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Enhancing the direct charging 
performance of an open quantum 
battery by adjusting its velocity
B. Mojaveri *, R. Jafarzadeh Bahrbeig , M. A. Fasihi  & S. Babanzadeh 

The performance of open quantum batteries (QBs) is severely limited by decoherence due to the 
interaction with the surrounding environment. So, protecting the charging processes against 
decoherence is of great importance for realizing QBs. In this work we address this issue by developing 
a charging process of a qubit-based open QB composed of a qubit-battery and a qubit-charger, 
where each qubit moves inside an independent cavity reservoir. Our results show that, in both 
the Markovian and non-Markovian dynamics, the charging characteristics, including the charging 
energy, efficiency and ergotropy, regularly increase with increasing the speed of charger and battery 
qubits. Interestingly, when the charger and battery move with higher velocities, the initial energy 
of the charger is completely transferred to the battery in the Markovian dynamics. In this situation, 
it is possible to extract the total stored energy as work for a long time. Our findings show that open 
moving-qubit systems are robust and reliable QBs, thus making them a promising candidate for 
experimental implementations.

In recent years, with advancements in quantum thermodynamics, there has been a radical change of perspective 
in the framework of energy manipulation based on the electrochemical principles. The possibility to create an 
alternative and efficient energy storage device at small scale introduces the concept of the quantum battery 
(QB), which was proposed by Alicki and Fennes in the 2013’s1, and subsequently became into a significant field 
of research. As their name indicates, QBs are finite dimensional quantum systems that are able to temporarily 
store energy in their quantum degrees of freedom for later use. The fundamental strategy for developing the 
idea of QBs is based on their non-classical features such as quantum coherence, entanglement and many-body 
collective behaviors that can be cleverly exploited to achieve more efficient and faster charging processes than 
the macroscopic counterparts2–7. A QB is charged based on an interaction protocol between QB itself with either 
an external field or a quantum system which serves as a charger. It is then discharged into a consumption hub 
based on the same protocol. When the battery enters into an interaction with the charger, it transits from a lower 
energy level into the higher ones and will be charged. So far, a variety of powerful charging protocols have been 
proposed in different platforms, including two-level systems8–10, harmonic oscillators11, and hybrid light-matter 
systems12–15. Some efforts have been also devoted to implement QBs, based on different quantum systems, for 
example, using the optical and solid-state systems, such as quantum electrodynamics (QED) setups16–19, NMR 
spin systems20 and superconducting devices21–23.

Due to the fact that a real quantum system inevitably interacts with its environment, studying QBs from the 
open quantum systems perspective is attracting considerable interest. The interaction of a QB with its surrounding 
environments causes the leakage of the coherence of battery to the environment, leading to decoherence effect 
in the battery. Such an adverse effect often plays a negative role in the charging and discharging performance 
of QBs24–26. Decoherence brought during the charging process tends to lead QBs to a non-active (passive) 
equilibrium state in which work extracting from the QBs is often impossible27 in a cyclic unitary process. The 
environmental-induced noises also affect QBs that are disconnected from both charger and consumption hub 
and cause self-discharging of that QBs28–30. Therefore, designing a more robust battery against the environmental 
dissipations is valuable step for implementation of QBs in the real-life. Recently, researchers have devoted efforts 
not only to studying the effect of the environment on QBs, but also to exploiting non-classical effect as well as 
to developing open system protocols to stabilize the charging cycle performance through quantum control 
techniques. For example, Kamin et al.31 studied the charging performance of a qubit-based QB charged by 
the mediation of a non-Markovian environment. They revealed the non-Markovian property is beneficial for 
improving charging cycle performance. In Ref.32, the authors studied dynamics of a continuous variable QB 
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coupled weakly to the squeezed thermal reservoir and managed to control the performance of the charging 
process by boosting the quantum squeezing of reservoir. A feasible route for harnessing loss-free dark states 
for stabilizing the stored energy of a qubit-based open QB has been introduced in33. In addition to the above 
studies, several other protocols have been developed to protect the charging cycle of QBs such as feedback 
control method34–36, convergent iterative algorithm37, Bang–Bang modulation of the intensity of an external 
Hamiltonian38, inhiring an auxiliary quantum system39, modulating the detuning between system and reservoir40, 
stimulated Raman adiabatic passage technique41, engineering quantum environments42, etc.

