3, 4 and 5, you’ll find the results of 
simulated statistical power for testing the homologous hypothesis, as defined in equation (4), compared to the 
standard cross-sectional hypothesis outlined in Eq. (1). We varied the values of parameters such as σ , β1,j , β2,j , 
and β3,j , while maintaining a significance level of α = 0.05 with two-sided alternative hypotheses.

Each simulation run encompassed 10,000 Monte Carlo replications. In each replication, we generated samples 
for the variable yxi ,j−1 from a standard normal distribution with a sample size of n = 10 , equally divided between 
two experimental groups. In practical terms, this simulation is akin to analyzing data based on log-transformed 
tumor volumes.

It’s worth noting that when β2,j = 0 and β3,j = 0 , the homologous hypothesis and the standard cross-sectional 
hypothesis are essentially equivalent, with only minor differences in the test statistics due to variations in the 
degrees of freedom in the null t-distributions.

As previously mentioned, the homologous hypothesis (4) and the standard cross-sectional hypothesis (1) 
share similarities but are not entirely equivalent. To calibrate the simulation results, we establish the equality: 
ρ0,j

σY0,j
σY0,j−1

(ȳ0,j−1 − E(Y0,j−1)) = ρ1,j
σY1,j
σY1,j−1

(ȳ1,j−1 − E(Y1,j−1)) within the homologous testing framework. Con-
sequently, the primary factor influencing the power values is the disparity between Treatment A and Treatment 
B. By allowing the above equality to vary across replications, the power values for the homologous test would 
exhibit an increase.

The correlation between time point j − 1 and time point j in log-transformed tumor volumes varies as σ 
changes from 0.4 to 1, with Table 3 showing the highest correlation and Table 5 the lowest. As expected, when 
β2,j = 0 and β3,j = 0 , both tests yield nearly equivalent results. However, the power of the homologous test is sig-
nificantly enhanced in cases of high correlation between time points, as demonstrated in Table 3 where σ = 0.4 , 
β1,j = 1 , β2,j = 1 , and β3,j = 0 , resulting in a power of 0.968, compared to 0.386 for the standard two-sample t 
test. Moreover, even with moderate correlation between time points, there are still considerable power gains. 
For example, in Table 3, when σ = 1 , β1,j = 1 , β2,j = 1 , and β3,j = 0 , the power of the homologous test is 0.424, 
compared to 0.282 for the standard two-sample t test. These findings highlight the significance of considering 
correlation between time points when conducting tests, as it can lead to substantial improvements in statistical 
power.

Study 2
In our ongoing investigation, we conducted a second simulation study to further scrutinize the homologous 
test in comparison to the linear mixed model (LMM) when treating time as a continuous variable. This time, we 
generated data involving six time points and two distinct groups following the model specified as:

(24)Yj = Xjβ j + ǫj ,

(25)β̂ j = (X′
jXj)

−1
X
′
jYj .

(26)zDj =(0, 1, ȳ1,j−1 − ȳ0,j−1, ȳ1,j−1).

(27)D̂j =zDβ̂ j .

(28)s2
D̂j

=zDj s
2(β̂ j)z

′
Dj
,

(29)
D̂j − D

sD̂j

∼ tn−4,

https://github.com/hyu-ub/homologous
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In this equation, the variables Yij and ǫij represent the outcomes and observation errors for observation i at 
time j. The error term ǫi for each individual i exhibits a compound symmetry covariance structure, with diagonal 
elements set to 1 and off-diagonal elements set to 0.5. The variable gi indicates the group assignment for the ith 
observation, taking on values of 1 and 2. The parameter βgi ,j signifies the expected outcome for group gi at time j.

For this simulation study, we considered six distinct scenarios for βgi ,j (as illustrated in Fig. 2). We maintained 
a fixed sample size of n = 16 per group, ensuring that the two-sided independent sample t test yields 78% power 
when the difference between the means of the two groups is 1, at a significance level of 0.05. This is given the 
assumption of a standard deviation of the error term equal to 1.

We compared the performance of the homologous test, the standard two-sample t test, and the LMM that 
incorporates time by group interaction effects and random intercepts. Our primary focus is on assessing the 
difference between the two groups at the final time point. Each simulation iteration encompassed 10,000 Monte 
Carlo replications, providing robust results for our analysis.

Table 1 provides insights into the rejection probabilities across six distinct scenarios. In scenarios 1-3, where 
no differences exist in group means at the final time point, the rejection probabilities correspond to type I error 
rates. The results clearly demonstrate that both the homologous test and the standard two-sample t test effectively 
control type I errors at the desired level. However, in scenarios 2 and 3, characterized by non-linear patterns, the 
Linear Mixed Model (LMM) exhibited a notable inflation in type I error.

