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Ensemble classification 
of integrated CT scan datasets 
in detecting COVID‑19 using 
feature fusion from contourlet 
transform and CNN
Md. Nur‑A‑Alam 1, Mostofa Kamal Nasir 1, Mominul Ahsan 2, Md Abdul Based 3, 
Julfikar Haider 4 & Marcin Kowalski 5*

The COVID‑19 disease caused by coronavirus is constantly changing due to the emergence of different 
variants and thousands of people are dying every day worldwide. Early detection of this new form 
of pulmonary disease can reduce the mortality rate. In this paper, an automated method based 
on machine learning (ML) and deep learning (DL) has been developed to detect COVID‑19 using 
computed tomography (CT) scan images extracted from three publicly available datasets (A total of 
11,407 images; 7397 COVID‑19 images and 4010 normal images). An unsupervised clustering approach 
that is a modified region‑based clustering technique for segmenting COVID‑19 CT scan image has 
been proposed. Furthermore, contourlet transform and convolution neural network (CNN) have been 
employed to extract features individually from the segmented CT scan images and to fuse them in 
one feature vector. Binary differential evolution (BDE) approach has been employed as a feature 
optimization technique to obtain comprehensible features from the fused feature vector. Finally, a 
ML/DL‑based ensemble classifier considering bagging technique has been employed to detect COVID‑
19 from the CT images. A fivefold and generalization cross‑validation techniques have been used for 
the validation purpose. Classification experiments have also been conducted with several pre‑trained 
models (AlexNet, ResNet50, GoogleNet, VGG16, VGG19) and found that the ensemble classifier 
technique with fused feature has provided state‑of‑the‑art performance with an accuracy of 99.98%.

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), quickly spread 
throughout China in December 2019 and the rest of the world. By July 2022, there had been over 576 million 
confirmed cases worldwide, with 6.41 million  deaths1. COVID-19 has been declared a global pandemic by the 
World Health Organization (WHO) and when the disease progressed to the severe/critical stage, approximately 
60% of the patients  died2. Massive alveolar injury and gradual respiratory failure are believed to be the leading 
causes of death. Coronavirus is a virus that causes a taint in sinuses, nose, or upper throat leading to pneumonia, 
respiratory failure, liver problem, heart problem, septic shock, and eventually death. Like several RNA viruses, 
SARS-CoV-2 is one of the most dangerous diseases with several variants and no obvious symptoms. As a result, 
rapid and precise COVID-19 screening and diagnosis is critical for planning early therapies, stopping the trans-
mission path, and developing clinical schemes to enhance  prognosis3.

COVID-19 can be diagnosed in two ways. The first one is a real-time polymerase chain reaction (RT-PCR) 
test for nucleic detection. Clinical diagnosis, discharge assessment, and recovery follow-up have all benefited 
from the use of RT-PCR. However, the sensitivity of RT-PCR from swab samples is limited, which could lead 
to a lot of false  negatives4. Chest medical imaging either by X-ray or computed tomography (CT) is the second 
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method for detecting COVID-19. COVID-19 has been linked to many tiny patches and ground glass shadows on 
CT in clinical investigations. In terms of pathology, CT image can provide precise information that can be used 
to provide a quantitative assessment of the pulmonary abnormalities that could have prognostic  consequences5. 
In general, despite its great sensitivity (97%), CT is not suited for large-scale screening because of its relatively 
high  cost6. Furthermore, CT emits a significant dosage of radiation, which is hazardous to the human body. CT 
can be utilized to provide reliable clinical diagnoses; however, it is not recommended for clinical applications 
that need recurrent data collection. Another medical imaging technique for detecting COVID-19 is X-ray. As 
an X-ray cannot provide 3D information like a CT scan, radiologists typically utilize it as a screening tool before 
a CT diagnosis. A large number of studies so far have focused on the CT  diagnosis5–7, while the X-ray diagnosis 
has received relatively less  attention8.

For the purpose of differentiating between COVID-19 and other CT scans, Polsinelli et al.9 suggested a CNN 
design (SqueezeNet CNN based) that achieved an accuracy of 85.03%. They assessed their model utilizing data 
from Italian dataset (100 COVID-19 CT scans) and Zhao et al. dataset (360 COVID-19 CT scans, 397 healthy/
others). The key advantage of their model was that it consumed less average categorization time on both high-
end computers (7.81 s per CT image) and medium-end computers (1.25 s per CT scan). However, by utilizing 
effective pre-processing approaches, the performance of their preferred scheme can be significantly enhanced.

Basu et al.10 suggested a two-stage approach (feature extraction followed by feature selection) in their work 
to detect COVID-19 from the CT scan images. CNN models (DenseNet, ResNet, and Xception) were employed 
in the feature extraction phase to produce a feature vector from the input images. To remove unimportant char-
acteristics from the acquired feature vectors, a combination of the global optimization algorithm HS and the 
local optimization algorithm AβHC was used. For the training and testing of their proposed methodology, they 
employed two separate datasets from the SARS-COV-2 CT-Scan Dataset5 with 2482 and 2926 CT images. On 
the two datasets, the proposed technique yielded the best accuracy ratings of 97.30% and 98.87%, respectively. 
Their main drawback of the approach was that it was not capable of diagnosing COVID-19 positive from the 
CT scans at the very early phases of the disease. This could be mostly due to lack of substantial artifacts in the 
images. As a result, the CNNs employed in their work were unable to locate the characteristic features.

Kandati and  Gadekallu11 proposed system to accurately detect chest lesions resulted from COVID-19 infec-
tion by combining two CNN models: Federated Learning (FL) and particle swarm optimization algorithm (PSO). 
The Federated Particle Swarm Optimization approach was tested on a multidimensional COVID-19 infected 
chest lesion image dataset and the chest X-ray (pneumonia) dataset from Kaggle’s repository. The proposed model 
achieved 96.15% prediction accuracy in detecting COVID-19 infected chest lesions.