On the other hand, according to the previous studies on the Markovian and non-Markovian dynamics of 
open two-qubit systems, translational motion of qubits provides novel insights for stabilizing entanglement 
and coherence of a two-qubit system against the environmental induced dissipations by suitably adjusting the 
velocities of the qubits43–52. We want here to use this safeguard capability of the motional properties to improve 
the charging cycle performance of the open qubit-based QBs. Recently, the effect of translational motion of 
qubits on the performance of qubit-based open QB has been examined in53, where the charger and battery’s 
qubits move with a particular speed inside a common leaky cavity. In this model, the battery and charger have 
no direct interaction with each other, and the battery is charged via the environment-mediated charging process. 
The authors have found that the movement of the quantum battery inside the cavity has a negative effect on the 
performance of the quantum battery during the charging process. In the present work, we consider a moving-
biparticle system composed of a qubit-battery and a qubit-charger that independently interact with their local 
environments. The battery qubit is charged assisted by the dipole–dipole interaction with the charger qubit. 
We will investigate how the translational motion of qubits affects the charging process of QB. Our results show 
that translational motion of qubits always plays a constructive role in protecting QB from decay induced by the 
environment. This work is organized as follows: in Section “Figures of merit”, we introduce and describe several 
figures of merit for characterizing the performance of QBs. In Section “Open moving-quantum battery”, we 
illustrate our model and obtain explicit expressions for the reduced density matrix of the QB and the charger. In 
Section “Numerical results and discussion” we present the results of our numerical simulations in the context of 
their physical significance. Finally, Section “Outlook and summary” concludes this paper.

Figures of merit
Let us consider a QB modeled as a quantum system with d-dimensional Hilbert space H and Hamiltonian HB 
such that

with non-degenerate energy levels εi ≤ εi+1 . Internal energy of QB is given by Tr(ρBHB) , where ρB is the state of 
the battery. Charging a QB means bringing the quantum system from a lower energy state ρB to a higher energy 
state ρ′

B , while discharging refers to the inverse process, i.e., brings the quantum system from a higher energy 
state ρ′

B to a lower one ρ′′
B:

Therefore, in a charging process, the actual stored energy of QB at time t, regarding the initial energy, can 
be expressed as follows1

According to the second law of thermodynamics, a complete converting of the stored energy into the valuable 
work without dissipation of heat is impossible. The maximum amount of energy extracted from a given quantum 
state ρB =

∑

i ri|ri��ri| , ( ri ≥ ri+1 ) through a cyclic unitary operation is called ergotropy54. This quantity can be 
defined as54–56

where the minimization is taken over all possible unitary transformations acting locally on such system. 
It has been shown in54 that no work can be extracted from the passive counterpart of ρB with the form 
σρB =

∑

i ri|εi��εi| . The unique unitary transformation U =
∑

i |εi��ri| on the ρ minimizes Tr(UρBU
†HB) , 

and when inserted in Eq. (4) yields the following expression for the ergotropy

In order to quantify the amount of extractable energy, the efficiency η is defined as the ratio between the 
ergotropy W and the total charging energy �EB

It is worth mentioning that this definition of efficiency makes sense for the QBs prepared initially in a passive 
state, since it is the fraction of the energy stored in the QB that later is converted to the ergotropy. When a QB is 
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initiated in an active state (such as coherent state) the ergotropy W may be larger than �EB , and the efficiency 
becomes beyond one. In this situation, one can use η = W

EB
≤ 1 to quantify efficiency28. In the case η = 1 we 

have W = EB , whereas η < 1 indicates that there is an amount of “dead energy” that can not be later extracted 
by unitary operations.

Open moving‑quantum battery
The open QB under consideration is composed of an atomic two-qubit system, the qubit A as a charger and 
the qubit B as a quantum battery, coupled to each other through the dipole–dipole interaction. The battery and 
charger qubits are coupled locally to two independent zero-temperature cavity reservoirs (see Fig. 1). We assume 
that each qubit moves along the z-axis of its cavity at a constant non-relativistic speed v. For simplicity we neglect 
here any scattering57 or trapping58 effects and consider the translational motion of the atomic qubits being 
classically. Turning on the dipole–dipole coupling between the charger and battery initiates the charging process.

Under the dipole and rotating wave approximation, the entire system is ruled by Hamiltonian (setting � = 1)

with

Here, H.c. stands for Hermitian conjugate, σ j
z , σ

j
+ , and σ j

− (j = A,B) are, respectively, the population inversion, 
raising and lowering operators of the jth qubit with transition frequency ω0 . a

j†
k a

j†
k  and ajk are, respectively, the 

creation and annihilation operators of the kth mode of the cavity reservoir j with the frequency ωj
k . Also, D is 

coupling constant of the dipole–dipole interaction between the battery and charger qubits, and gjk is the coupling 
constant between the jth qubit and kth mode of the cavity reservoir j. The effect of translational motion of the 
battery and charger qubits has been included in the model by introducing the z-dependent shape function f jk(z) 
in the Hamiltonian Hint . When the battery and charger qubits are moving with a same constant velocity v, the 
shape function f jk(z = vt) can be taken into account as

where, Ŵ = L/c with L being the size of the cavity. Also, β = v/c where c refers to the speed of light in the 
vacuum space. This particular form of the shape function can be obtained by imposing an appropriate boundary 
condition on the cavity reservoirs45,59. Here we describe the translational motion of both battery and charger 
qubits by classical mechanics ( z = vt ). To this end, we will choose the values of the parameters in such a way 
that the de Broglie wavelength of qubit �B is significantly smaller than the wavelength �0 associated with the 
resonant transition ω0 = ωn ( ωn is the central frequency of the cavity field mode)60,61. Furthermore, we consider 
a situation in which the photon momentum is relatively smaller than the atomic momentum and thus we neglect 
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Figure 1.   Schematic illustration of a qubit-based open QB composed of a qubit-battery and a qubit-charger 
moving along the z-axis of two distinct but identical cavity reservoirs. The qubits move with constant speed v 
and are also coupled to each other through the dipole–dipole interaction.
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the atomic recoil caused by the interaction with the electric field62. In the optical regime, to ignore the atomic 
recoil and consider the translational motion of atoms classically, the velocity of qubits should be v ≫ 10−345.

