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The enmity paradox
Amir Ghasemian * & Nicholas A. Christakis 

The “friendship paradox” of social networks states that, on average, “your friends have more friends 
than you do”. Here, we theoretically and empirically explore a related and overlooked paradox we 
refer to as the “enmity paradox”. We use empirical data from 24,678 people living in 176 villages 
in rural Honduras. We empirically show that, for a real negative undirected network (created 
by symmetrizing antagonistic interactions), the paradox exists as it does in the positive world. 
Specifically, a person’s enemies have more enemies, on average, than a person does. Furthermore, in 
a mixed world of positive and negative ties, we study the conditions for the existence of the paradox, 
which we refer to as the “mixed-world paradox”, both theoretically and empirically, finding that, 
for instance, a person’s friends typically have more enemies than a person does. We also confirm the 
“generalized” enmity paradox for non-topological attributes in real data, analogous to the generalized 
friendship paradox (e.g., the claim that a person’s enemies are richer, on average, than a person is). 
As a consequence, the naturally occurring variance in the degree distribution of both friendship and 
antagonism in social networks can skew people’s perceptions of the social world.

The empirical observation that a person’s friends have, on average, more friends than they do is called the “friend-
ship paradox”1. The friendship paradox can be explained by the fact that, in computing the average degree of 
individuals’ friends, high-degree individuals are counted more than individuals with low degree. It is a kind 
of sampling bias. Computing the average degree based on a person’s network neighbors’ perspective is biased 
towards a higher mean value than computing it from a person’s own perspective.

The friendship paradox has been generalized to non-topological characteristics in social networks, such as 
happiness and wealth (people’s friends are happier and richer than they are, on average)2. The positive correlation 
between network degree and various characteristics is the origin of this generalization. The friendship paradox 
has also been used in social network polling and estimating power-law degree  distributions3, and it has been 
studied in relation to some other topological properties of networks, such as betweenness, closeness, eigenvec-
tor, and Katz  centrality4,5, as well as extensions to directed  networks5,6. Moreover, the friendship paradox can 
be considered a special case of human social  sensing7. Furthermore, individuals with more social connections 
are more indicative of early trends than the average member of the population for many societal phenomena, 
from the spread of  disease8 to the spread of  information9. It is even possible to exploit the friendship paradox to 
develop effective strategies to intervene in  networks10–13.

Recent work has examined what topological features influence the “strength” of friendship paradox. The 
magnitude of difference between the average of a random node’s degree and the average of that node’s neighbors’ 
degrees is the “local” strength of the friendship paradox. In contrast, the magnitude of difference between the 
average degree of a random node and the average degree of a random neighbor of a random node is the “global” 
strength. For the so-called “local” formulation of the friendship paradox, for three classes of network models (the 
Poisson random graph, the configuration model, and a model of a random degree-assortative network), it has 
been shown that networks with more heterogeneous degree distributions and with negative assortativity tend to 
have the strongest friendship  paradox14. Two formulations of the friendship paradox have been examined based 
on the “global” and “local” structure of a  network1. By exploiting a topological property called “inversity,” i.e., the 
Pearson correlation between a node’s degree and the inverse degree of its neighbors, it is possible to evaluate the 
relationship between these two formulations and the strength of the friendship  paradox12,15. Similar discussions 
for the generalized friendship paradox in directed networks are  possible6.

To date, the friendship paradox has been investigated primarily from the perspective of positive networks, 
and little attention has been paid to questions regarding a world in which solely negative ties exist or a world 
in which both positive and negative ties exist. As a result, it is unclear whether, empirically speaking, we can 
observe these paradoxes with respect to antagonistic ties. Does a negative world manifest the same paradoxes? 
If so, what mechanisms would cause such paradoxes to occur in a negative world?

Although there is an inherent mathematical symmetry between positive and negative network objects, which 
theoretically supports the existence of the enmity paradox, it is uncertain if this paradox exists empirically. Since 
the positive and negative worlds are empirically distinct, the strength of the paradox is unclear. As an example, 
the variance in degree, the primary factor affecting the strength of these paradoxes, might be much smaller in 
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the negative world (as we will show), with consequent implications. Thus, here, we explore the “enmity para-
dox”, by which we mean, most generally, that the mean number of enemies a person has is lower than the mean 
number of enemies their enemies have. Furthermore, we examine whether this paradox is observed in a mixed 
world of both positive and negative ties by comparing a person’s average number of friends with their enemies’ 
average number of friends, and by comparing a person’s average number of enemies with their friends’ average 
number of enemies. In this case, we refer to the paradox as the “mixed-world paradox”, and we propose some 
theoretical innovations as well.

The enmity paradox
It is a fact of mathematics that, in a population with variance in the degree distribution (and subject to certain 
provisos), the friendship paradox exists. But its extent is very much a result of underlying social factors (such as 
variation across people in the number of friends they want, or whether popular people are preferred as friends). 
Some aspects of this phenomenon can also be self-reinforcing as a consequence of positive feedback that results 
from the biased  perception16.