Karthik et al.12 designed a regression-based method for COVID-19 severity rating using a deep learning 
network in order to diagnose the severity of a patient’s medical condition from the CT scan. A variety of cues 
are encoded into hierarchical attention layers which used a customized CNN that operated as a multi-stage 
analysis tool. To provide a solid encoded depiction for the decoder, multi-scale features were precisely extracted 
and merged. After applying cross-channel correlation and compressing the structural and semantic information 
in the fused contextual map into a global reference encoding, the transformed feature set was compared to the 
baseline CT scan through a non-local attention mechanism that transcribed the lesion locations. The suggested 
design has a 0.84 R-squared score, according to the experimental analysis on the MosMed dataset (1110, 3D 
CT scan images). One standout achievement of this approach was the design of explicit guidance to modulate 
the attention head.

Aversano et al.13 developed a novel ensemble-based method that took advantage of transfer learning utilizing 
pre-trained deep networks morphed with a genetic algorithm, associated with an ensemble architecture for the 
categorization of clustered images of lung lobes. Their research was supported by a new dataset that was created 
by combining several earlier datasets. Considering that the F1-score barely ranged from 0.94 to 0.95, the effec-
tiveness of the ensemble trained on the integrated dataset was fairly steady. The primary weakness of this study 
was the unbalanced dataset with 780 COVID-19 images and 14,520 nonCOVID-19 images.

A new automatic method for COVID-19 screening with the chest CT scans was introduced by Zhao et al.14. 
To initially extract the pulmonary parenchyma, the SP-V-Net image deformation-based segmentation model, 
which included a 3D V-Net for CT image segmentation and a STN for output restriction and refinement, was 
developed. The features extracted from the segmented lung lobes were employed for quantitative analysis with a 
high applicability to identify COVID-19 infection. Their study included self-collected 112 CT scans in total. An 
AUC of 0.9470 was attained by their proposed COVID-19 classification model using statistically representative 
radiomic features.

The contrastive multi-task convolutional neural network (CMT-CNN) proposed by Li et al.3, transformed 
each image through a sequence of augmentations. The model was then tuned to incorporate representations of the 
identical images that were similar while the distinct images that were dissimilar in a latent space. In this manner, 
the spread-out features of the data were maintained and the CMT-CNN was capable of making recommenda-
tions that were invariant to transformation. They performed experiments employing two datasets: a CT dataset 
(4758 samples) and an X-ray dataset (5821 samples), which were put together using both open and self-collected 
archives. Results from the research indicated that their methodology significantly improved accuracy for DL 
models on CT (by 5.49–6.45%) and X-ray (by 0.96–2.42%) images without the need for any additional annotation.

Amyar et al.15 introduced a new multitask deep learning model where the architecture was composed up 
of a common encoder for disentangled feature representation with three tasks, two decoders, and a multi-
layer perceptron for reconstruction, segmentation, and classification, respectively. A self-created dataset of 1369 
patients was used to assess the suggested model and compare it to other alternative image segmentation methods. 
According to the results, the segmentation had a dice coefficient greater than 0.88 and the classification had an 
area under the ROC curve greater than 97%.
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For automated COVID-19 lung segmentation and severity assessment in 3D chest CT scans, He et al.16 
proposed a synergistic learning framework. They created a multi-task multi-instance deep network (M2UNet) 
to assess the severity of COVID-19 patients and segment the lung lobe at the same time, where the context 
data supplied by the segmentation could be utilized to improve the performance of the severity evaluation. To 
begin with, they depicted each input image by a bag to deal with the challenging problem that the severity was 
attributed to the local infected regions in the CT scan image. In M2UNet, a hierarchical multi-instance learning 
technique was also suggested for severity evaluation. Through experimental analysis of their prepared dataset 
(666 CT scans), they demonstrated that their method outperformed several cutting-edge techniques by obtain-
ing an accuracy of 98.5%.

In order to identify COVID-19 utilizing relatively small-sized CT images, Li et al.17 presented a deep learning 
methodology based on transfer learning. Their suggested approach made use of the transfer learning principles, 
which moved information from one or more source tasks to a target domain when the latter had less training sets. 
CheXNet was employed for COVID-19 identification by fine-tuning the network weights on the limited dataset 
for the objective goal. Evaluation was carried out on the freely accessible COVID-19-CT dataset (349 CT scans 
of 216 COVID-19 patients). According to the experimental findings, their method provided good performance 
in comparison to six state-of-the-art approaches by achieving an accuracy of 87%. However, their network 
design and optimizer still have scope for further development. In addition to the challenges, they continued to 
encounter data dependence, one of the most serious issues with deep learning makes it impossible to train the 
models in some specialized fields, particularly at the early stages of the COVID-19 spread when attempting to 
capture the characteristics of COVID-19 and Non-COVID-19. Table 1 summarizes existing image-based system 
methodologies in COVID-19 detection and their limitations.

According to the findings of the above studies, four key challenges in COVID-19 detection research have 
been identified: (a) segmentation of COVID-19 image region, (b) extraction of discriminating characteristics, 
(c) detection or classification approach based on the retrieved features and (d) limited number images in the 
dataset. Many region clustering algorithms for segmentation have been offered by the researchers, however, the 
best one is still yet to be found. On the other hand, feature extraction methods can be based on a single strategy 
or a combination/fusion of strategies. In most cases, the fusion approach yields better results. Besides, selecting 
an appropriate detection method can be challenging as the number of choices is too many. Hence, an improved 
method capable of executing region-based segmentation, fusing features extracted by more than one technique, 
selecting appropriate features, and conducting accurate classification from a large number of images would be 
required to overcome the existing limitations.

As artificial intelligence (AI) has proven to have outstanding capability in the autonomous diagnosis of 
COVID-19 based on CT, thanks to deep learning’s strong representational learning ability. AI offers several 
benefits: (1) Make a speedy diagnosis, especially if the medical system is overburdened. (2) Lighten the load on 
radiologists and (3) Assist underdeveloped areas in getting a proper diagnosis. Most critically, as a new pandemic, 
there is a lack of systematic consensus on the sensitivity and particular signs of COVID-19. AI can develop dis-
criminative features automatically based on the available data, which can help in identifying COVID-19 from 

Table 1.  Existing methods for COVID-19 diagnosis.