In the interaction picture (IP) generated by the unitary transformation U = e−iH0t , the Hamiltonian (8) can 
be written as follows

It is straightforward to show that the total excitation operator N =
∑

j=A,B

(

∑

k a
j†
k a

j
k + 1

2
σ
j
z

)

+ 1 , commutes 
with the total Hamiltonian, i.e. [H ,N ] = 0 and therefor it is the constant of the motion. This allows us to 
decompose Hilbert space of the entire qubit-cavity system, H = Hq ⊗HR spanned by the basis 
{
∣

∣iA, jB
〉

⊗ |n1, n2, . . . , nk , ...�RA |∞n1,n2,...=0 ⊗ |m1,m2, . . . ,mk , ...�RB |∞m1,m2,...=0} 
(

i, j = e, g
)

 into the excitation 
subspaces, as follows

As a result of this decomposition, the dynamics of the entire qubit-reservoir system can be 
restricted to the excitation subspaces labeled by the total excitation number n. Here we are interested 
to explore dynamics of the entire system in the single-excitation subspace H1 spanned by vectors 
{
∣

∣gA, gB
〉

⊗ |1k�RA |0k�RB |∞k=0
,
∣

∣gA, gB
〉

⊗ |0k�RA |1k�RB |∞k=0
,
∣

∣eA, gB
〉

⊗ |0k�RA |0k�RB ,
∣

∣gA, eB
〉

⊗ |0k�RA |0k�RB } in 
which the single excitation is either in one of the qubits or in the k-th mode of one of cavity reservoirs. We 
consider a normalized initial state of entire qubit-reservoir as a superposition of 

∣

∣eA, gB
〉

⊗ |0k�RA |0k�RB and 
∣

∣gA, eB
〉

⊗ |0k�RA |0k�RB states with the following form

For times t > 0 , we expand the state vector |�(t)� in terms of the vector basis of the single-excitation subspace 
H1 as

where the time-dependent amplitudes satisfy the normalization requirement

By taking the partial traces over the field modes and subsystem A (B), the reduced time-dependent density 
operator for the charger (battery) in the {|e�,

∣

∣g
〉

} basis is obtained as 

Inserting Eq. (13) into the time dependent Schrödinger equation HIP |�(t)� = i ddt |�(t)� , with HIP given in 
(10), leads to the following set of differential equations for time-dependent amplitudes 

By integrating Eqs. (16c) and (16d) with the initial condition dk(0) = 0 and d′k(0) = 0 and putting their 
solutions, respectively, in Eqs. (16a) and (16b), we get the following integro-differential equations for the 
amplitudes c1(t) and c2(t)
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 where 

are the memory correlation function of the reservoirs A and B, respectively. For simplicity, we suppose 
FA(t − t ′) = FB(t − t ′) = F(t − t ′) . In the limit of a large number of modes ( in the continuum limit ), the 
correlation function F(t − t ′) takes the following form

in which J(ω) is the spectral density of the cavity reservoirs and has the Lorentzian form59,63

where � defines the spectral width of the coupling which is connected to the memory time τE by the relation 
τE = �

−1 and γ refers to the qubit-environment coupling strength which is related to the relaxation time scale 
τR by τR ≈ γ−1 . Also � is the detuning of ω0 and the central frequency of the cavity. The Markovian and non-
Markovian dynamics of battery-charger system can be distinguished by comparing γ and � . When the coupling 
between qubits and reservoir is weak, i.e., γ

�
≪ 1 , dynamics of the system is Markovian, where information or 

energy exponentially decays to the zero. However in the strong coupling regime, i.e., γ
�
≫ 1 , dynamics of the 

system is non-Markovian. In this regime, the information or energy flows back from the environment to the 
system63.

