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Splitting tensile strength prediction 
of Metakaolin concrete using 
machine learning techniques
Qiang Li , Guoqi Ren , Haoran Wang , Qikeng Xu , Jinquan Zhao , Huifen Wang  & 
Yonggang Ding *

Splitting tensile strength (STS) is an important mechanical property of concrete. Modeling and 
predicting the STS of concrete containing Metakaolin is an important method for analyzing the 
mechanical properties. In this paper, four machine learning models, namely, Artificial Neural Network 
(ANN), support vector regression (SVR), random forest (RF), and Gradient Boosting Decision Tree 
(GBDT) were employed to predict the STS. The comprehensive comparison of predictive performance 
was conducted using evaluation metrics. The results indicate that, compared to other models, the 
GBDT model exhibits the best test performance with an  R2 of 0.967, surpassing the values for ANN 
at 0.949, SVR at 0.963, and RF at 0.947. The other four error metrics are also the smallest among the 
models, with MSE = 0.041, RMSE = 0.204, MAE = 0.146, and MAPE = 4.856%. This model can serve as a 
prediction tool for STS in concrete containing Metakaolin, assisting or partially replacing laboratory 
compression tests, thereby saving costs and time. Moreover, the feature importance of input variables 
was investigated.

Concrete is the second most consumed material in the world after water. Portland cement is the primary binder 
used in most concrete  applications1–4. The production of cement consumes a significant amount of energy and 
releases approximately 7% of global carbon dioxide emissions into the  atmosphere5–8. However, the demand for 
cement continues to rise, and it is projected that annual cement consumption will reach 6 billion metric tons by 
2060. One of the methods to reduce cement consumption is to use industrial by-products or more environmen-
tally friendly materials that require less energy during manufacturing, such as Metakaolin. Studies have found 
that using Metakaolin as a partial replacement for cement can reduce carbon dioxide emissions by up to 170 kg 
per ton of cement  produced9,10. Metakaolin is a highly reactive pozzolan that reacts with calcium hydroxide to 
form C-S–H and aluminate  phases11. Incorporating Metakaolin as a partial replacement for cement in concrete 
helps to reduce pore size distribution, improve pore structure, and enhance various mechanical properties 12–14.

Previous studies have demonstrated that the addition of Metakaolin can effectively improve the performance 
of concrete, including enhancing compressive strength and durability, providing better resistance to freezing, 
weathering, chemical erosion, and permeability, as well as improving early-age concrete  properties15,16. Therefore, 
estimating the mechanical properties of concrete, such as splitting tensile strength (STS), based on concrete 
mix proportions can help save time and costs, facilitate activities such as formwork removal, and promote the 
application of Metakaolin in the concrete industry. Previous research has mainly focused on finding the optimal 
Metakaolin content required to ensure the desired mechanical properties of concrete through experimental 
 approaches17,18. However, the experimental process is time-consuming and labor-intensive. It would be highly 
useful to establish an intelligent model based on previous experimental data to predict the mechanical properties 
under given input mix proportions, which will significantly save experimental time and testing costs.

With the development of artificial intelligence, an increasing number of algorithms and models have provided 
new perspectives for addressing these  problems19–34. The implementation of intelligent models for predicting 
the mechanical properties of concrete has also gained increasing  attention35–46. Wu et al. 47 achieved accurate 
prediction of high-performance concrete tensile strength by utilizing a combination of support vector regres-
sion (SVR) and artificial neural network (ANN) models with optimization algorithms. Sourav et al. 48 employed 
support vector machine (SVM) and gradient boosting machine (GBM) models to predict the tensile strength of 
concrete, and the results indicated that GBM outperformed SVM in terms of prediction performance. Hammad 
et al. 49 utilized four models, namely gene expression programming (GEP), ANN, M5P model tree algorithm, and 
random forest (RF), to predict the flexural strengths of concrete with metakaolin, and the results demonstrated 
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that random forest achieved the best predictive performance. Nozar et al. 50 studied the compressive strength 
of concrete containing metakaolin using the Multi-Layer Perceptron (MLP) model, and the results showed that 
the MLP network had reliable accuracy in predicting the compressive strength of concrete with metakaolin. 
Furthermore, user-friendly software was developed to facilitate the use of the proposed MLP network based on 
machine learning methods. Huang et al. 51 proposed a hybrid machine learning model combining RF and firefly 
algorithm (FA) to accurately predict the compressive strength of cementitious materials containing expansive 
clays based on a database of 361 samples. Abdulrahman et al. 16 compared the predictive performance of mul-
tiple individual models and ensemble models in predicting the compressive strength of cementitious materials 
containing expansive clays, and it was found that the DT AdaBoost model and the improved bagging model 
achieved the best predictive performance in predicting the STS of Metakaolin concrete.

However, there is relatively limited research and analysis on using machine learning models to predict the 
STS of concrete containing Metakaolin. Further research is needed in this area. Therefore, this paper aims to 
model and compare the STS of concrete containing Metakaolin using individual and ensemble models based on 
variables such as cement, Metakaolin, water-to-binder ratio (w/b), fine aggregate (FA), coarse aggregate (CA), 
superplasticizer (SP), age, height (H), and diameter (D) of concrete column specimen. The framework of this 
study is illustrated in Fig. 1.