References Methodology Finding Limitation

Polsinelli et al.9 A light convolutional neural network (CNN) 
design (SqueezeNet)

Classify COVID-19 and normal images, used 460 
CT scan images and accuracy 85.03%

Low classification accuracy and high compu-
tational complexity, works for high-resolution 
images, using small datasets (460)

Basu et al.10

CNN-based feature extractor + meta-heuristic 
optimization algorithm, harmony search (HS), 
combined with a local search method, adaptive 
β-hill climbing (AβHC) for feature selection

Classify COVID-19 positive and negative, con-
taining 2926 CT scan datasets, accuracy 98.87%

It may not be able to detect COVID-19-positive 
from CT scans at the very early stage of infection

Kandati and  Gadekallu11
Combined two CNN models federated learning 
(FL) and particle swarm optimization algorithm 
(PSO)

Early detection of chest lesion, used 317 CT scan 
images, accuracy 96.17%

Cannot detect low-resolution images of COVID-
19, limited datasets

Karthik et al.12 Data preprocessing + Data Augmentation + multi-
scale features + regression learning

CT-based severity assessment for COVID-19. 
Used 1110 3D CT scan images, accuracy 84.30%,

False detection for the noise and artifact-affected 
images

Aversano et al.13 Dataset merging and clustering + ensemble classi-
fier (VGG, Xception and ResNet)

To detect COVID-19 or normal CT scan images, 
used 23,398 CT scan images, accuracy 95.10%

Reduced number of images used to build the joint 
dataset

Zhao et al.14 Data preprocessing + segmentation 
(V-Net) + SVM classifier

Diagnosis of COVID-19 infection on chest CT 
images, used 212 CT scan images, accuracy 
94.70%

Limited data (212)

Li et al.3
Transformed image + feature extraction + contras-
tive learning + contrastive multi-task convolu-
tional neural network for classification

Classify COVID-19 positive and negative images, 
used 4748 CT scan images, accuracy 93.90%

Demands substantial memory space, restricts the 
batch size, medical imaging data is sparse and 
expensive to label

Amyar et al.15 Segmentation + U-Net classification
Classification and segmentation of COVID-19 
image, used 1369 CT scan images, accuracy 
94.67%

Noisy image

He et al.16 2D image patches + feature embedding + classifier 
 (M2UNet)

Detect positivity and severity of COVID-19, used 
666 Ct scan images, accuracy 98.50%

High computational time. classification more 
complex

Li et al.  20217 Preprocessing + feature extractor + modified 
CheXNet

Classify COVID-19 or normal image, used 1212 
X-ray images, accuracy 87% Small-sized training datasets
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other  pneumonia18. Despite the success of AI in COVID-19 CT diagnosis, the models’ generalization is still 
lacking and must be enhanced further to improve the detection accuracy.

This paper aims to develop a machine learning (ML) based automatic system that detects COVID19 either 
positive or negative from the CT scan images and provides better output compared to the existing methods. The 
main contributions have been provided as follows.

1. The proposed method has developed a new database by collecting two different categories of CT scan images 
consisting of normal and COVID-19 from three publicly available major data  sources19–21.

2. A modified region-based clustering method has been applied to segment the whole CT scan image leading 
to a better classification result.

3. A fused feature vector has been proposed from two different feature extraction methods including contourlet 
transform and CNN.

4. Hybrid binary differential evolution (BDE) has been selected for obtaining Meta heuristic features from the 
fused feature vector and achieving optimized features.

5. A voting-based technique has been suggested for detecting COVID-19 using an ensemble of three base 
classifiers.

The rest of the paper is organized as follows: “Model development” section describes the methodology to 
detect COVID-19 using the CT image and deep neural network. “Results and analysis of the proposed method” 
section illustrates the experiments conducted with corresponding classification performance and model valida-
tion. “Discussion” section presents discussions on performance comparison with the existing methods, complex-
ity analysis and limitations. Conclusions and future research directions are outlined in “Conclusion” section.

Model development
Proposed methodology
The architecture of the proposed model as shown in Fig. 1 considered CT scan images as the input to detect 
COVID-19 or non-COVID-19 images. The CT scan image datasets were collected and merged from three pub-
licly available datasets. Since the dataset images were not of the same size, they were resized and merged. The 
images were then converted to grayscale from RGB. A modified region-based clustering method was proposed 
to segment the CT scan grayscale images. Furthermore, the model deliberated two feature extraction techniques 
including contourlet transform and CNN. Firstly, the contourlet transform method and secondly, the CNN fea-
ture extraction technique extracted feature vectors. These two vectors were fused in one feature vector, which was 
used as the input to train the classification model. The fused feature vector considered a large number of features 
that helped to accurately identify the COVID-19 or normal images. The system also proposed an authentic feature 
selection technique that extracted meta-heuristic features by using BDE. This optimized vector was subsequently 
used to recognize COVID-19 CT scan test pictures using an ensemble classifier.

The most important step in designing a computer-aided diagnostic (CAD) system for detecting COVID-19 
at an early stage is the CT scan image  segmentation22. In order to diagnose unusual disorders, segmentation is 
widely used in the area of medical images. Manual segmentation of the same medical images is possible. Image 
segmentation utilizing segmentation algorithms has a higher accuracy compared to manual segmentation. The 
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Figure 1.  Proposed methodology for detecting COVID-19.
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original fuzzy c-means (FCM)  algorithm23 works well for segmenting noise-free images, however, it fails to accu-
rately segment the images with noise, outliers, or other imaging artifacts. The modified region-based clustering 
technique was used in this work to segment the CT images. The objective of the modified region-based clustering 
algorithm was updated to reduce the intensity of homogeneities by including spatial neighborhood information 
and altering the membership weighting of each cluster. The proposed segmentation algorithm has the following 
advantages: (a) propagates more homogeneous regions than other old fuzzy c-means algorithms, (b) manages 
noisy spots and (c) it is comparatively less sensitive to noise. These techniques have produced excellent output 
images with the simplest approach to isolate the objects from the background.

Dataset used
A chest CT scan is a useful medical imaging tool for accurately diagnosing COVID-19  cases24. As the open reposi-
tory had a limited quantity of CT scan images, thus the images from all three databases were integrated to form a 
new database for this work. A total of 11,407 CT images with 7397 images from COVID-19 class and 4010 images 
from non-COVID19 class. The training and testing phases included images of COVID-19 and non-COVID-19.