By inserting the Eq. (20) into the Eq. (19) and after some calculations, in the continuum limit ( Ŵ → ∞ ), the 
correlation function is simplified as

with � = �− i�.
In view of (21), taking the Laplace transformations of both sides of the differential Eqs. (17a) and (17b) and 

using the convolution property L[
∫ t
0
A(t − t ′)B(t′)dt′] = A(s)B(s) yields 

where the functions c1(s) and c2(s) are the Laplace transformations of the c1(t) and c2(t) , respectively, and F(s) 
is the Laplace transforms of F(t − t ′) which has the following explicit form

By reformulating the Eqs. (22a) and (22b), we get a general solution for c1(s) and c2(s) as follows 

Then, by using the partial decomposition method, the Eqs. (24a) and (24b) can be decomposed into 

In continuation, by applying the inverse Laplace transformation on the both side of the above equations, we 
obtain finally c1(t) and c2(t) , as 
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where, the survival amplitudes M±(t) = L−1

(

1
s+F(s)±iD

)

 are given by

with qi±(i = 1, 2, 3) are roots of the following cubic equations

where y1 = 2�
�

 , y2 = iD
�

 and u± = y1±β(y1+2iωo/�)

2
 . With substitution (26a) and (26b), respectively, into the 

reduced density matrices (15b) and (15a), and then using the �EA(B) = Tr{ρA(B)(t)HA(B)} − Tr{ρA(B)(0)HA(B)},  
the internal energy of the charger and battery are deduced as

We note that according to the above equations, energy that the charger loses at the end of charging process, 
i.e., |�EA| and stored energy of battery �EB satisfy the inequality |�EA| ≥ �EB . This means that due to the 
interaction between the charger and cavity, some of its energy leaks into the cavity before being transferred to the 
battery. On the other hand, by substitution Eq. (15b) into (4), ergotropy of the battery reads (with Wmax = ω0)

where �(x − x0) is the Heaviside function, which satisfies �(x − x0) = 0 for x < x0 , �(x − x0) = 1
2
 for x = x0 

and �(x − x0) = 1 for x > x0.

Numerical results and discussion
In this section, we will analyze the charging dynamics of the introduced open moving-battery in the weak and 
strong coupling regimes. In particular, we explore the role of the movement of QB on the dynamical behavior of 
performance indicators including stored energy, ergotropy and efficiency. In our following analysis, we choose 
the optical regime parameters64,65 and set the qubit transition frequency as ω0 = 1.5× 109� . In what follows, we 
consider an initial condition in which the battery is initially empty and the charger has the maximum energy, 
i.e. c1(0) = 1 , c2(0) = 0.

In Fig. 2, we plot the Markovian and non-Markovian dynamics of the stored energy �EB for the initial state 
|�(0)� = |e�A

∣

∣g
〉

B
⊗ |0�RA |0�RB , by considering different values of the QB speed β . In panel (a), the battery 

is charged in the Markovian dynamics with (γ = 0.1�) , while in panel (b), it is charged in a non-Markovian 
dynamics with (γ = 20�) . Here we consider a situation at which the charger and battery’s qubits are both 
in resonance with the reservoir modes by setting � = 0 . According to this figure, the positive impact of the 
translational motion of the charger and battery’s qubits in controlling the stored energy of battery is clearly 
visible in both Markovian and non-Markovian charging processes. As can be seen in both Fig. 2a and b, when 
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Figure 2.   Dynamics of the stored energy �EB for the different values of β by setting ω0 = 1.5× 109� , D = 0.3� 
and � = 0 . The panels (a) displays the Markovian dynamics with γ = 0.1� , while the panels (b) displays the 
non-Markovian dynamic with γ = 20�.
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the charger and battery’s qubits are at rest inside their cavity reservoirs, the stored energy in the battery �EB 
decays into zero at sufficiently long times. However the rate of these decays decreases regularly by gradual growth 
of the qubit velocity, and therefore the energy stored in the battery and consequently the charging process is 
strongly protected from the environmental noises. Comparing Fig. 2a with b clearly reveals a fundamental 
difference between Markovian and non-Markovian charging processes. The maximal amount of stored energy 
in the Markovian charging process is more than that of the non-Markovian charging process. The reason stems 
from the nature of the qubit-cavity coupling. In the non-Markovian charging process, the coupling strength of 
charger’s qubit to the cavity modes is greater than its coupling to the battery’s qubit, therefore, the initial internal 
energy of charger has more tendency to evolve toward the reservoir than to the battery. Moreover, since the 
motional effect of QB has been included in battery-cavity and charger-cavity coupling strength, it seems that 
increasing speed of QB decreases the charger-cavity coupling strength in favor of the battery-charger coupling 
strength, which increases the stored energy of the battery.

To answer the question of why the stored energy exhibits oscillating-decay behavior, we give a concrete 
explanation as follows. We notice that in a closed QB the energy excitation remains in the battery-charger 
system; it is transferred from the charger to the battery and then comes back to the charger again. Therefore, 
the stored energy of the battery oscillates harmonically with the charging time. Damping of the storage energy 
occurs in the open QB, albeit only when the excitation in the battery-charger system escapes to the environment 
due to the system-environment interaction. In this case, the stored energy of battery damps monotonously 
under the Markovian dynamics, while it damps oscillatory under the non-Markovian dynamics due to the 
memory effects of the environment. However, the possibility of remaining the excitation in the battery-
charger system results in an oscillating-decay dynamics of energy stored in the open QBs. Based on the above 
considerations, such a dynamical behavior can be observed in both the Markovian and non-Markovian regimes. 
In our charging protocol, because the initial state |�(0)� = |e�A

