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Unboxing machine learning models 
for concrete strength prediction 
using XAI
Sara Elhishi 1*, Asmaa Mohammed Elashry 2 & Sara El‑Metwally 2

Concrete is a cost‑effective construction material widely used in various building infrastructure 
projects. High‑performance concrete, characterized by strength and durability, is crucial for structures 
that must withstand heavy loads and extreme weather conditions. Accurate prediction of concrete 
strength under different mixtures and loading conditions is essential for optimizing performance, 
reducing costs, and enhancing safety. Recent advancements in machine learning offer solutions to 
challenges in structural engineering, including concrete strength prediction. This paper evaluated 
the performance of eight popular machine learning models, encompassing regression methods such 
as Linear, Ridge, and LASSO, as well as tree‑based models like Decision Trees, Random Forests, 
XGBoost, SVM, and ANN. The assessment was conducted using a standard dataset comprising 1030 
concrete samples. Our experimental results demonstrated that ensemble learning techniques, notably 
XGBoost, outperformed other algorithms with an R‑Square  (R2) of 0.91 and a Root Mean Squared 
Error (RMSE) of 4.37. Additionally, we employed the SHAP (SHapley Additive exPlanations) technique 
to analyze the XGBoost model, providing civil engineers with insights to make informed decisions 
regarding concrete mix design and construction practices.

Concrete, a widely employed construction material, is renowned for its cost-effectiveness in various infrastructure 
projects, including but not limited to buildings, bridges, tunnels, and roads. The robustness of these structures, 
particularly their ability to withstand heavy loads and extreme weather conditions, relies heavily on deploying 
high-performance concrete with sufficient strength and  durability1,2. Accurate prediction of concrete strength, 
accounting for diverse mixtures and varying loading conditions, is paramount for civil engineers. Such predictive 
capabilities empower engineers to optimize concrete performance, decrease costs, and enhance safety  measures3,4. 
The estimation of concrete strength is a process that is typically applied in various phases of civil engineering 
projects. Initially, during mix design, it is used to ensure the best performance at a minimal cost for the specified 
 project5. Subsequently, during construction, physical tests are conducted to verify that the chosen mix meets 
the desired criteria and performance requirements over time, employing various  methods6. As a result, concrete 
strength estimation is a crucial process for performance-based design, optimizing mix proportions, promoting 
sustainability, facilitating structural health monitoring, and managing risks.

Concrete, a composite material, comprises cement, coarse and fine aggregates (e.g., sand and stone), water, 
and various admixtures. Accurately forecasting concrete strength within this intricate composition is a significant 
challenge, given the non-linear relationship between these components and the concrete’s  strength7,8.

Historically, traditional methods have been employed for predicting concrete strength, relying on empirical 
formulas, analytical models, and physical tests. These physical tests involve the creation of concrete cubes or 
cylinders according to specified standards, followed by curing and a waiting period until the mixture reaches 
its maximum strength, typically after 28  days9,10. Any errors necessitate repeating the entire process. While 
these physical tests are straightforward, they are time-consuming, cost-efficient, and prone to providing impre-
cise results. Some studies have proposed empirical regression methods to calculate proportional ratios based 
on various elements to predict strength. However, these empirical approaches have struggled to capture the 
complex, non-linear relationships among different concrete components, making accurate strength prediction 
 challenging2,4,8,11,12.

The emergence of Artificial Intelligence (AI) and Machine Learning (ML) techniques has led to solutions to 
tackle the challenges encountered in structural engineering, including predicting concrete  strength13. Machine 
learning models can learn the intricate relationships among various concrete mixture parameters and strengths 
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from historical data, applying this knowledge to make accurate predictions on new  data14–16. Nonetheless, due 
to a lack of interpretability and transparency, engineers often find it challenging to comprehend the behavior of 
machine learning models and the rationale behind their predictions. Introducing the field of Explainable Artificial 
Intelligence (XAI), which provides the tools to interpret machine learning model predictions, understand their 
behavior and influencing factors, and analyze the significance of classification  features17–19.

This paper investigates three machine learning approaches for concrete strength prediction: statistical regres-
sion, tree-based ensemble techniques, and artificial neural networks. Regression models aim to establish math-
ematical functions describing the relationship between input and output variables. While Linear Regression 
captures simpler relationships, Ridge and Least Absolute Shrinkage and Selection Operator (LASSO) Regression 
excels at modeling more complex connections. Ensemble learning combines multiple models to enhance pre-
diction accuracy and reduce overfitting. Various models are trained on different subsets of data, with the final 
prediction being an aggregate of each model’s output. Inspired by the structure and functioning of the human 
brain, Artificial Neural Network (ANN) is introduced as a machine learning model that utilizes the backpropa-
gation technique in the training process to adjust the neurons’ weights and minimize errors between predicted 
and actual outcomes.

To evaluate the performance of these machine learning approaches in predicting concrete strength, we con-
ducted experiments using a real-world dataset containing diverse parameters (e.g., cement, water, coarse aggre-
gate) influencing concrete strength. We employed various evaluation metrics to assess the models’ performance 
and identify the most accurate and efficient model. Additionally, we explored the impact of XAI techniques on 
improving transparency and interpretability in concrete strength prediction. The SHapley Additive exPlanations 
(SHAP) method elucidates factors contributing to the concrete strength  prediction20. SHAP values are utilized 
to explain the output predictions of any machine learning model. They employ the concept of game theory to 
compute the contribution of each ’game player’ (feature) to the final ’game outcome’ (model prediction). In the 
context of machine learning, each feature is assigned a value that represents its importance and contribution 
to the final model prediction. The SHAP method analyzes the effect of each feature, assesses its significance 
relative to others, and evaluates how features interact within a unified framework to determine the final model 
prediction output.