(a) The SARS-CoV-2 CT-scan  dataset19 has 2482 CT scan images from 120 patients, including 1252 CT scans 
of 60 patients infected with SARS-CoV-2 from men (32) and females (28), and 1230 CT scan images of 60 
patients who were not infected with SARS-CoV-2 but had other pulmonary disorders. The data of CT scan 
images was gathered from hospitals in Sao Paulo, Brazil. The CT scan images in this dataset are digital scans 
of printed CT tests, and there is no criterion for image size. The smallest CT scan images in the dataset are 
324 × 412 pixels, while the largest CT scans are 484 × 456 pixels. In this dataset, the number of training and 
testing images are 1842 and 640 respectively.

(b) The original CT scans image of 377 people are included in this COVID-19 CT image  dataset20. There 
are 1558 and 4826 CT scan images, respectively, belonging to 95 affected COVID-19 people and 282 
normal people. The Negin Medical Center in Sari, Iran, provided this dataset. All the CT image sizes are 
256 × 256 × 3. In this dataset, the number of training and testing images are 5594 and 790 respectively.

(c) These publicly available datasets are collected from authentic  website21. This dataset contains a total of 2541 
CT scan images with 1200 COVID-19 and 1341 non-COVID-19. In this dataset, a total of 1726 and 815 
images are considered for the training and validation.

As the open repository had a limited quantity of CT scan images, the images from all three databases were 
integrated to form a new database for this work. A total of 11,407 CT images with 7397 images from the COVID-
19 class and 4010 images from the non-COVID-19 class. Figure 2 demonstrates sample CT scan images from 
each dataset. The training and testing phases included images of COVID-19 and non-COVID-19.

Figure 2.  Sample CT scan images from three datasets.
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Preprocessing
Image pre-processing is a key step in medical image processing to obtain meaningful information and appropriate 
classification by eliminating noisy or distorted pixels from each CT scan image. In this stage, the images were 
first resized to 256 × 256 pixels and transformed from RGB to grayscale images using the MATLAB function 
as the input for the model development. Color has no significance in detecting COVID-19 from the CT scan 
images hence grayscale images were employed during building the models to avoid any false classification and 
complexity. Grayscale images are simpler and easier to process than color images because they contain only 
one-color channel, which represents the intensity of the color for each pixel. Figure 3 displays the preprocessing 
steps employed in this work.

Histogram equalization, an image processing technique that is frequently used on CT scan images to improve 
image quality in black and white color scales. The input images and its contrast-enhanced (after histogram equali-
zation) images are shown in Fig. 3 with the related histograms. Histogram equalization was achieved by efficiently 
spreading out the most frequent intensity values, extending the image intensity range. The adoption of a spatially 
variable histogram equalization technique seems to improve the visibility of anatomic structures in various 
clinical  scenarios25. However, the technique increased the amount of noise and artifacts in the presented image.

Modified region‑based clustering techniques
The region-based clustering was employed to simplify the COVID-19 image region, which ensured less com-
putational complexity and relatively accurate analysis. K-means, C-means, thresholding, morphology-based, 
edge-based, watershed, region-growing, and cluster-based approaches are among the various segmentation 
 algorithms26. The authors of this paper proposed a cluster-based algorithm that segmented the image effectively 
and provided a better performance in terms of measuring evaluation matrices SSIM (structural similarity index), 
PSNR (peak signal to noise ratio) and RMSE (root mean square error) scores.

The proposed segmentation method partitioned the COVID-19 image into four clusters (C1 to C4) as gray 
matter (GM), cerebra-spinal fluid (CSF), white matter (WM), the necrotic focus of glioblastoma multiforme 
(GBM). The proposed segmentation technique employs an iterative process to locate the cluster region. In each 
iteration, the cluster’s centroid is modified to reduce the distance between pixels and the centroid. The mean 
brightness of all pixels within a cluster and the distance are obtained by using Eqs. (1) and (2) respectively. The 
COVID-19 segmentation process is depicted in Algorithm 1.

where µk is the clusters mean intensity, and r means pixel’s distance from a cluster’s centroid. The intensity of 
the ith pixel within a cluster is Zi , Ck is the center of the kth cluster, and xi is the intensity of the ith pixel. The 
number of pixels in a cluster is denoted by N. The COVID-19 segmentation process is depicted in Algorithm 1. 
Figure 4 illustrates the grouping of COVID-19 image data step by step.

(1)µk = Ck

N
∑

i=0

Zi

N
,

(2)r = |µk − xi|,

Figure 3.  Preprocessing steps applied to the COVID-19 and non-COVID-19 images.
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Extraction of contourlet transform features
The contourlet transform tries to capture curves rather than points and includes anisotropy and directionality. 
The CT was created to solve the wavelet transform’s limitations such as poor directionality, shift sensitivity and 
lack of phase  information27. At each scale, it allows for a variable and elastic number of directions while obtaining 
virtually critical sampling. The contourlet  transform28 is accomplished based on two steps including Laplacian 
pyramid decomposition and directional filter banks (DFB). At every level of the Laplacian pyramid, a down-
sampled lowpass version of the source image is generated, as well as the difference between the source image 
and the down-sample lowpass image, resulting in a high-pass image. The next level Laplacian pyramid builds an 
iterative structure linking with the down-sampled lowpass version of the original signal. DFBs are used to create 
high-frequency sub-bands with a variety of directions. The contourlet transform acts on two-dimensional CT 
scan images. This work generated sixteen different multi-directional multiscale images using four-level CT with 
the ‘9-7’ filter and computed thirteen various image features, including entropy, homogeneity, energy, correla-
tion, and others from the segmented images, by enumerating the gray level co-occurrence matrix (GLCM) of 
each image. Figure 5 presents the contourlet transformed images considering edges, lines, textures and contours 
in contrast to the wavelet transform.