Moving to scenarios 4–6, the rejection probabilities represent statistical power. In all three cases, the homolo-
gous test exhibited superior power when compared to the standard two-sample t test. This is attributed to the 
homologous test’s efficient utilization of information from previous time points. When the linear assumption 
holds, as in scenario 4, the homologous test and LMM demonstrated similar power. However, when this assump-
tion doesn’t hold, as seen in scenarios 5 and 6, the homologous test exhibited higher power under the studied 
conditions.

In summary, when compared to the standard t test and LMM, the homologous test outperformed in terms 
of type I error control and efficiency, proving its effectiveness across a range of scenarios.

(30)Yij = βgi ,j + ǫij ,

Figure 2.  The expected outcome of the two groups at six time points and under sixe simulated scenarios of 
simulation Study 2. In scenario 1, the expected outcomes of two groups completely overlap with each other.
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Example
To demonstrate our method, we analyzed the tumor growth curves from the study by Sass et al.1, which showed 
that the IL-1α expression facilitate tumor cell proliferation. The data showed that IL-1α knockdown by shIL-1α 
can delay the tumor growth when compared with the control group (scrIL-1α ). In addition, the blockade of 
IL-1α paracrine effect by a natural antagonist IL-1Ra also resulted in a significant delay in tumor growth. Here 
we evaluated the homologous hypothesis test and traditional two-sample t test in comparing the tumor volumes 
between the scrIL-1α and IL-1Ra groups across the time points from day 3 to day 24 ( n = 4 in each group). 
Table 2 and Figure 3 show that the standard errors of the estimated mean tumor volumes are remarkably smaller 
than those from the standard method. Correspondingly, the homologous test achieves higher power than the 
two-sample t test. This makes it possible to detect the difference between two groups at day 21 (Tables 3, 4, 5). 
On the other hand, the t test did not find any significant differences at α = 0.05 . It is notable that this signifi-
cant gain in power is attributed to the high correlation between tumor volumes at neighboring time points of 
measurements (Table 2). 

Conclusions
In this manuscript, we have presented a straightforward approach to harnessing the correlation structure between 
time-points in a cross-sectional analysis of mean tumor volumes. Our novel method, the homologous hypothesis 
approach, offers significant advantages in terms of statistical power, especially when faced with a fixed sample size 
or the need to reduce sample sizes and costs while maintaining a fixed power, as compared to the traditional t test.

One of the key strengths of our method is its simplicity, as it allows for a clear and efficient implementation 
of the analysis using time moving forward. Nevertheless, we recognize that there are opportunities for further 
advancements and extensions to our approach.

For instance, future investigations could explore the use of multiple time-points in either direction along 
the time scale. Incorporating additional time-points could potentially enhance the precision of our results and 
provide a more comprehensive understanding of the treatment effects over time.

Furthermore, an exciting avenue for future research lies in developing methods to combine p-values across 
multiple tests for a global assessment of treatment effects over time. This would offer a more holistic perspective 
on the efficacy of the treatments under investigation and could lead to more robust and insightful conclusions.

In conclusion, our work represents an important step towards a more powerful and flexible approach for 
analyzing mean tumor volumes in cross-sectional studies. While we have presented the most straightforward 
version of our method using time moving forward, there is considerable potential for further enhancement and 
expansion, which could open up new possibilities for the analysis of time-dependent data in medical research. 

Table 1.  The rejection probabilities from the simulation Study 2.

Scenario Homologous t test LMM

1 0.051 0.048 0.049

2 0.046 0.048 0.855

3 0.047 0.046 0.421

4 0.883 0.784 0.890

5 0.883 0.776 0.780

6 0.892 0.793 0.697

Table 2.  The estimated mean tumor volumes and standard errors (SEs) using the proposed and conventional 
methods. The Pearson’s correlation coefficients with tumor volume at previous time point ρ and p-values from 
the test of homologous hypothesis and two-sample t tests are also shown.

Time (day) 3 5 7 12 14 17 19 21 24

IL-1Ra

 Tumor volume 4.025 28.725 28.025 36.225 71.725 113.025 131.600 174.125 247.775

 SE (Homologous) 0.006 3.456 0.994 1.543 1.905 7.100 7.972 4.736 5.215

 SE 0.006 6.731 3.413 7.143 16.305 13.315 17.215 21.086 23.390

  ρ̂0,j – – 0.911 0.952 0.986 0.657 0.756 0.948 0.949

scrIL-1α

 Tumor volume 4.025 28.150 36.775 41.425 58.675 79.750 102.325 115.925 197.150

 SE (Homologous) 0.006 1.042 2.673 5.597 4.256 5.738 8.948 7.915 9.480

 SE 0.006 2.806 5.279 7.918 11.198 19.222 25.563 35.908 60.088

 ρ̂1,j – – 0.698 0.029 0.843 0.907 0.869 0.950 0.975

 p value (Homologous test) 1 0.931 0.151 0.632 0.181 0.103 0.231 0.022 0.054

 p value (t test). 1 0.940 0.213 0.643 0.534 0.205 0.379 0.212 0.462
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Figure 3.  Example Homologous Tumor Growth Curve. The error bars are standard errors (SEs) estimated 
using two methods. The p values for comparing mean tumor volumes at each time point are shown.