∣

∣g
〉

B
⊗ |0�RA |0�RB is invariant under the battery-

reservoir interaction Hamiltonian HB−RB , the dynamics of the battery-charger system is mainly determined by 
HA−B +HA−RA . While, |�(0)� can be damped to 

∣

∣g
〉

A

∣

∣g
〉

B
⊗ |1�RA |0�RB by HA−RA , it can be also transferred into 

∣

∣g
〉

A
|e�B ⊗ |0�RA |0�RB under the dipole–dipole interaction Hamiltonian HA−B . Accordingly, the energy excitation 

of the initial state |�(0)� can stay in the battery-charger system thanks to the dipole–dipole interaction, which 
leads to the oscillating-decay dynamics of the stored energy.

In order to get more insight to this area and a deeper understanding of the relationship between the charger 
and battery energy, in Fig. 3 we have illustrated the energy stored in the battery at the end of charging process as 
well as the energy that the charger loses at the same time. Here �EB and |�EA| have been plotted as a function of 
the dimensionless time �t for the qubit velocities β = 0 and β = 7× 10−9 in the Markovian and non-Markovian 
regimes. In the non-Markovian charging process, |�EA| is much more than �EB for a given β as shown in 
Fig. 3b. This implies that the internal energy of the charger is not completely transferred to the battery. Figure 3b 
also shows that, when the charger and battery’s qubits are at rest inside their cavity reservoirs, the charger’s 
qubit immediately loses a large amount of its initial energy without being transferred to the battery. However, 
increasing the qubit velocity (decreasing the ratio of charger-cavity coupling strength to battery-charger coupling 
strength) during the non-Markovian process, decreases the initial loss-rate of the charger, and therefore improves 
the energy transfer in the charging processes.

The relationship between the charger and battery energy in the Markovian charging process is drastically 
different from that in the non-Markovian charging process. One can infer from Fig. 3a that, although for the static 
battery-charger system ( β = 0 ), the total energy of the charger can be transferred to the battery, |�EA| = �EB 
satisfy just in the short charging Markovian process. Interestingly, when the qubits move with the velocity 
β = 7× 10−9 , |�EA| = �EB holds at any charging time. So, we conclude again that a robust Markovian charging 
against the arisen dissipation can be achieved, when the qubits move with higher velocities.

In the following, we examine the influence of translational motion of the battery-charger system on the 
dynamics of ergotropy. In Fig. 4, we plot W/Wmax as a function of �t for the different values of β in the Markovian 

Figure 3.   Dynamics of the stored energy �EB and internal energy of charger |�EA| for the different values 
of β by setting ω0 = 1.5× 109� , D = 0.3� and � = 0 . The panels (a) displays the Markovian dynamics with 
γ = 0.1� , while the panels (b) displays the non-Markovian dynamic with γ = 20�.
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(Fig. 4a) and non-Markovian (Fig. 4b) regimes. Our numerical results in Fig. 4a and b illustrate that, the effect of 
translational motion of QB on the ergotropy is also constructive in both Markovian and non-Markovian regimes. 
Figure 4b shows that, in the non-Markovian regime, in the cases of stationary ( β = 0 ) and slowly moving 
( β = 3× 10−9 ) qubits, we are not able to extract useful work from the QB, but in this regime a considerable 
work can be extracted, as the qubits move with a higher velocity ( β = 8× 10−9 ). Our numerical results in Fig. 4a 
illustrate that, the effect of translational motion of QB on the ergotropy is more considerable in the Markovian 
case. We observe that, in the Markovian regime, increasing the speed of QB (decreasing the qubit-reservoir 
coupling) not only boosts the ergotropy, but also increases the number of time zones in which work can be 
extracted. Accordingly, a strong robust charging process can be established in the higher speed limit, in which 
the extractable work approaches to its maximum value.

In this stage, we examine the effect of translational motion of QB on the Markovian and non-Markovian 
charging efficiency. The results for Markovian and non-Markovian charging processes are presented in Fig. 5a 
and b, respectively. Here we consider the same parameter values as in Fig. 4. Comparing Figs. 4 and 5 reveals that 
both ergotropy and efficiency are positively affected by the translational motion of QB. However the efficiency 
is influenced more than the ergotropy; the amount of increment in efficiency is more than the ergotropy in both 
Markovian and non-Markovian charging processes.

Finally, we investigate the impact of qubits motion on the quantum decoherence of the battery-charger system. 
It is worth to remark that decreasing the loss of quantum coherence (decreasing decoherence rate) between 
the battery and charger is a valuable step toward enhancing the stored energy of the open QBs. To identify 
decoherence we define the decoherence function by exploiting the off-diagonal elements of the battery-charger 
density matrix ρAB(t) = TrRA,RB

{|�(t)���(t)|} in the following form63

Figure 4.   Dynamics of ergotropy W for the different values of β by setting ω0 = 1.5× 109� , D = 0.3� and 
� = 0 . The panels (a) displays the Markovian dynamics with γ = 0.1� , while the panels (b) displays the non-
Markovian dynamic with γ = 20�.