Extraction of CNN based features
For feature extraction, the proposed system employed the benchmark VGG19 CNN model, which outperformed 
the other CNN models such as AlexNet, GoogleNet, and ResNet50. A 19-layer version of  VGGNet29 was used 
to create this network. Figure 6 shows the VGG19 architecture, which includes sixteen convolution layers and 
three fully connected (dense) layers. For each convolution layer’s output, a non-linear ReLU was employed as 
an activation function. The entire convolution sections were divided into five sub-regions by five consecutive 
max-pooling layers. Two convolution layers were employed with depth dimensions of 64 and 128 respectively. 
Each of the other three sub-regions was made up of four consecutive convolution layers with depth sizes of 256, 
512, and 512 in each sub-region. In this case, a convolutional kernel of size of 33 was chosen. The last layer of 
the proposed VGG19 models was replaced by a softmax classification layer. Two fully connected layers with 
neurons 1024 and 4096 were installed before the output layer. As a result, the fully connected layer yields 4096 
features for classification.

Features fusion and generation of optimized features
A fusion-feature vector was created by combining the extracted features from the contourlet transform and CNN. 
Overlapping, redundancy, and dimensional expansion are regular occurrences in all fusion-based techniques, 
therefore dimension reduction, as well as redundancy minimization or the elimination of irrelevant features, is 
required to obtain the optimum features. Many researchers obtain optimized features using Principal Component 
Analysis (PCA)30 and minimum Redundancy–Maximum Relevance (mRMR)31 but the BDE feature optimization 
method provides better performance than the others. For the dataset used in this study, three feature optimiza-
tion approaches were tested and BED performed best.

In the mRMR feature selection algorithm, the mutual dependencies of x and y variable can be determined 
using Eq. (3) where p(x), p(y) and p(x,y) are the probability density functions.

Equation (4) approximates the maximal relevance D(S,c), where  xi is the mean of all mutual dependencies 
and c is the class. As a result, the function R(S), is represented by Eq. (5) that can be used to add minimal redun-
dancies. S is the feature combination.

(3)I
(

x, y
)

=

∫∫

p
(

x, y
)

log
p(x, y)

p(x)p(y)
dxdy.

Figure 4.  Applied modified region based clustering method for COVID19 and non-COVID19 image 
segmentation.
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In the PCA algorithm, the covariance of features is determined to take uncorrelated features. PCA uses Eq. (6) 
to combine the correlated features.

The BDE feature selection technique is a heuristic evolutionary strategy for reducing the successive problem. 
The notion of advanced binary differential evolution (ABDE) is expanded to include feature selection difficulties. 
Three random vectors Pu1 , Pu2 , and Pu3 are chosen for vector pk for the mutation operation, so that u1  = u2  = 
u3  = k, where k is a population vector arrangement. The dth characteristic of the difference vector (Eq. (7)) is 
zero if the dth dimensions of the vectors Pu1 and Pu2 are equal; otherwise, it has the same value as the vector Pu1:

Following that, the mutation and crossover processes are carried out, as illustrated by the Eqs. (8) and (9).

(4)maxD(S, c) =
1

|S|

∑

xi∈S,

I
(

xi,c
)

,

(5)maxR(S) =
1

|S|2

∑

xixj∈S,

I(xi,xj,).

(6)ρ =

∑N
i=1

(

Xi − X
)

(Yi − Y)

n− 1
.

(7)difference vectordk =

{

0,Pdu1 = Pdu2
Pu1,other

}

.

Algorithm 1: Proposed segmentation algorithm.
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Here, W denotes the try vector, CRǫ(0, 1), a crossover amount, and γε(0, 1) denotes the mutation amount. 
If the try vector Wk has a higher fitness value than the current vector Pk , then it will be replaced in the selec-
tion phase. In a different way, the current vector Pk is saved for the next generation. Finally, this fused method 
achieved 1300 accurate optimized features.

Figure 7 illustrates the steps in obtaining the optimized features in a single vector by fusing the features vec-
tors extracted by the contourlet transform and CNN. The size of this feature vector is 4109. BDE based feature 
selection method was then employed to get 1300 most discriminating features.

Hybrid selective mean filtering (HSMF) method
The authors suggested a novel, straightforward hybrid selective mean filter (HSMF)  technique32 to calculate 
the average value selectively, unlike the traditional mean filter (MF) method, which calculates the average pixel 
utilizing all pixels in a given kernel region. A threshold value was used to define pixel selection (h). Noise was 
not considered in the noise reduction procedure if an adjacent pixel in a kernel was higher or smaller than the 
threshold value from the value of the core pixel. The pixel selection was performed with the following Eq. (10).

If 
∣

∣I
(

x, y
)

− I(x + i, y + j)
∣

∣ ≤ h, foreveryiandj then N ′
(

x, y
)

= N − 1. The noise image reduction is then 
calculated using Eq. (11).

In the Eqs. (10) and (11), the disparities between all nearby pixel values and the central pixel value are likely 
to exceed h in the edge areas. The pixel value ISMF(x, y) is equal to I in this situation (x, y). In contrast, in the 
homogenous regions, the disparities between all nearby pixel values and the central pixel value are likely to be 
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Figure 6.  Architecture of VGG19 for feature extraction from CT scan images.
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smaller than h. The pixel value ISMF (x, y) is equivalent to IMF in such situations (x, y). Figure 8 depicts the noise 
reduction process of the HSMF method. The mean pixel value at the central pixel in a position (x, y) was calcu-
lated only from the black area where the differences in pixel values from the value of the central pixel were less 
than the threshold value, not from all the pixels in a particular square kernel (i.e., union of black and red areas). 
The pixels outside of the black region, as well as those still inside the kernel of interest with pixel values higher 
than the threshold value, were not included in the calculation.

The threshold (h) was calculated using the magnitude of the standard deviation (SD) of the pixel values inside 
an image, which is a measure of  noise33. To cover the majority of the image noise in this study, a 3 SD threshold 
was utilized. An approach proposed in Ref.34 was used to determine the SD automatically. This selects the mini-
mum value of the standard deviation map automatically (SDM) as defined by Eq. (12).

The HSMF was supposed to reduce the noise dramatically while maintaining good spatial resolution. The 
technique is computationally light and fast as it is based on MF, making it easier to employ in clinical imaging 
than the BF (bilateral filter). Figure 9 displays the filtered image by using the HSMF method.