The results of our study reveal that ensemble models, specifically XGBoost, surpass regression and ANN 
models when it comes to predicting concrete strength. Furthermore, the application of XAI techniques substan-
tially improves the transparency and interpretability of machine learning models, offering valuable insights into 
concrete strength prediction. Engineers can utilize these insights to improve prediction accuracy and enhance 
the safety of concrete structures.

The paper’s structure is as follows: “Related work” reviews previously introduced machine learning models 
for concrete strength prediction. “Methodology” presents the machine learning framework for concrete strength 
prediction, encompassing data collection, exploration, preprocessing, model training, testing, evaluation, and 
explanation stages. “Experimental results” showcases experimental results generated by different models and 
evaluated using standard metrics. Finally, “Conclusion” concludes the paper, highlights current limitations and 
outlines future research directions in concrete strength prediction.

Related work
Recently, there has been a thriving interest in leveraging ML techniques to predict material and structural 
strength. This section offers a summary of significant research efforts in this field and presents their key contribu-
tions in Table 1. Specifically, three ML models, CatBoost, k-Nearest Neighbors, and Support Vector Regression, 
have been employed to forecast concrete  strength21. These models are supplied with six features extracted from 
249 samples, encompassing parameters such as cement, slag, water, sand, crushed stone, and additives. Among 
these models, k-Nearest Neighbors has shown the most promising performance, achieving the lowest error rate 
and the highest determination coefficient.

Another investigation focusing on the prediction of concrete compressive strength has reported that Extreme 
Gradient Boosting (XGBoost) outperformed Random Forests and Support Vector  Regression22. This study used 
eight features, including cement use, age, water content, coarse aggregate, fine aggregate, high-efficiency water 
reducer, fly-ash, and mineral powder, derived from a dataset comprising 60 samples.

In ensemble learning, an assessment of four models, namely Adaptive Boosting (AdaBoost), Gradient Boost-
ing Decision Trees (GBDT), XGBoost, and Random Forests, was conducted to predict compressive and tensile 
 strength23. Based on a dataset consisting of 204 samples, the study employed the eight features outlined in Table 1. 
The GBDT model exhibited the most promising results among the evaluated models.

To explore the adaptability of concrete properties and compressive strength, another study adopted a combi-
nation of four models: Linear Regression, Classification and Regression Tree, ANN, and Support Vector Machine 
(SVM)24. The concrete samples were categorized based on workability, as determined by a slump test with a 
threshold of 12.5 cm. Linear Regression produced the most accurate predictions for lower workability slump 
tests, while ANN and SVM excelled in cases of higher workability.

The AdaBoost algorithm has also been applied to forecast concrete compressive strength using a composite of 
eight components or features alongside information about curing time. Remarkably, this approach outperformed 
other ML models, including ANN and  SVM7.

To accurately estimate the compressive strength of fly-ash concrete and reduce the high variance of predic-
tive models, the study in  reference25 compares various ensemble deep neural network models. These models 
include the super learner algorithm, simple averaging, weighted averaging, integrated stacking, and separate 
stacking ensemble models. Among these, the best results, with the highest coefficient of determination, lowest 
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mean squared error, and the highest mean accuracy (97.6%), were achieved using separate stacking with the 
random forest meta-learner.

Authors  of27emphasize the importance of establishing a precise model for the bond strength of corroded 
reinforced concrete, one that minimizes variance and maximizes reliability. In their study, they compared dif-
ferent convolution-based ensemble learning algorithms to determine which ones perform the best. To address 
these issues, they utilized a database compiled from previous experimental studies on the relative bond strength 
of corroded reinforced concrete to train convolution-based ensemble learning models. Their results indicate that 
the convolution-based integrated stacking model provides accurate predictions with coefficients of determina-
tion, a-20 index, and mean squared error values of 0.84, 0.75, and 0.022, respectively.

The domain of XAI techniques is becoming increasingly important in the context of predicting concrete 
strength. These methods assist engineers and researchers in understanding the crucial factors that impact con-
crete strength, enabling them to make informed decisions regarding concrete mix design and construction 
 practices28. Common XAI techniques deployed in concrete strength prediction encompass feature importance 
analysis at the global and local levels and visual explanations. Feature importance analysis techniques, such as 
permutation feature importance and SHAP values, are indispensable for discerning the key factors that sig-
nificantly impact concrete strength prediction. Furthermore, methods for local interpretability, such as LIME 
(Local Interpretable Model-agnostic Explanations), offer insights into the predictions generated for specific 
data  points17,29.

Methodology
The machine learning framework for predicting concrete strength comprises five fundamental stages, as illus-
trated in Fig. 1. Firstly, the data collection process involves preparing a series of concrete samples under controlled 
conditions. This includes varying factors such as cement type, water-cement ratio, aggregate size, and curing 
duration—these represent the input features for the machine learning model. In the next stage, we conduct data 
exploration to analyze and understand the collected data. The aim is to uncover patterns, relationships, and 
insights crucial for effectively training machine learning models. Subsequently, the data preprocessing stage 
is executed to eliminate noise, address missing values, clean the data, and format it appropriately for machine 
learning model training. We train eight machine learning models, encompassing statistical regression, ensemble 
learning, SVM, and ANN, to predict concrete strength and these models are evaluated accordingly.