Machine learning models
Artificial neural network
ANN is a useful machine learning technique based on biological neural networks, designed to simulate complex 
relationships between inputs and outputs. The simplest processing element in a neural network is a neuron. Each 
neuron i may have multiple inputs, x1, x2, …, xd, which are combined with corresponding weights, wi1, wi2, …, to 
produce a single output. More specifically, the propagation function combines these inputs with their weights and 
then applies an activation function to the resulting sum to generate the corresponding output 52. The structure 
of an ANN is depicted in Fig. 2.

Support vector regression
SVM was originally proposed for studying linear problems. The basic idea behind SVM for pattern recognition 
is to transform the input space into a high-dimensional space through a non-linear  transformation53. In this 
new space, the algorithm solves a convex quadratic programming problem to find the optimal linear classifica-
tion hyperplane. However, when used for regression prediction, the fundamental idea is not to find an optimal 
classification plane that separates the samples but to find an optimal hyperplane that minimizes the distance 
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Figure 1.  Paper framework workflow.

Figure 2.  ANN network structure.
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between the hyperplane and all training samples. This hyperplane can be considered a well-fitted curve, and 
the approach of using SVM for function approximation is known as SVR. SVR can be summarized as using a 
non-linear mapping function to map the input samples to a high-dimensional feature space and learning a linear 
regression quantity in the feature space to obtain the estimation function. The steps for implementing SVR for 
regression prediction are illustrated in Fig. 3.

Random forest
RF is an integrated learning model consisting of multiple decision trees. Its core idea is to improve prediction 
accuracy and stability by constructing multiple decision trees. As shown in Fig. 4, each decision tree is con-
structed based on random samples and random features, and this randomness makes Random Forest able to 
avoid overfitting and has good robustness. Advantages include: (1) Since random forests can utilize multiple 

Figure 3.  SVR algorithm  flow54.

Figure 4.  Flowchart of random forest  model55.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20102  | https://doi.org/10.1038/s41598-023-47196-4

www.nature.com/scientificreports/

decision trees for prediction, their prediction accuracy is higher than that of a single decision tree. (2) Random 
forests can handle a large number of input features, so they can be used for classification and regression problems 
with high-dimensional data. (3) Random forests are constructed using random samples and random features, 
and this randomness avoids the problem of overfitting.

Gradient boosting decision tree
Gradient Boosting Decision Trees (GBDT) is established based on the Boosting method in ensemble learning. It 
requires multiple iterations and the construction of multiple decision trees to form an ensemble model. During 
each iteration, the decision tree learners reduce the residuals along the direction of the steepest gradient descent. 
The algorithm is widely applied due to its strong interpretability, fast prediction speed, and the ability to freely 
combine multiple influential factors. When constructing the model, there is a strong correlation between each 
decision tree. Each subsequent decision tree adjusts its own weights based on the training results of the previous 
decision tree, and this process iterates until the desired residual or the maximum number of iterations is reached. 
The predictive model of GBDT can be represented as:

where F(x) is the response value of the input variable x; ωk and ϕk are the weights and parameters of the k-th 
decision tree, respectively; and g(x,ϕk) is the predicted value of the k-th decision tree.

Dataset collection
For machine learning models, a representative dataset is necessary and important. Therefore, this study col-
lected a total of 204 samples from the  literature17,18,56–70. The descriptive statistics and histogram distributions 
of the variables in these samples are shown in Table 1 and Fig. 5, respectively, where the input variables include 
component ratio, curing age, and specimen size. It can be observed that the content of "Metakaolin" ranges from 
0 to 256 across the entire dataset, indicating a high degree of data variability. Furthermore, Fig. 6 presents the 
Pearson correlation coefficients between the variables. It can be seen that among the 9 input features listed, the 
linear correlation between "cement", "w/b" and "STS" is the strongest, with correlation coefficients of 0.3776 and 
−0.4362 respectively. However, this correlation is still weak, indicating that relying on multiple linear regression 
for predicting STS is unreliable due to the existence of complex nonlinear relationships between these variables 
and the output. This is why this study adopts machine learning models to achieve accurate predictions of STS. 
Moreover, the linear correlation between the input variables is weak, which is also an important prerequisite for 
machine learning applications.

Results and analysis
Model building
A total of 163 samples (80%) were randomly selected as the training set, and the remaining 41 samples (20%) 
were used as the test set for the trained model. After splitting the data, normalize the features to [0,1] to avoid 
scale effects. Referring to the  literature71, tenfold cross-validation and grid search methods were used to obtain 
the optimal hyper-parameters. The parameter value was determined in Table 2.

Performance comparison
Figure 7 illustrates the deviations between the predicted results and the actual results of each sample for dif-
ferent models. The training and testing results of different models are shown in Fig. 8. From the perspective of 
the coefficient of determination  (R2), all four models achieve good predictive performance. Among them, the 
GBDT model achieved the highest correlation coefficient of 0.967, followed by 0.963 for SVR, 0.949 for ANN, 

(1)F(x) =

K∑

k=1

ωkg(x,ϕk)

Table 1.  Characteristics of the variables.