Ensemble classifier
To determine the COVID-19, a ML/DL based ensemble classifier was  employed35. Four ensemble models are 
commonly used to create the predictive classifier such as boosting, bagging, stacking, and  voting36. The bagging 
approach of the ensemble methods like a bootstrap aggregation was used in this experiment. To compare the 
classification performance utilizing the optimized feature vector, three distinct types of classifiers including Long 
Short-Term Memory (LSTM), ResNet50 and Support Vector Machine (SVM) were employed. These three base 

(12)SD = min(SDM).
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Figure 8.  An illustration of picking neighboring pixels for noise reduction in the hybrid selective mean filter 
(HSMF) method.
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classifiers were chosen as they typically outperform other ML/DL techniques. The categorization of any new 
instance by ensemble approaches is based on the classification votes of the basic classifiers. The output of each 
base classifier is regarded as a vote, with “v = 1” for the COVID-19 class and “v = 0” for the non-COVID-19 class.

The ensemble decision class is one that receives majority of the votes from the base classifiers that means 
(

if
∑n

i=1v > n
2

)

 as indicated in Eq. (13).

where the total number of base classifiers is n.
Figure 10 represents the ensemble classifier-based bagging approaches where C1, C2, and C3 depict the LSTM, 

ResNet50, and SVM base classifiers, respectively. Similarly, P1, P2, and P3 signify the votes they represent. The 
final classification result combines the votes P1, P2, and P3 using Eq. (13) to yield the anticipated class based on 
the majority votes. To train the base classifiers, the training dataset set was divided into three subsets, D1, D2, 
and D3, then the testing was performed after training.

(13)Ensemble Class =

n
∑

i=1

v,

Figure 9.  Filtered CT scan images using hybrid selective mean filter method.
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Results and analysis of the proposed method
Experimental settings
The training and testing procedures was set-up based on two classes: COVID-19 or non-COVID-19. The entire 
dataset was randomly partitioned with a ratio of 80:20 for the training and testing. All the training and testing 
were performed by MATLAB 2019b on a computer with an Intel Core i9, 3.0 GHz processor, and 8 GB RAM. The 
experimenting times were calculated using a GEFORCE RTX 2070 super GPU configuration. 4010 COVID-19 
images and 7397 non-COVID-19 images are selected from the three standard datasets. The data distribution for 
developing COVID-19 detection framework is presented in Table 2.

Evaluation metrics
Four metrics named accuracy (ACC), specificity (SP), sensitivity (SE), and precision (PR) were used to evaluate 
COVID-19 detection performance in the experiments as defined by Eqs. (14) to (17). The metrics were calculated 
from the confusion matrix. The proportion of patients correctly classified as COVID-19 and non-COVID-19 
from all patients was measured by ACC. The capacity of a test to correctly identify patients with COVID-19 
disease from correctly identified COVID-19 and incorrectly identified non-COVID-19 was measured by its 
sensitivity. The ability of a test to correctly identify patients without the COVID-19 condition from correctly 
identified non-COVID-19 and incorrectly identified COVID-19 patients was measured by its specificity. Preci-
sion refers to the percentage of correctly identified COVID-19 patients from all of the correctly and incorrectly 
identified COVID-19 patients.

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

Segmentation performance
In this work, evaluation metrics such as PSNR (peak signal to noise ratio), SSIM (structural similarity index), 
and RMSE (root mean square error) were calculated to measure the segmentation performance (Table 3). It was 
clear that the proposed modified region-based clustering method produced a better performance compared to 
the other segmentation methods in terms of PSNR and SSIM. However, the RMSE value was slightly worse than 
Fast C-means and K-means clustering methods.

(14)Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
,

(15)Specificity (SP) =
TN

TN + FP
,

(16)Sensitivity (SE) =
TP

TP + FN
,

(17)Precision (PR) =
TP

TP + FP
,

Table 2.  Data distribution for training and testing.

Datasets COVID-19 Non-COVID-19

Training 3222 5935

Testing 788 1462

Total 4010 7397

Table 3.  Comparison of several segmentation techniques. Best values are in bold.

Image segmentation techniques PSNR SSIM RMSE

Threshold-based 27.89 0.8604 0.2890

Watershed method 31.83 0.8733 0.2578

C-means clustering method 33.75 0.8833 0.2645

Fast C-means clustering method 34.89 0.9089 0.2643

K-means method 35.11 0.9073 0.2641

Modified region-based clustering method (Proposed) 36.17 0.9179 0.2645



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20063  | https://doi.org/10.1038/s41598-023-47183-9

www.nature.com/scientificreports/

Filtered method performance
The HSMF has the potential to lower a given noise level by up to 75% without sacrificing spatial resolution. For 
a similar noise level, the bilateral filter (BF) was only able to lower the noise by 50% from 3.0 to 1.5 mGy. While 
at a higher noise level, BF cannot achieve a 50% reduction for instance a noise reduction from 6.0 to 3.0 mGy 
would not be possible. According to the current experiments, the HSMF reduced the noise by 75% (from 6.0 
to 1.5 mGy), implying that the HSMF proved to be a better filter than the BF. In this study, PSNR was also used 
to compare the performance of different filtering techniques. Highest PSNR value was obtained for the HSMF 
(29.34) when compared to the adaptive median filter (AMF) (28.54) and the BF (28.75).

Classification performance‑feature fusion
The deep features from the pre-trained CNN (VGG19) model were additionally merged with the extracted fea-
tures using the contourlet transform. While concatenating with deep CNN, the fusion of contourlet transform 
exhibited superior classification results than the interpolation-oriented descriptor such as scale-invariant feature 
transform (SIFT)37 and Histogram Oriented Gradients  HOG38. Table 4 shows the comparison results utilizing 
contourlet transform, SIFT and HOG feature descriptors. It was clear that fusion of features by contourlet trans-
form + CNN with feature optimization showed better performance that the individual techniques. Again, after 
optimization with three techniques (PCA, mRMR and BDE), BDE produce the best performance. Therefore, 
fusion of CNN features with contourlet transformed features and optimization with BDE were considered in this 
work. For all fused based CNN feature extractor models, this work employed the ensemble classifier.