As shown in Table 1, prior research in concrete strength prediction primarily relies on three key approaches: 
statistical regression techniques, ensemble learning based on Decision Trees, and the utilization of ANNs. Our 
choice to employ representative machine learning models from these established approaches is rooted in assessing 
their efficacy in achieving precise and robust predictions. For instance, we incorporate Linear Regression as a 
fundamental model to serve as a benchmark for regression tasks, owing to its assumption of a linear relationship 
between input features and the target variable, making it a valuable initial exploration tool. LASSO Regression 
addresses potential multicollinearity issues within the dataset and enhances model interpretability by penal-
izing the absolute values of regression coefficients. Ridge Regression, another regularization method, reduces 
overfitting and enhances model stability by introducing a penalty term to the loss function. Decision Trees are 
well-known for their proficiency in capturing complex non-linear relationships and interactions among features, 
making them suitable for datasets characterized by intricate decision boundaries.

Table 1.  Machine learning models and the input features for the concrete strength prediction.

Machine learning models Input features Data set size Best performance Ref.

CatBoost
k-Nearest neighbors
Support vector regression

Content of cement, slag, water, sand, crushed stone, and additives 249 k-Nearest neighbors 21

Random forests
Support vector regression
XGBoost

Cement use, age, water, coarse aggregate, fine aggregate, high-efficiency water 
reducer, fly-ash, and mineral powder 60 XGBoost 22

AdaBoost
GBDT
XGBoost
Random forests

Cement, fly-ash, silica fume, coarse aggregate, water, fine aggregate, polypropyl-
ene fiber, and a high-performance water reducer 204 GBDT 23

Linear regression
Classification and regression tree
Artificial neural network
Support vector machine

Cement, slag, fly-ash, water, superplasticizer, coarse aggregate, fine aggregate, 
slump test result, and 28-day compressive strength test result 103

Linear regression (lower workability)
ANN (higher workability)
SVM (higher workability)

24

AdaBoost-based model Cement, water, coarse aggregate, fine aggregate, superplasticizer, blast-furnace 
slag, fly-ash, curing time 1030 – 26

Linear regression
LASSO regression
Ridge regression
Decision trees
Random forests
XGBoost
Support vector machine
Artificial neural network

Cement, water, coarse aggregate, fine aggregate, superplasticizer, blast-furnace 
slag, fly-ash, age 1030 XGBoost 27
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We also leverage Random Forests, an ensemble method, to capture complex patterns within the data, which 
is advantageous for concrete strength prediction. Additionally, we consider XGBoost, an algorithm based on 
gradient boosting, due to its robustness in handling missing data and outliers, attributes that can greatly enhance 
concrete strength prediction. SVM is introduced to explore its potential to provide a distinctive perspective on 
concrete strength prediction, given its effectiveness in managing high-dimensional data and intricate decision 
boundaries. Lastly, ANNs, known for their capability to decipher intricate data patterns, are integrated into our 
analysis to investigate whether complex, non-linear models can outperform traditional regression models in 
predicting concrete strength. A brief comparison of different machine learning approaches for concrete strength 
prediction is presented in Table 2. Notably, the XGBoost model yields the best-reported results among all eight 
evaluated models. Further explanation and analysis of its corresponding results are conducted using one of the 
common XAI techniques, namely the SHAP method. A detailed explanation of each stage in the machine learn-
ing pipeline for concrete strength prediction will be provided in the following subsections.

Concrete’s data collection
Data collection involves preparing a series of concrete samples under controlled conditions, varying factors such 
as cement type, water-cement ratio, aggregate size, curing duration, and other relevant parameters. The concrete 
specimens are then subjected to compressive strength tests using specialized equipment. The resulting data, which 
includes the measured compressive strengths, are recorded and used as the basis for training machine learning 
models. It is crucial to ensure that the data collection follows standardized testing procedures and quality control 
measures to maintain consistency and reliability. In this paper, the standard dataset collected by  Yeh30 is used, 
consisting of 1030 concrete samples with eight features: cement, water, coarse aggregate (coarse), fine aggregate 
(fine), superplasticizer (sp), blast-furnace slag (slag), and fly-ash (flyash). The sample was treated normally for 
a while before collecting the data. Then, a conventional compressive test procedure determined the concrete’s 
compressive strength using 150 mm-tall cylindrical specimens.

Concrete’s data exploration
Concrete strength data exploration involves analyzing and understanding the collected data to uncover patterns, 
relationships, and insights that can be utilized to train machine learning models effectively. To understand the 
data distribution and variability, the exploration process started with descriptive statistics, such as mean, median, 
standard deviation, and quartiles. Visualizations, such as histograms, box plots, and scatter plots, provide fur-
ther insights by illustrating the relationships between features such as cement, water, coarse aggregate, and fine 
aggregate and identifying potential outliers or anomalies.

Concrete’s data preprocessing
Data preprocessing is crucial in accurately predicting concrete strength using machine learning techniques. 
In concrete strength prediction, data preprocessing involves several important steps. Firstly, data cleaning is 
performed to handle missing values, outliers, and inconsistencies in the dataset. Missing values can be imputed 

Figure 1.  Machine learning pipeline for concrete strength prediction.
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using appropriate mean or median imputation techniques. Outliers can be detected and treated by removing or 
replacing them with more representative values. Data cleaning is essential to ensure the quality and integrity of 
the dataset. Handling missing values, outliers, and inconsistencies is crucial because these issues can introduce 
noise and inaccuracies into the model. For instance, missing values in features related to concrete composition 
can lead to biased predictions if not appropriately imputed. Outliers, such as extreme strength values, can skew 
the model’s understanding of the typical concrete properties. By addressing these issues, we enhance the reliabil-
ity of our predictive model. Secondly, feature scaling is applied to ensure that all features are on a similar scale. 
Common techniques include normalization or standardization, which is necessary because concrete-related 
features often have different units and scales. For example, the compressive strength of concrete might be meas-
ured in MegaPascals (MPa), while the curing time is measured in days. If these features are not scaled, those 
with larger magnitudes could dominate the learning process of machine learning algorithms. Normalization or 
standardization ensures that all features contribute more equally to the prediction, preventing any one feature 
from excessively influencing the model’s output. In concrete strength prediction, we often encounter categorical 
variables like the type of cement used or the curing method applied. Machine learning models require numerical 
input, so we encode these categorical variables into numerical values. One-hot encoding or label encoding helps 
to represent categorical data in a format that the algorithms can work with. By performing these preprocessing 
steps, the dataset is appropriately prepared, enhancing the effectiveness and performance of machine learning 
algorithms in predicting concrete strength.