Table 3.  Simulated power results given σ , β1,j , β2,j and β3,j for the homologous and standard cross-sectional 
hypotheses.

σ β1,j β2,j β3,j

Homologous t Test
¯̂ρ0,j

¯̂ρ1,jPower Power

0.4 0 0 0 0.05 0.05 0 0

0.4 0 0 0.5 0.05 0.05 0 0.73

0.4 0 0 1 0.05 0.06 0 0.91

0.4 0 0.5 0 0.05 0.05 0.73 0.73

0.4 0 0.5 0.5 0.05 0.05 0.73 0.9

0.4 0 0.5 1 0.05 0.05 0.74 0.95

0.4 0 1 0 0.05 0.05 0.9 0.9

0.4 0 1 0.5 0.05 0.05 0.9 0.95

0.4 0 1 1 0.05 0.05 0.9 0.97

0.4 0.5 0 0 0.55 0.57 0 0

0.4 0.5 0 0.5 0.54 0.39 0.01 0.74

0.4 0.5 0 1 0.53 0.24 0 0.9

0.4 0.5 0.5 0 0.54 0.31 0.74 0.73

0.4 0.5 0.5 0.5 0.54 0.21 0.74 0.91

0.4 0.5 0.5 1 0.53 0.17 0.73 0.95

0.4 0.5 1 0 0.54 0.17 0.9 0.9

0.4 0.5 1 0.5 0.54 0.14 0.9 0.95

0.4 0.5 1 1 0.54 0.12 0.9 0.97

0.4 1 0 0 0.96 0.97 0 0

0.4 1 0 0.5 0.96 0.85 0 0.73

0.4 1 0 1 0.96 0.56 0 0.9

0.4 1 0.5 0 0.96 0.72 0.73 0.73

0.4 1 0.5 0.5 0.96 0.5 0.74 0.9

0.4 1 0.5 1 0.97 0.35 0.74 0.95

0.4 1 1 0 0.97 0.39 0.9 0.9

0.4 1 1 0.5 0.97 0.29 0.91 0.95

0.4 1 1 1 0.96 0.23 0.91 0.97
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Table 4.  Simulated power results given σ , β1,j , β2,j and β3,j for the homologous and standard cross-sectional 
hypotheses.

σ β1,j β2,j β3,j

Homologous t Test
¯̂ρ0,j

¯̂ρ1,jPower Power

0.7 0 0 0 0.05 0.05 − 0.01 0

0.7 0 0 0.5 0.05 0.05 − 0.01 0.53

0.7 0 0 1 0.05 0.05 0 0.78

0.7 0 0.5 0 0.05 0.05 0.53 0.53

0.7 0 0.5 0.5 0.05 0.05 0.52 0.78

0.7 0 0.5 1 0.05 0.05 0.54 0.88

0.7 0 1 0 0.05 0.05 0.77 0.78

0.7 0 1 0.5 0.05 0.05 0.77 0.88

0.7 0 1 1 0.05 0.05 0.77 0.92

0.7 0.5 0 0 0.27 0.28 0 0

0.7 0.5 0 0.5 0.27 0.24 − 0.01 0.53

0.7 0.5 0 1 0.26 0.18 0 0.77

0.7 0.5 0.5 0 0.27 0.21 0.53 0.53

0.7 0.5 0.5 0.5 0.26 0.18 0.53 0.78

0.7 0.5 0.5 1 0.26 0.14 0.53 0.88

0.7 0.5 1 0 0.26 0.15 0.77 0.78

0.7 0.5 1 0.5 0.26 0.13 0.78 0.88

0.7 0.5 1 1 0.27 0.12 0.77 0.92

0.7 1 0 0 0.65 0.67 0 0

0.7 1 0 0.5 0.64 0.58 0 0.53

0.7 1 0 1 0.64 0.44 0 0.78

0.7 1 0.5 0 0.64 0.51 0.53 0.53

0.7 1 0.5 0.5 0.64 0.4 0.53 0.77

0.7 1 0.5 1 0.64 0.3 0.53 0.88

0.7 1 1 0 0.64 0.32 0.77 0.78

0.7 1 1 0.5 0.64 0.25 0.77 0.87

0.7 1 1 1 0.63 0.21 0.78 0.92
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We hope that our findings will inspire further investigations and foster the development of innovative statistical 
methods in this domain.

Data availability
All data generated or analysed during this study are included in a supplemental file.
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