Classification performance‑feature extraction by pre‑trained CNN models
Feature extraction experimentations were carried out by various pre-trained CNN models such as GoogleNet, 
VGG16, Resnet50, AlexNet and VGG19 and the extracted features were fused with features obtained by contour-
let transform. It was identified that the VGG19 outperformed the others, in terms of all performance measures 
(Fig. 11). For each of the per-trained models, various performance metrics were determined, and the optimum 
results were obtained by changing the learning parameters and number of epochs. The best outcomes were 
achieved by selecting an appropriate learning parameter of 0.001 and an epoch of 50 for each of the pre-trained 
models.

Classification performance‑ensemble method
For classification, the final feature vector with BDE optimization was considered as the input in developing the 
suggested ensemble model, which included LSTM, SVM and ResNet50 classifiers. Figure 12 shows the classifi-
cation results of each separate classifier and the ensemble method. Compared to the three classifiers separately, 
the ensemble of these classifiers provided better outcome with an accuracy of 99.98%, a specificity 99.93%, a 
sensitivity and precision of 99.87%. Figure 13 shows different performance accuracy/loss curves for classification.

The true positive rate (TPR) against False Positive Rate (FPR) in a collection of threshold values is represented 
using a ROC curve. The Receiver Operating Characteristics (ROC) curves for the individual and ensemble 
methods are presented in Fig. 14. The goodness of the ensemble method’s classification performance was clearly 
noticed. The ROC curve’s area covered was almost 100% indicating that the model showed outstanding perfor-
mance in terms of COVID-19 identification from the CT images.

Figure 15 presents two colors have been used in the confusion matrix based on the labels, represented by 
negative and positive prediction values. The yellow color represents (true prediction: TP and TN) how many 
COVID-19 and normal images have been detected accurately. Whereas the blue color (false prediction: FP and 
FN) indicates the number of COVID-19 and normal images that have been misclassified. According to the 
confusion matrix presented in, the proposed ensemble model missed 1 COVID-19 image (false negative) out of 
788 COVID-19 images in this testing experiment, while it misidentified 1 non-COVID-19 images as COVID-19 
images (false positive) out of 1462 non-COVID-19 images.

Validation performance
The performance of the proposed model was additionally assessed using the generalization and k-fold valida-
tion techniques.

Table 4.  COVID-19 detection performance using features from several techniques. Best values are in bold.

Features ACC SP SE PR

SIFT only features 0.8556 0.8521 0.8492 0.8501

HOG only features 0.8617 0.8591 0.8512 0.8624

Contourlet transform only features 0.8763 0.8713 0.8892 0.8832

VGG19 only features 0.9766 0.9567 0.9678 0.9478

(Contourlet transform + VGG19) features without optimization 0.9802 0.9756 0.9848 0.9758

(Contourlet transform + VGG19) features with mRMR optimization 0.9827 0.9784 0.9871 0.9786

(Contourlet transform + VGG19) features with PCA optimization 0.9878 0.9869 0.9889 0.9876

(Contourlet transform + VGG19) features with BDE optimization 0.9998 0.9993 0.9987 0.9987



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20063  | https://doi.org/10.1038/s41598-023-47183-9

www.nature.com/scientificreports/

Cross-validation is a resampling method used in ML to ensure that a model is efficient and precise on unseen 
data. The K-fold cross-validation technique was employed in this study to divide the data into five folds and 
ensure that each fold was utilized as a testing set at least once. By doing so, the model was tested on completely 
unseen CT images, which would provide confidence in the model’s capacity to accurately recognize the COVID-
19 cases. Table 5 presents the accuracy and loss values while testing and validating the proposed model using 
the fivefold cross-validation technique. It is clear that an average accuracy of 95% was obtained during testing 
and validation indicating the reliability of the proposed method on the unseen data. Figure 16 shows that ROC 
curves for individual and average folds.

To determine the model’s performance, the generalization technique was used where the model trained on 
a given dataset would predict COVID-19 on a completely new dataset. The majority of the current research 
encounters challenges in using the generalization technique since the models were unable to recognize the varied 
relationship between pixel values in unique X-ray or CT images from different sources  datasets39. In this study, 
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COVID-19 Radiography database was considered for the generalization purpose which was entirely distinct 
from the training  dataset38 and contained a total of 2541 images, of which 1200 were COVID19 and 1341 were 
non-COVID-19 cases. In this dataset, a total of 160 images were available for the testing purpose. The proposed 

Figure 13.  Comparison of training accuracy and loss performance curves for different classifiers.
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system failed to identify 2 COVID-19 cases (false negative) out of 75 COVID-19 cases. Furthermore, out of 83 
non-COVID-19 cases, it misidentified 1 non-COVID-19 cases (false positive) as the COVID-19 cases. Figure 17 
illustrates the accuracy and loss performance by using generalization techniques along with confusion matrix 
and ROC curve for the COVID-19 Radiography database. The accuracy, precision, specificity, and sensitivity 

Figure 14.  Receiver operating characteristics (ROC) curves for different models.

Figure 15.  Confusion matrixes for different models.
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attained by the proposed model were 98.10%, 96.70%, 98.79%, and 97.33%, respectively, demonstrating the 
model’s robustness even when a new set of data was tested.

Discussion
Comparative analysis
Given the increasing size of biomedical datasets and complexity of the data, the use of ML and DL techniques in 
data analysis is continuing to grow in the coming years. As a result, novel strategies for uncovering the biologi-
cal patterns, particularly biomedical imaging data, are required. This paper provides an ensemble classification 
technique for detecting COVID-19 cases from CT images. Table 6 compares the performance of the proposed 
strategy with the previous methods available in literature that used various classifiers and pre-processing tech-
niques. It is obvious from the table that the proposed method outperformed all the previous state-of-the-art 
(SOTA) models by achieving a high classification accuracy of 99.98%.

Ensemble learning is a simple machine learning approach that seeks better predictive performance by combin-
ing the predictions from multiple models. However, in the proposed system, first, the dataset was pre-processed 
and segmented the Covid-19 affected regions using appropriate segmentation technique. Relevant features were 
extracted by two different feature extractors (VGG-19 and contourlet transform) and fused them in one vector. 
For classification purposes, the voting technique of the ensemble method was employed. It should be noted that 
the ensemble method was only used for classification of the features not fusing them together. Hence, in this 
proposed system, the modified region-based segmentation, fused features, BDE feature selection method, and 
ensemble classification play a significant role in obtaining significantly improved accuracy.