Machine learning approaches for concrete strength prediction
This paper studies three machine learning approaches in concrete strength prediction: statistical, tree-based 
learning, and ANNs techniques (see Fig. 2). The statistical learning methods are simple predictive techniques 

Table 2.  Brief comparison of different machine learning approaches for the concrete strength prediction.

Approach Algorithm Task Strengths Weaknesses

Statistical

Linear regression Fits a linear equation to the data

Simple
Interpretable
Works well with linear relationships 
between the features and the target 
variable

It may not capture complex patterns
Sensitive to outliers
Prone to overfitting

LASSO regression Fits a linear equation to the data with 
additive regularization (L1) parameter

Prevents overfitting
Performs feature selection using the 
regularization (L1) parameter

Sensitive to data scaling
Not ideal for highly correlated features

Ridge regression Fits a linear equation to the data with 
additive regularization (L2) parameter

Prevents overfitting
Reduces multicollinearity in the model
Better with high-dimensional datasets

Does not perform feature selection
Sensitive to feature scaling

SVM Maximizes the margin between classes 
with multiple equations

Effective for high-dimensional data
Good at handling imbalanced datasets

Sensitive to parameter settings
May require feature scaling

Tree-based

Decision Trees Divides the data into branches based on 
feature splits

Strong performance with non-linear 
relationships
Easy to interpret

Prone to overfitting
It may create deep trees with high vari-
ance

Random forests Ensemble version of decision trees Reduces overfitting
Provides feature importance scores

Computationally expensive
Less interpretable than a single decision 
tree

XGBoost Uses gradient boosting techniques as a 
modified version of the Decision tree

High predictive accuracy
supports L1 (LASSO) and L2 (Ridge) 
regularizations
Computationally efficient

Sensitive to hyperparameter tuning
Less interpretable

Artificial neural network ANN A multi-layer network of interconnected 
nodes (artificial neurons)

Captures complex, non-linear relation-
ships,
Scalability and flexibility with data of 
different sizes

Prone to overfitting
Sensitive to feature scaling
Sensitive to hyperparameter tuning

Figure 2.  Three machine learning approaches for concrete strength prediction.
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used to identify the relationship between the input and output variables and develop a mathematical function 
that accurately describes this relationship. Statistical learning models include Linear Regression, Ridge Regres-
sion, LASSO Regression, and SVM. Tree-based learning methods are supervised machine learning techniques 
that use Decision Trees as the fundamental building blocks for constructing predictive models. The input data is 
represented as a set of feature vectors, where each vector contains a set of predictor variables (features) and the 
corresponding target variable. The goal is to learn a mapping between the input features and the target variable. 
Tree-based learning models include Decision Trees, Random Forests, and XGBoost. The third machine learning 
approach is based on the ANNs, which are computational models inspired by the structure and functioning of 
biological neural networks in the human brain. The network consists of interconnected nodes, or neurons, organ-
ized in layers. Each neuron receives inputs, performs a weighted computation, and passes the output through 
an activation function. During training, the network adjusts the weights associated with each connection to 
minimize the prediction error. Once trained, the ANN can take new inputs and provide predictions of concrete 
strength based on the learned patterns and relationships in the training data. The details explanation of each 
approach is presented in the following subsections.

Statistical machine learning approaches
The statistical learning methods are simple predictive techniques used to identify the relationship between the 
input and output variables and develop a mathematical function that accurately describes this relationship. 
Statistical learning models include linear Regression, Ridge Regression, LASSO Regression, and SVM. Linear 
regression as a statistical model assumes a linear relationship between one (or more) independent variables X 
and specific dependent variable y. This linear relationship can be expressed using a simple line equation with 
the perfect coefficient β (or coefficients), such that

where, X = [x0, x1, ..., xn ] and β = [β0,β1, ...,βn ] represented as vectors with x0 = 1.
With basic Linear Regression, to estimate the best set of feature coefficients β, the error between actual and 

predicted values for y must be decreased to the  minimum5. This error is calculated by the least squares method 
such that the sum of squares (SSE) is minimized.

where yi  and ŷi  are the actual and predicted values for the ith record. The minimization of SSE can be achieved 
with different  methods31.

Ridge regression was introduced by Hoerl and  Kennard32 to improve prediction accuracy while dealing with 
highly correlated features. It shrinks the regression coefficients by adding a penalty on their size depending on 
the ridge coefficient. The error between the actual and predicted value is,

Lambda � is a complexity parameter that controls the amount of shrinkage, such as increasing lambda pro-
duces greater shrinkage.

LASSO Regression is another shrinkage method like ridge but uses the absolute values coefficients β while 
calculating the error function as follows:

Replacing the Ridge penalty term �
∑P

J=1 β
2
j    by the LASSO penalty term �

∑P
J=1 |βj|) makes the solutions 

nonlinear in the yi and there is no closed-form expression as in ridge regression. In some cases, data cannot be 
linearly separable, where different classes can overlap. In this case, separating classes with a single line is impos-
sible. The main function of SVM is to form a hyperplane and a decision boundary using this plain defined by a 
set of support points to separate different classes in  data33.