Figure 5.   Dynamics of efficiency η for the different values of β by setting ω0 = 1.5× 109� , D = 0.3� and 
� = 0 . The panels (a) displays the Markovian dynamics with γ = 0.1� , while the panels (b) displays the non-
Markovian dynamic with γ = 20�.
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In Fig. 6, we illustrate dynamics of decoherence function D(t) for β = 0 and β = 3× 10−9 . Here we choose 
the initial conditions c1(0) = c2(0) = 1√

2
 and set γ = 10� . The plots displayed in this figure give evidence that 

interesting results can be obtained by increasing the velocity of the charger and battery’s qubits. In despite of 
decreasing the oscillating nature (associated to the degree of non-Markovianity), the initial quantum coherence 
is strongly protected against the environmental induced dissipation, which leads to enhance the performance of 
the QB.

Outlook and summary
To summarize, we proposed a mechanism for robust charging process of an open qubit-based quantum battery 
(QB) whose robustness can be well controlled by the translational motion of the charger and battery in both 
Markovian and non-Markovian dynamical regimes. Both the battery and charger’s qubits move with a same 
velocity inside two separated identical environments, and are directly coupled by the dipole–dipole interaction. 
We showed that the stored energy, ergotropy and efficiency of the moving QB regularly increased with the gradual 
growth of the speed of charger and battery, thereby improving its charging performance due to a corresponding 
decrease of the decoherence rate as shown in Fig. 6. To gain a physical perspective on the constructive role of 
the translational motion of QB in controlling the charging process, we note that the impact of qubit velocity on 
the charging performance arises from the attachment of qubits velocity to the qubit-reservoir coupling strength 
[see Eq. (8)]. Although the sine functionality of the shape function fk(vt) makes it impossible to establish a 
linear relationship between the qubits velocity and strength of the qubit-reservoir coupling, what is certain is 
that the motion of the the charger and battery’s qubits gives rise to weakening the strength of the qubit-reservoir 
coupling. Due to the fact that the QB is charged with the help of the dipole–dipole interaction, a weak qubit-
reservoir coupling is sufficient to maintain the initial coherence of the battery-charger system and consequently 
to create a robust charging process.

Our results represent a novel control strategy to have a robust QB with a natural implementation in cavity-
QED context. The strategy can be easily implemented also in the circuit-QED setups where the qubit position 
slowly varies linearly with time and also the qubit-cavity interaction is tuned through a sinusoidal position-
dependent coupling66.

In perspective, we believe that this strategy can be used to control the performance of the discharging of a 
qubit-based QB to an available consumption hub. Further efforts in this field can be devoted to use the proposed 
strategy for improving the performance of the two-photon based charging process where the moving-QB is 
coupled with a cavity reservoir by means of a two-photon relaxation.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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Figure 6.   Dynamics of decoherence function for the static and moving battery-charger system. Here we set 
ω0 = 1.5× 109� , D = 0.3� , � = 0 and γ = 10�.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19827  | https://doi.org/10.1038/s41598-023-47193-7

www.nature.com/scientificreports/

Received: 29 July 2023; Accepted: 10 November 2023

References
	 1.	 Alicki, R. & Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 

(2013).
	 2.	 Strasberg, P., Schaller, G., Brandes, T. & Esposito, M. Quantum and information thermodynamics: A unifying framework based 

on repeated interactions. Phys. Rev. X 7, 021003 (2016).
	 3.	 Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contin. Phys. 57, 545 (2016).
	 4.	 Goold, J., Huber, M., Riera, A., del Rio, L. & Skrzypczyk, P. The role of quantum information in thermodynamics: A topical review. 

J. Phys. A 49, 143001 (2016).
	 5.	 Campisi, M., Hänggi, P. & Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 

83, 1653 (2011).
	 6.	 Gelbwaser-Klimovsky, D., Niedenzu, W. & Kurizki, G. Thermodynamics of quantum systems under dynamical control. Adv. At. 

Mol. Opt. Phys. 64, 329 (2015).
	 7.	 Horodecki, M. & Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 

(2013).
	 8.	 Farina, D., Andolina, G. M., Mari, A., Polini, M. & Giovannetti, V. Powerful charging of quantum batteries. Phys. Rev. B 99, 035421 

(2019).
	 9.	 Zhang, Y.-Y., Yang, T.-R., Fu, L. & Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 99, 052106 (2019).
	10.	 Fusco, L., Paternostro, M. & Chiara, G. D. Work extraction and energy storage in the Dicke model. Phys. Rev. E 94, 052122 (2016).
	11.	 Rodriguez, R. R. et al. Catalysis in charging quantum batteries. Phys. Rev. A 107, 042419 (2023).
	12.	 Carrasco, J., Maze, J. R., Hermann-Avigliano, C. & Barra, F. Collective enhancement in dissipative quantum batteries. Phys. Rev. 