Variable Cement Metakaolin w/b FA CA SP Age D H STS

Type Input Input Input Input Input Input Input Input Input Output

Size 204 204 204 204 204 204 204 204 204 204

Unit kg/m3 kg/m3 / kg/m3 kg/m3 kg/m3 Day mm mm MPa

Max 570.00 256.00 0.75 989.00 1264.97 12.40 120.00 150.00 300.00 5.88

medium 400.00 41.00 0.43 818.10 848.00 4.12 28.00 150.00 300.00 3.30

Min 266.00 0.00 0.21 272.50 175.10 0.00 1.00 100.00 150.00 1.20

Std 65.63 38.86 0.11 180.72 266.44 3.34 31.66 24.30 56.21 1.05

Average 400.42 43.83 0.44 756.64 865.01 4.23 34.66 130.88 248.53 3.58

Cov 0.16 0.89 0.25 0.24 0.31 0.79 0.91 0.19 0.23 0.29

Skewness 0.13 1.33 0.40  − 0.58  − 1.11 0.41 1.22  − 0.49  − 0.32 0.44

Kurtosis  − 0.36 4.29  − 0.02  − 0.39 1.60  − 0.69 0.35  − 1.78  − 1.59  − 0.51
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and 0.947 for RF. In general, relying on a single metric for evaluation may be unreliable. Therefore, four error 
metrics for each model’s predictions were calculated, as shown in Table 3. It can be observed that compared to 
the other three models, the GBDT model achieves smaller error metrics. Specifically, the MSE, RMSE, MAE, 
and MAPE for the GBDT model are 0.041, 0.204, 0.146, and 4.856%, respectively.

For a more intuitive comparison, Fig. 9 presents the histograms of different model evaluation metrics. It 
can be concluded that overall, the GBDT model exhibits the best predictive performance among the machine 
learning models. Figure 10 shows a violin plot of the relative error percentages for different models. It can be 
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Figure 5.  Distribution histogram of variables.
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Table 2.  Parameters setting for different models.

Model Parameters Value

ANN
Hidden layer 2

Hidden neuron 55

SVR

kernel RBF

C 3

gamma 0.25

RF

Estimators 48

Maximum depth of the tree 10

Minimum samples for split 2

Minimum samples of leaf node 1

GBDT

Estimators 80

Learning rate 0.25

Minimum samples for split 6

Maximum depth of the tree 3

Minimum samples of leaf node 5
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Figure 7.  Comparison between actual and predicted values of each sample for different models.
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observed that, compared to other models, the GBDT model exhibits a more concentrated and closer-to-zero 
relative prediction error in the test dataset. The statistical analysis of the errors further underscores the positive 
predictive performance.

Feature importance
Feature importance analysis is the most commonly used method for interpreting model outputs. This analysis 
directly indicates the degree of influence of each feature on the final predictions. The greater the impact of a 
feature on the model’s predictions, the more significant it is. Figure 11 presents the relative importance results 
of various features in predicting STS output using the GBDT model. Age is the most important feature for STS, 
which is as expected, as different ages exhibit significant differences in mechanical performance. Normalizing the 
relative importance of Age to 100%, the subsequent importance rankings are Cement and Metakaolin, with their 
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Figure 8.  Correlation between predicted and actual values for different models.

Table 3.  Evaluation index calculation of different model test results.

Evaluation index ANN SVR RF GBDT

R2 0.949 0.963 0.947 0.967

MSE 0.071 0.066 0.083 0.041

RMSE 0.266 0.256 0.287 0.204

MAE 0.196 0.194 0.236 0.146

MAPE/% 6.716 6.948 7.841 4.856
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Figure 11.  Feature importance analysis.
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importance being approximately three-quarters of the Age. Following that, in descending order, are FA, w/b, SP, 
and CA. The dimensions of the specimens are less important features, accounting for 9.2% for H and 2% for D.

Conclusions
This study proposes an STS prediction method involving concrete containing Metakaolin using individual and 
ensemble learning models. These machine learning models demonstrate good performance in reflecting the 
complex nonlinear relationships between input and output parameters in the prediction of STS for concrete 
containing Metakaolin. Based on the correlation coefficient between the predicted results and actual values, 
and considering other error metrics, the GBDT ensemble model exhibits the best prediction performance and 
is recommended as an intelligent method for STS prediction.

In the current dataset, the feature importance analysis based on the GBDT model shows that the most influ-
ential feature affecting STS is Age, followed by Cement, Metakaolin, FA, w/b, SP, and CA. The specimen dimen-
sions have a relatively minor impact on STS. Feature importance analysis can provide guidance for obtaining 
the expected STS of Metakaolin concrete.

Although the machine learning methods developed in this study have achieved good prediction results, it 
should be noted that the research is conducted on a specific dataset. In the future, it is necessary to expand the 
dataset with more samples and search for samples that encompass a wider range of input parameters. Moreover, 
using Shapley Additive explanations analysis to further investigate the impact of these features on the output is 
also a focal point of future research.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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