Tree‑based machine learning approaches
Tree-based learning methods are supervised machine learning techniques that use decision trees as the fun-
damental building blocks for constructing predictive models. The input data is represented as a set of feature 
vectors, where each vector contains a set of predictor variables (features) and the corresponding target variable 
(the variable we want to predict). The goal is to learn a mapping between the input features and the target vari-
able. Examples of Tree-based learning models are Decision Trees, Random Forests and XGBoost. Instead of 
working with the whole dataset, Decision Trees split the data among set decisions according to specific values, 
constructing a Tree Structure. The tree continues splitting to generalize the final decision over the whole data. 
A tree size parameter should be adaptively chosen from the data to control this continuous splitting. Different 

(1)y = β0x0 + β1x1 + .....+ βnxn

(2)SSE =
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methodologies can be used to choose the optimal tree size, including the Sum of Squares (SSE) with a threshold 
or cost-complexity  pruning33. While Decision Trees build only one tree structure for data and give the output 
according to it, Random  Forests34 build multiple Trees over the same dataset and collect the average output from 
these trees to give the final decision about specific data records. Random Forests solve the problem of overfitting 
that the traditional Decision Trees can produce. It also can be affected by the characteristics of data. Gradient 
Boosting is used with many learning  methods35,36, but XGBoost is a scalable machine learning system used for 
tree boosting as an open-source  package37. It deals with sparse data using its tree learning algorithm besides 
parallel and distributed computing strategies that speed up the learning process.

Artificial neural network machine learning approach
Artificial Neural network is a way to mimic human brains, with their tiny components as neurons. In com-
puter science, a neuron is a processing unit represented as a node in a big network. This node can take input 
value(s) multiplied by a weight parameter, implement a definite process called activation function, and deliver 
the output(s) to the next neuron(s) or as a final output, as shown in Fig. 3. The topology for a simple neural 
network is shown in Fig. 2. Where the network consists of a set of layers, each layer has a predefined number of 
neurons. The main layers are the input, hidden, and output layers. In most cases, the number of neurons in the 
input layer is identical to the number of features in the dataset, and the output layer gives the predicted value 
for a specific instance in  data9.

Concrete strength prediction model explainability
XAI techniques are becoming increasingly important in concrete strength prediction by helping engineers and 
researchers understand the key factors contributing to concrete strength and making informed decisions about 
concrete mix design and construction practices. We used the SHAP method of the XAI techniques to provide 
insights into the factors contributing to the concrete strength prediction  problem20. SHAP provides a unified 
framework that combines game theory and machine learning to attribute the concrete strength prediction out-
come to input features such as cement, water, coarse aggregate, fine aggregate, superplasticizer, blast-furnace 
slag, and fly-ash. By calculating SHAP values, the importance of each feature in contributing to the prediction 
can be  quantified38. These values capture the additive contribution of a feature across all possible feature subsets, 
considering the interactions and dependencies among them. SHAP values help reveal the relative influence of 
features on the model’s output, enabling a deeper understanding of the underlying mechanisms. In the context of 
AI explainability for concrete strength prediction, SHAP values identify which features play the most significant 
role in determining the predicted strength. This knowledge allows engineers and researchers to interpret the 
model’s decision, validate reliability, detect biases, and gain insights into improving concrete mix designs and 
related factors. SHAP values provide transparency and accountability, helping to build trust in AI models and 
facilitating informed decision-making in concrete strength prediction and other applications.

Figure 4 displays the potential features for the concrete prediction machine learning model, along with the 
explanation process using the SHAP method, which illustrates the feature values contributing to shifting the 
model’s prediction output from the baseline value. The baseline, in this context, represents the average model 
output over the training observations on which the model was trained. Features that push the model’s predictions 
higher are color-coded in red, while those causing predictions to decrease are represented in blue.

Experimental results
Concrete data collection and exploration
For training and validating machine learning algorithms, this study employs a benchmark dataset made up of 
1030 concrete tests with the following eight features: cement, water, coarse aggregate (coarse), fine aggregate 

Figure 3.  Artificial neural network topology.
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(fine), superplasticizer (sp), blast-furnace slag (slag), fly-ash (flyash), and age. A sample from dataset records is 
presented in Table 3.

The min/max values, mean value, standard deviation (std), and quartile distribution are presented in Table 4 
as a summary of these attributes and the data exploration procedure for them. Additionally, Fig. 5 displays 
histograms representing the statistical distribution of relevant features. The x-axis corresponds to each feature, 
and the y-axis indicates the frequency of occurrences. This visualization allows for a comprehensive evaluation 
of these features.

Notable observations include:

• cement exhibits a distribution that closely resembles a normal distribution.
• blast-furnace slag (abbreviated as ’slag’) displays a proper skewness and appears to follow a distribution with 

three peaks (Gaussians).

Figure 4.  Feature contributions using SHAP for concrete strength prediction.

Table 3.  Sample records for concrete strength prediction in this study.

Cement  (m3) Slag (kg/m3) Flyash (kg/m3) Water  (m3) sp (%) Coarse (kg/m3) Fine (mm) Age (days)

Concrete 
strength 
(psi)

0 540 0 0 162 2.5 1040 676 28 79.99

1 540 0 0 162 2.5 1055 676 28 61.89

2 332.5 142.5 0 228 0 932 594 270 40.27

3 332.5 142.5 0 228 0 932 594 365 41.05

4 198.6 132.4 0 192 0 978.4 825.5 360 44.3

Table 4.  Concrete data exploration process (features summarization).