E. 105, 064119 (2022).
	13.	 Gumberidze, M., Kolár, M. & Filip, R. Measurement induced synthesis of coherent quantum batteries. Sci. Rep. 9, 19628 (2019).
	14.	 Shaghaghi, V., Singh, V., Benenti, G. & Rosa, D. Micromasers as quantum batteries. Quant. Sci. Technol. 7, 0401 (2022).
	15.	 Ferraro, D., Campisi, M., Andolina, G. M., Pellegrini, V. & Polini, M. High-power collective charging of a solid-state quantum 

battery. Phys. Rev. Lett. 120, 117702 (2018).
	16.	 Quach, J. Q. et al. Superabsorption in an organic microcavity: Toward a quantum battery. Sci. Adv. 8(2), 3160 (2022).
	17.	 Forn-Dílaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. 

Nat. Phys. 13, 39 (2016).
	18.	 Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. 

Phys. Rev. 6, 021314 (2019).
	19.	 Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. The Dicke quantum phase transition with a superfluid gas in an optical 

cavity. Nature 464, 1301 (2010).
	20.	 Joshi, J. & Mahesh, T. S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 106, 

042601 (2022).
	21.	 Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169 (2013).
	22.	 Strambini, E. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656 (2020).
	23.	 Cruz, C., Anka, M. F., Reis, M. S., Bachelard, R. & Santos, A. C. Quantum battery based on quantum discord at room temperature. 

Quant. Sci. Technol. 7, 025020 (2022).
	24.	 Farina, D., Andolina, G. M., Mari, A., Polini, M. & Giovannetti, V. Charger-mediated energy transfer for quantum batteries: An 

open-system approach. Phys. Rev. B 99, 035421 (2019).
	25.	 Ou, C., Chamberlin, R. V. & Abe, S. Lindbladian operators, von Neumann entropy and energy conservation in time-dependent 

quantum open systems. Physica A 466, 450 (2017).
	26.	 Carrega, M., Crescente, A., Ferraro, D. & Sassetti, M. Dissipative dynamics of an open quantum battery. New J. Phys. 22, 083085 

(2020).
	27.	 Barra, F. Dissipative charging of a quantum battery. Phys. Rev. Lett. 122, 210601 (2019).
	28.	 Santos, A. C. Quantum advantage of two-level batteries in self-discharging process. Phys. Rev. E 103, 042118 (2021).
	29.	 Garcia-Pintos, L. P., Hamma, A. & del Campo, A. Fluctuations in extractable work bound the charging power of quantum batteries. 

Phys. Rev. Lett. 125, 040601 (2020).
	30.	 Kamian, F. H., Tabesh, F. T., Salimi, S., Kheirandish, F. & Santos, A. C. Non-Markovian effects on charging and self-discharging 

processes of quantum batteries. New J. Phys. 22, 083007 (2020).
	31.	 Tabesh, F. T., Kamin, F. H. & Salimi, S. Environment-mediated charging process of quantum batteries. Phys. Rev. A 102, 052223 

(2020).
	32.	 Centrone, F., Mancino, L. & Paternostro, M. Charging Batteries with Quantum Squeezing. https://​doi.​org/​10.​48550/​arXiv.​2106.​

07899.
	33.	 Quach, J. Q. & Munro, W. J. Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl. 14, 024092 (2020).
	34.	 Mitchison, M. T., Goold, J. & Prior, J. Charging a quantum battery with linear feedback control. Quantum 5, 500 (2021).
	35.	 Yao, Y. & Shao, X. Q. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E 

106, 014138 (2022).
	36.	 Borisenok, S. Ergotropy of quantum battery controlled via target attractor feedback. J. Appl. Phys. 12, 43 (2020).
	37.	 Rodriguez, R.R., Ahmadi, B., Suarez, G., Mazurek, P., Barzanjeh, S. & Horodecki, P. Optimal Quantum Control of Charging Quantum 

Batteries. http://​arxiv.​org/​abs/​2207.​00094 [quant-ph].
	38.	 Mazzoncini, F., Cavina, V., Andolina, G. M., Erdman, P. A. & Giovannetti, V. Optimal control methods for quantum batteries. 

Phys. Rev. A 107, 032218 (2023).
	39.	 Behzadi, N. & Kassani, H. Mechanism of controlling robust and stable charging of open quantum batteries. J. Phys. A 55, 425303 

(2022).
	40.	 Li, J. L., Shen, H. Z. & Yi, X. X. Quantum batteries in non-Markovian reservoirs. Opt. Lett. 21, 5614 (2022).
	41.	 Santos, A. C., Çakmak, B., Campbell, S. & Zinner, N. T. Stable adiabatic quantum batteries. Phys. Rev. E 100, 032107 (2019).
	42.	 Liu, J. & Segal, D. Boosting Quantum Battery Performance by Structure Engineering. http://​arxiv.​org/​abs/​2104.​06522 [quant-ph].
	43.	 Mortezapour, A., Borji, M. A., Park, D. & Franco, R. L. Non-Markovianity and coherence of a moving qubit inside a leaky cavity. 