Most studies published in the literature did not use a segmentation technique to pre-process CT  images40–44. 
However, the proposed method used modified region-based clustering technique for segmenting the COVID-19 
CT images. Hasan et al.45 and Zain et al.46 used an LSTM network as a classifier to achieve a classification accuracy 
of above 98% on 321 and 1322 CT images, respectively. However, the LSTM networks might pose problems when 
training on small amounts of images since they are susceptible to overfitting. Also, the LSTM network requires 
additional memory and training time to train a network. Most previous research used a single pre-trained DL 

Table 5.  The values of accuracy and loss for training and test data during cross validation.

Fold

Accuracy Loss

Training testing Training testing

Fold1 0.9367 0.9236 0.0722 0.169

Fold2 0.9999 0.9789 0.0675 0.122

Fold3 0.9487 0.9685 0.0785 0.189

Fold4 0.9512 0.9479 0.0678 0.275

Fold5 0.9145 0.9574 0.0734 0.179

Mean 0.9568 0.9467 0.07188 0.934

Figure 16.  ROC curves for k-fold validation.
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model as a  classifier41–52, whereas LSTM, ResNet50 and SVM were combined as an ensembled classifier to achieve 
better classification performance. Most research only used a single dataset for their  experiments40,42–51,53, making 
their models unreliable in predicting COVID-19 from a different dataset. Some work produced lower accuracies 
even when they used small number of  datasets40,43,44,49. In contrast, the current method employing three distinct 
datasets with large number of images to develop the model would enhance its reliability.

Figure 17.  Training accuracy and training loss curves, confusion matrix, and ROC curves by appling 
generalization method. for COVID-19 Radiography database.

Table 6.  Performance comparison between the proposed method and existing methods. Best values are in 
bold.

Reference Dataset size Pre-Processing Model Accuracy (%)

Amine et al.52 1369 NA Multi-task deep learning, U-Net segmentation 94.67

Ophir et al.40 947 NA D and 3D Deep learning models, U-Net Mode 92.27

Wang et al.53 5340 Yes Covid19-Net 81.24

Brunese et al.41 6523 Yes Deep learning VGG16 97.00

Butt et al.42 306 Yes Resnet18 98.20

Yang et al.43 295 NA Dense Net 92.00

Jaiswal et al.47 2492 NA DenseNet201 96.00

Ko et al.48 3993 Yes Resnet50 99.54

Wu et al.49 495 Yes VGG19 76.00

Mei et al.50 905 Yes Inception_resnet_v2 95.00

Hasan et al.45 321 Yes LSTM neural network classifier 99.68

Pathak et al.51 852 NA Resnet50 93.01

Song et al.44 227 NA BigBigGAN 92.00

Zain et al.46 1322 Yes LSTM 98.00

Proposed method 11,407 Yes Ensemble classifier 99.98
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Complexity analysis of the proposed method
The processing time of a system plays a significant role in determining the image retrieval process. For this 
purpose, the entire operation of this study was performed by MATLAB 2019b on a high performance computer 
specified in “Experimental settings” section. The estimated processing times in this study are shown in Table 7. 
The entire operational time for each image is a combination of processing, training, and testing times. The pro-
cessing time consists of preprocessing, feature extraction and classification times where the process begins with 
reading the image and finishes with feature extraction. On the other hand, the training time is the amount of 
time required to train each classifier on the complete dataset. The testing time merely consists of the prediction 
and voting of each classifier. Therefore, based on the processing times, it can be concluded that the proposed 
method was not computationally complex.

Limitations and future work
This feature fusion ensemble method of detecting COVID-19 was developed based on three publicly accessible 
datasets. Despite huge success of the proposed method in identifying COVID-19 cases correctly, some drawbacks 
need to be highlighted for further improvement. One of the key challenges faced by the researchers in the ML 
based automated detection of COVID-19 cases is the requirement for a substantial annotated image dataset 
collected by a qualified physician or radiologists in order to develop a robust model.

To the best of our knowledge, the majority of the contemporary ML tools for medical imaging have this same 
constraint. The researchers are currently making their datasets available to the public in an effort to address this 
problem. However, the difficulty of gathering accurate data is made even more difficult by the absence of accurate 
annotation of the data that has already been collected.

Adopting zero-shot, few-shot, and deep reinforcement learning (DRL) techniques could help to address this 
problem in the near  future54,55. Zero-shot learning has the capacity to build a recognition model for the unseen 
test samples that have not been labelled for training. Therefore, the zero-shot learning can address the issue of 
lack of training data for the COVID-19 classes. Additionally, a deep model can learn information from a small 
number of labeled instances per class using few-shot learning technique. On the other hand, DRL can reduce 
the need for precise annotations and high-quality images.

Another limitation is that in this study CT images were exclusively used. However, in future, the same 
described strategy can be applied on X-ray images to detect COVID-19 cases. This would enable to assess the 
effectiveness of THE model on a variety of image datasets. Although the proposed method achieved an outstand-
ing performance on three publicly available dataset, the work has not been validated in actual clinical study yet. 
Therefore, efforts are required to test the model in clinical condition and gather feedback from the doctors and 
radiologists for further improvement of the model. In addition, fine-tuning of the proposed strategy could be 
carried out to address the issue of the lengthy training time resulting from the hybrid feature fusion technique.

Conclusion
The proposed research has developed a high-accuracy, low-complexity intelligent ML model for COVID-19 iden-
tification using CT scan images. For the detection of COVID-19, the system combined the strength of contourlet 
transform with the power of CNN for feature fusion optimized by BDE, as well as the bagging-based ensemble 
classifier. The analysis of the results was performed considering the evaluation metrics including accuracy, sen-
sitivity, specificity, and precision obtained from the confusion metrics. The proposed methods attained superior 
results of 99.98% accuracy compared to other classifiers including LSTM, ResNet50, and SVM or the existing 
approaches reported in the literature. Furthermore, the proposed system tested using fivefold cross-validation 
and with an unknown dataset for generalization purpose produced accuracies of 95.68% and 98.10% respectively.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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