Cement 
 (m3) Slag (kg/m3)

Flyash (kg/
m3) Water  (m3) sp (%)

Coarse (kg/
m3) Fine (mm) Age (days)

Concret 
strength 
(psi)

Count 1030 1030 1030 1030 1030 1030 1030 1030 1030

Mean 281.16786 73.89583 54.18835 181.56728 6.20466 972.91893 773.58049 45.66214 35.817961

Std 104.50636 86.27934 63.997 21.354219 5.973841 77.753954 80.17598 63.16991 16.705742

Min 102 0 0 121.8 0 801 594 1 2.33

25% 192.375 0 0 164.9 0 932 730.95 7 23.71

50% 272.9 22 0 185 6.4 968 779.5 28 34.445

75% 350 142.95 118.3 192 10.2 1029.4 824 56 46.135

Max 540 359.4 200.1 247 32.2 1145 992.6 365 82.6
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• fly-ash (abbreviated as ’flyash’) is right-skewed and appears to have a bimodal distribution with two peaks 
(Gaussians).

• water’s distribution shows three peaks with a leftward tilt.
• superplasticizer (abbreviated as ’sp’) demonstrates a distribution with two peaks and proper skewness.
• coarse aggregate’s (abbreviated as ’coarse’) distribution is close to normal and displays three peaks (Gauss-

ians).
• fine aggregate’s (abbreviated as ’fine’) distribution appears to be bimodal with two peaks, indicating a non-

normal distribution.
• The age feature appears to have multiple peaks and a skewed distribution, which may be appropriate for the 

dataset.

Studying the correlation between features is essential for understanding the relationships between dependent 
features and the target strength factor, as this analysis aims to identify the optimal prediction model. Figure 6 dis-
plays a heatmap illustrating each variable’s impact on all other variables. Notably, a strong correlation is observed 
between cement and strength, indicating that cement is a highly reliable predictor. Conversely, slag and fly-ash 
show weak correlations with the target variable. Additionally, it is worth highlighting the significant positive 
correlation between superplasticizer and fly-ash, in contrast to the comparatively weaker correlation between 

Figure 5.  Concrete data exploration process (statistical features distribution).
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superplasticizer and compressive strength. Remarkably, there is a substantial negative correlation between water 
and superplasticizers, as well as between water and strength.

Figure 7, presented as a Pair Plot, also visually conveys the features’ correlation information. This comprehen-
sive analysis is important because dimensions showing strong correlations with values near 1 or -1 are redundant, 
supplying the model with duplicated information. As a result, we could decide to keep one dimension while 
discarding another. The choice of which dimension to retain and which to discard relies on domain expertise 
and an assessment of which dimension is more error-prone.

From the pair plot, it becomes evident that:

• Cement exhibits complete lack of correlation with other characteristics, including slag, fly-ash, water, super-
plasticizer, coarse aggregate, fine aggregate, and age.

• Slag also demonstrates no correlation with the following characteristics: fly-ash, water, superplasticizer, coarse 
aggregate, fine aggregate, and age.

• Fly-ash, aside from lacking any significant correlation with water, superplasticizer, coarse aggregate, fine 
aggregate, or age, does not exhibit substantial correlation with any other independent attributes.

• In terms of water’s relationship with other independent characteristics, a negative linear association is 
observed with both superplasticizer and fine aggregate. It does not show a meaningful correlation with any 
other attributes. It is noteworthy that superplasticizers can reduce water content in concrete by 30% without 
compromising workability.

• Superplasticizer demonstrates a negative linear relationship solely with water and does not exhibit a strong 
correlation with any other variables.

• Coarse aggregate, like all other attributes, does not display significant correlation with any other attributes.
• Fine aggregate, when compared to unrelated variables, exhibits a linear inverse relationship with water and 

does not show any meaningful correlation with other characteristics.

Figures 8 and 9 depict the scatter plots that illustrate the relationship between compressive strength as the 
target predicted variable and the input features variables cement, water, age, and fly-ash. Figure 8 demonstrates a 
positive correlation between cement content and compressive strength. As the amount of cement used increases, 
the compressive strength of the concrete also increases. Moreover, it has been observed that as concrete ages, its 
strength grows, requiring more cement to achieve greater strength at a younger age. Conversely, older cement 
necessitates more water, so reducing the water content in concrete enhances strength. The scatter plot in Fig. 9 
reveals an inverse relationship between compressive strength and fly-ash content. The concentration of darker 
dots in the region corresponding to lower compressive strength values makes this relationship evident. Con-
versely, it has been demonstrated that the use of a superplasticizer improves compressive strength, highlighting 
a positive association between these two parameters.

Concrete data preprocessing
The dataset was split into a training set, consisting of 80% of the entire dataset, and a test set, comprising the 
remaining 20%. The training dataset was used to evaluate the model’s structure and parameters. By assessing 

Figure 6.  Concrete data exploration process (features correlation).
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the performance of different models on the training dataset, we can determine which model has been appropri-
ately trained. However, it is important to note that the test dataset is only employed to assess the effectiveness of 
the selected model after it has been chosen. Subsequently, the data underwent normalization using a standard 
scalar. Given that the dataset contains multiple variables, the objective was to rescale all features such that they 
have a mean of zero and a standard deviation of 1. This normalization process ensures that all features are on a 
comparable scale, preventing any individual feature from dominating the model’s learning process.

Machine learning models evaluation
Eight machine learning models from three different approaches are evaluated in the presented study. These 
models include Linear Regression, Ridge Regression, LASSO Regression, SVM, Random Forests, Decision Trees, 
XGBoost, and ANN. The evaluation is performed using training and testing datasets, and various metrics are 
applied, such as Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error, and the 
coefficient of determination known as R-squared  (R2) score. MSE, RMSE, and MAE depend on the actual data 
values and the predictions made by the machine learning models, while the R-squared score is based on data 
variance. The following are the statistical equations that describe these evaluation metrics:

Figure 7.  Concrete data exploration process (features correlation pair plot).
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Figure 8.  Scatter plot for visualizing the cement and compressive strength relationship.