Open Syst. Inf. Dyn. 24, 1740006 (2017).
	44.	 Taghipour, J., Mojaveri, B. & Dehghani, A. Witnessing entanglement between two two-level atoms coupled to a leaky cavity via 

two-photon relaxation. Eur. Phys. J. Plus 137, 772 (2022).
	45.	 Mortezapour, A., Borji, M. A. & Franco, R. L. Protecting entanglement by adjusting the velocities of moving qubits inside non-

Markovian environments. Laser Phys. Lett. 14, 055201 (2017).
	46.	 Chao, W. & Mao-Fa, F. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process. 

Chin. Phys. B 19, 020309 (2010).

https://doi.org/10.48550/arXiv.2106.07899
https://doi.org/10.48550/arXiv.2106.07899
http://arxiv.org/abs/2207.00094
http://arxiv.org/abs/2104.06522


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19827  | https://doi.org/10.1038/s41598-023-47193-7

www.nature.com/scientificreports/

	47.	 Golkar, S., Tavassoly, M. K. & Nourmandipour, A. Entanglement dynamics of moving qubits in a common environment. J. Opt. 
Soc. Am. B 37, 400 (2020).

	48.	 Golkar, S., Tavassoly, M. K. & Nourmandipour, A. Qubit movement-assisted entanglement swapping. Chin. Phys. B. 29, 050304 
(2020).

	49.	 Mojaveri, B., Dehghani, A. & Taghipour, J. Control of entanglement, single excited-state population and memory-assisted entropic 
uncertainty of two qubits moving in a cavity by using a classical driving field. Eur. Phys. J. Plus 137, 1065 (2022).

	50.	 Mojaveri, B. & Taghipour, J. Entanglement protection of two qubits moving in an environment with parity-deformed fields. Eur. 
Phys. J. Plus 138, 263 (2023).

	51.	 Taghipour, J., Mojaveri, B. & Dehghani, A. Witnessing entanglement between two two-level atoms moving inside a leaky cavity 
under classical control. Mod. Phys. Lett. A 37, 2250141 (2022).

	52.	 Wang, Q., Liu, R., Zou, H. M., Long, D. & Wang, J. Entanglement dynamics of an open moving-biparticle system driven by classical-
field. Phys. Scr. 97, 055101 (2022).

	53.	 Hadipour, M., Haseli, S., Dolatkhah, H. & Rashidi, M. Study the charging process of moving quantum batteries inside cavity. Sci. 
Rep. 13, 10672 (2023).

	54.	 Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Maximal work extraction from finite quantum systems. Eur. Phys. Lett 67, 
565 (2004).

	55.	 Francica, G., Goold, J., Plastina, F. & Paternostro, M. Daemonic ergotropy: Enhanced work extraction from quantum correlations. 
NPJ Quant. Inf. 3, 12 (2017).

	56.	 Çakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 102, 042111 (2020).
	57.	 Englert, B. G., Schwinger, J., Barut, A. O. & Scully, M. O. Reflecting slow atoms from a micromaser field. Eur. Phys. Lett. 14, 25 

(1991).
	58.	 Haroche, S., Brune, M. & Raimond, J. M. Trapping atoms by the vacuum field in a cavity. Eur. Phys. Lett. 14, 19 (1991).
	59.	 Leonardi, C. & Vagliea, A. Non-Markovian dynamics and spectrum of a moving atom strongly coupled to the field in a damped 

cavity. Opt. Commun. 97, 130 (1993).
	60.	 Nosrati, F., Mortezapour, A. & LoFranco, R. Validating and controlling quantum enhancement against noise by the motion of a 

qubit. Phys. Rev. A. 101, 012331 (2020).
	61.	 Cook, R. J. Atomic motion in resonant radiation: An application of Ehrenfest’s theorem. Phys. Rev. A. 20, 224 (1979).
	62.	 Wilkens, M., Bialynicka-Birula, Z. & Meystre, P. Spontaneous emission in a Fabry–Pérot cavity: The effects of atomic motion. Phys. 

Rev. A. 45, 477 (1992).
	63.	 Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2002).
	64.	 Hood, C. J. et al. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447 (2000).
	65.	 Pinkse, P. W. H. et al. Trapping an atom with single photons. Nature 404, 365 (2000).
	66.	 Jones, P. J., Huhtamäki, J. A. M., Tan, K. Y. & Möttönen, M. Tunable electromagnetic environment for superconducting quantum 

bits. Sci. Rep. 3, 1987 (2013).

Author contributions
All authors contributed equally to the paper.

Competing interests 

The authors declare no competing interests.Additional information
Correspondence and requests for materials should be addressed to B.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancing the direct charging performance of an open quantum battery by adjusting its velocity
	Figures of merit
	Open moving-quantum battery
	Numerical results and discussion
	Outlook and summary
	References