Figure 9.  Scatter plot for visualizing the fine-aggregate and compressive strength relationship.
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While yi is the actual value, ŷi is the predicted value and Yi is the mean value of the actual values in data.
The outcomes of various statistical tests conducted by the models on the dataset, as per the expected values, 

are presented in Table 5. These results demonstrate the successful prediction of concrete compressive strength 
by all models, as indicated by the statistical performance metrics. Among the models, XGBoost achieved the 
highest  R2 value  (R2 = 0.91), making it the most accurate. Following closely, the Random Forests model obtained 
an  R2 value of 0.89, while Decision Trees achieved 0.82, and ANN attained 0.74. In contrast, the Linear Regres-
sion models exhibited lower accuracy, with the basic model achieving an  R2 value of 0.57, followed by LASSO 
Regression  (R2 = 0.54), Ridge Regression  (R2 = 0.57), and SVM  (R2 = 0.66).

Regarding the statistical error, it is noteworthy that the XGBoost model recorded the lowest RMSE value 
(4.37), while the SVM model and Regression models displayed higher values, with SVM having an RMSE of 9.13 
and Regression models averaging around 10. Based on the accuracy criterion, it can be concluded that XGBoost 
is currently the best-performing model. The scatter plots of the experimental (actual) and predicted compressive 
strengths of concrete are depicted in Figs. 10 and 11, respectively.

The  R2 and RMSE values from the seven models are shown in Fig. 12. With the input feature variables: cement, 
water, coarse aggregate, fine aggregate, superplasticizer, blast-furnace slag, and fly-ash, this figure implies that 
the XGBoost model could be effective and have tolerable precision when used to calculate the compressive 
strength of concrete.

Concrete strength machine learning model explanation with SHAP
In our study, we employed SHAP as an essential tool for explaining the predictions of the XGBoost machine 
learning model as it produced the best performance results in terms of  R2 and RMSE values for concrete strength 
prediction. SHAP is a powerful, explainable artificial intelligence technique that aids in understanding the intri-
cate relationship between input features and model predictions. It provides valuable insights into which fea-
tures have the most substantial impact on concrete strength prediction and how they influence the outcomes. 

(7)MAE =
1

N

N∑

i=0

∣∣(yi − ŷi
)
|

(8)R2 =

∑N
i=0

(
ŷi − Yi

)2
∑N

i=0

(
yi − Yi

)2

Table 5.  Benchmarking of eight machine learning models for concrete strength prediction. Significant values 
are in bold.

Machine learning approaches Method RMSE MSE MAE R2

Statistical

Linear regression 10.28 105.76 8.23 0.57

LASSO regression 10.68 114.11 8.65 0.54

Ridge regression 10.29 105.84 8.24 0.57

SVM 9.13 83.39 7.44 0.66

Tree-based

Decision trees 6.65 44.24 4.47 0.82

Random forests 5.21 27.17 3.53 0.89

XGBoost 4.37 22.33 3.04 0.91

Artificial neural network ANN 6.01 36.22 4.53 74.63

Figure 10.  Linear, ridge, and LASSO regression models scatter plots.
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Figure 11.  Decision trees, random forests, SVM, and XGBoost models scatter plots.

Figure 12.  Concrete strength prediction machine learning model’s RMSE and  R2 evaluation metrics.
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By analyzing the SHAP values, we identified the key contributing factors and their degree of influence on the 
XGBoost model. The visualizations generated by SHAP, including dependency charts and summary plots, helped 
to uncover non-linear relationships and interactions between features, further enhancing the XGBoost model’s 
interpretability and robustness. With the SHAP method, the XGBoost machine learning model for concrete 
strength prediction is explained to make its prediction results more transparent and valuable for real-world 
applications in the construction and engineering industry.

The cumulative impact of each feature can be depicted in a waterfall chart (Fig. 13), which shows how dif-
ferent features affect the model’s output as it changes from the base value—the average model output across the 
training dataset—to the final predicted value. The probability distribution of compressive strength is plotted 
from the bottom up, illustrating how the introduction of a specific feature changes the baseline probability from 
0 to 100%. The chart uses color coding, with red indicating characteristics that enhance the forecast and blue 
indicating characteristics that reduce it. For instance, cement increases compressive strength by 80.28%, while 
water decreases it by 80.15%. The findings show that cement, age, superplasticizer, and slag considerably influence 
the model’s prediction, driving it towards higher values. On the other hand, the water feature has little impact 
on improving the accuracy of the predictions.

This information is reinforced by the force map in Fig. 14 by emphasizing the features’ ideal values to maxi-
mize the predicted outcome. The recommended values for the respective components are as follows: to attain 
a compressive strength equals 40 psi, the values of the input parameters are superplasticizer = 2.5%, age = 28 
days, and slag = 0 kg/m3; cement = 540  m3. However, it should be noted that the prediction result can be further 
enhanced by adjusting the values of the water, fine aggregate, and coarse aggregate properties. These character-
istics are crucial in improving the prediction outcome and provide flexibility in modifying their values to obtain 
desired outcomes.

The selection of the most important contributing features to the model predictions is shown in Fig. 15. We 
guarantee a thorough analysis by determining the average SHAP value across all observations for each feature. 
The nullification of positive and negative numbers is avoided by averaging the absolute values. The resulting bar 
plot displays distinct bars for each feature, with cement having the greatest mean SHAP value, suggesting the 
feature’s highest significance level. Notably, either positively or negatively, features with high mean SHAP values 
have had a considerable impact on the model’s predictions. Consequently, these traits significantly impact how 
the model predicts outcomes.

Within the dataset, a particular variable leads to the division of data into distinct groups, offering valuable 
insights into population heterogeneity. As depicted in Fig. 16, our data is effectively segmented into two distinct 
cohorts. Through automated partitioning, 379 samples are allocated to one cohort, while the remaining 651 

Figure 13.  Waterfall plot for studying the impact of different features on the model prediction results.

Figure 14.  Force plot highlighting the features’ optimal values to maximize the model prediction results.
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Figure 15.  Bar plot of identification of the most model significant features using average SHAP values.

Figure 16.  Cohort plot for visualizing the distribution of two groups across different concrete strength 
prediction features.
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samples belong to the second cohort. The optimal threshold for this division is determined to be sp = 0.85. The 
accompanying bar plot makes it clear that a sample is classified into the cohort where sp ≥ 0.85. This classifica-
tion is characterized by higher values of age, slag, and coarse features, while exhibiting a lower value for cement.

Figure 17 displays several dependency charts that highlight the conclusions drawn from our model. The 
dependence plot’s dots indicate a single dataset prediction (row). The y-axis designates the appropriate SHAP 
value, and the x-axis shows the feature value obtained from the features matrix. The SHAP value denotes the 
degree to which the model’s output for a given prediction is affected by knowing the value of a particular fea-
ture. The color mapping in the plot represents a second feature that might interact with the plotted feature. For 
instance, if superplasticizer interacts with cement directly, this will show in the color variations.

Figure 17.  Concrete strength prediction features dependencies.
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From the features dependencies plot in Fig. 17, it is evident that:

• Superplasticizer directly affects only the feature values of cement, age, slag, and fine aggregate in the model’s 
output.

• Fly-ash interacts exclusively with coarse aggregate.
• Slag influences flyash, superplasticizer, and water.

In summary (Fig. 18), it is evident that among all the tested classifiers, XGBoost performs the best with an 
accuracy of 91%. Consequently, its results were chosen to evaluate the impact of model features on the classifier 
output. Following explainable AI methodologies, the SHAP method was employed, as it provides comprehen-
sive analysis with supported visual explanations for the classification model. The analysis revealed that cement 
exhibits the highest positive correlation with concrete strength, while water shows the most significant negative 
correlation with the compressive strength output. It is noteworthy that the most influential features in predicting 
concrete strength, ranked in descending order of importance, are cement, age, and water.

Collecting concrete data is a time-consuming and costly process. Samples require extended curing periods, 
ranging from 28 days for engineering applications to several years for durability studies. Additionally, concrete 
mixtures and properties are complex to collect and organize systematically. Consequently, much of the publicly 
available data is relatively small, noisy, and incomplete, often with missing values and imbalanced sample distri-
butions. The values of input features that influence machine learning model predictions are affected by various 
internal mixture factors, including type, quantity, physical, and chemical properties, which can change over time. 
External environmental conditions, such as temperature and humidity, also play a  role39. Variability in concrete 
mixtures, environmental conditions, and curing processes can introduce uncertainty, while non-standardized 
testing procedures across different data sources can impact model performance. The selection of input features 
significantly influences model accuracy. Excluding relevant features or including irrelevant ones can lead to 
suboptimal predictions. Furthermore, changes in materials, construction techniques, or environmental factors 
over time may render models developed on historical data less relevant. Complex models may also demand 
substantial computational resources, making them less practical in certain situations. To address these limita-
tions and potential sources of error, it’s important to apply rigorous data preprocessing, validation, and testing 
procedures, as well as to continually evaluate and update models as new data becomes available.

Conclusion
In this research paper, we conducted a comparative study to evaluate the performance of eight different machine 
learning models in predicting concrete strength. The findings suggest that utilizing an artificial neural net-
work with continuous data is suboptimal due to the extended time required for network training. However, the 
XGBoost model outperforms other established benchmark models and delivers the best results in terms of  R2 and 
RMSE. Consequently, we employed the SHAP method, one of the XAI techniques, to analyze the XGBoost clas-
sification results and enhance the model’s interpretability. The SHAP method provides a comprehensive analysis 
and visualization of individual features, enabling us to understand how each feature influences the prediction 
of concrete strength. Additionally, the SHAP method investigates the correlation and dependencies between 
different features, uncovering the non-linear relationships between features and the model’s output. Concrete 
strength prediction plays a crucial role in real-world engineering and construction scenarios. These predic-
tions are used to assess whether concrete meets required strength standards, thereby helping to prevent issues 
like structural failures. Engineers and architects utilize concrete strength predictions to select the appropriate 
mix design for specific applications and environmental conditions, determine the size and quantity of concrete 
reinforcements needed for various structural elements, ensure the safety of buildings and infrastructure, reduce 
overdesign, leading to cost savings in materials and construction, and contribute to the longevity and durability of 
structures. Optimized concrete mix designs based on predictions can also help reduce the environmental impact 
of construction by minimizing the use of raw materials and reducing waste production. In the future research 

Figure 18.  Summary of concrete strength prediction results: machine learning and XAI.
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directions, we plan to expand our analysis by considering additional features for concrete strength prediction, 
including the cement fermentation period and various concrete’s mechanical, physical, and chemical properties. 
This expansion will help to enhance the analysis and prediction capabilities of different machine learning models.

Data availability
Data is available online at UC Irvine Machine Learning Repository (https:// archi ve. ics. uci. edu/ datas et/ 165/ 
concr ete+ compr essive+ stren gth).
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