However, even though there is an intrinsic mathematical symmetry between positive and negative network 
objects (as instantiated by adjacency matrices), which theoretically supports the existence of the enmity paradox, 
the empirical existence and strength of the paradox are not assured. We mathematically clarify and then empiri-
cally investigate the existence, origins, and manifestations of the enmity paradox.

First, we review the equations for the enmity paradox, which are similar to the equations derived for the 
friendship  paradox1. Based on our comparison of the mean number of enemies of individuals with the mean 
number of enemies’ enemies in the negative world, we theoretically assert that the enmity paradox should indeed 
arise in a similar manner to the friendship paradox.

Consider a simple signed network G = (V ,E(+),E(−)) , where V is the vertex set with n nodes, and E(+) and 
E(−) are the set of positive and negative edges revealing two not-necessarily-dependent worlds. The adjacency 
matrices corresponding to the positive and negative interactions are denoted as A(+) and A(−) , respectively. 
In order to create undirected networks, we either (1) remove unreciprocated edges from the network, or (2) 
symmetrize the network by removing the edges’ direction. For example, the node j is considered a neighbor of 
the node i if, in the former, both edges (i, j) and (j, i) are included in the set E, while, in the latter, if at least one 
of these edges exist in the edge set. An edge is referred to as a “friend” if it belongs to E(+) , and as an “enemy” 
if it belongs to E(−) . In addition, we also refer to a node j as an ℓ-hop neighbor of node i if there is a walk with 
length ℓ between i and j; a walk can include repeated nodes. Here, we focus solely on the enmity and friendship 
paradoxes for undirected networks. The enmity paradox for directed networks is provided in the Supplementary 
Material, Sect. D.

There are two types of degrees for each node i in these two parallel worlds, k(+),i =
∑

j A(+),ij corresponding 
to positive network, and k(−),i =

∑

j A(−),ij corresponding to negative network. The probability of a node with 
degree k(+) ( k(−) ) is denoted as p(0)k(+)

 ( p(0)k(−)
 ) or, more simply, pk(+)

 ( pk(−)
 ); and the probability of a node’s friend 

with positive degree k(+) and negative degree k(−) is denoted as p(1)k(+)
 and p(1)k(−)

 , respectively. Similarly, the probabil-
ity of a node’s enemy with positive degree k(+) and negative degree k(−) is denoted as q(1)k(+)

 and q(1)k(−)
 , respectively. 

For simplicity, whenever it is clear from context, we denote the degree, the degree distribution, and the degree 
distributions of neighboring nodes corresponding to the friendship and enmity networks using k, pk , and p(1)k  
and q(1)k .

To establish the enmity paradox, we need to compare the average negative degree of a random node with the 
average negative degree of a random enemy of a random node. The average negative degree of a random node 
can be written as �k(−)�pk(−)

=
∑

k(−)
k(−)pk(−)

 . Going along a random negative edge to one of its enemies leads 
to a node with negative degree k(−) with probability q(1)k(−)

 proportional to k(−)pk(−)
 , i.e., q(1)k(−)

= k(−)pk(−)
/�k(−)�pk(−)

 . 
T h e r e f o r e ,  t h e  a v e r a g e  d e g r e e  o f  a  r a n d o m  e n e m y  c a n  b e  w r i t t e n  a s 
�k(−)�q(1)k(−)

=
∑

k(−)
k(−)q

(1)
k(−)

=
∑

k(−)
k(−)

2pk(−)
/�k(−)�pk(−)

 for enmity networks. Using Jenson’s inequality, it 

can be shown that �k(−)�q(1)k(−)

≥ �k(−)�pk(−)
 . This inequality can be called the “enmity paradox” for the negative 

world, and it follows from the same mathematical facts as the friendship paradox in the positive world (Table 1).
Social networks that simultaneously involve both positive and negative ties are theoretically more complicated. 

That is, analytically, we have shown that people have fewer enemies on average than their enemies; however, the 
result of mixing positive and negative worlds is not obvious. Do people have more or fewer enemies than their 
friends, or do they have more or fewer friends than their enemies? To address these questions, we derive equa-
tions for the mixed-world paradox (Table 1).

Considering a dependency between positive and negative degrees with the correlation denoted by 
ρk(+) ,k(−)

=
(

E
[

k(+)k(−)

]

− Ek(+)Ek(−)

)

/σk(+)
σk(−)

 , we have the joint probability of degrees k(+) and k(−) as 

Table 1.  The glossary of paradoxes.

Paradox Description

Friendship paradox On average, your friends have more friends than you do

Enmity paradox On average, your enemies have more enemies than you do

Mixed-world paradox On average, your friends/enemies have more enemies/friends than you do
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pk(+) ,k(−)
= f (σk(+) ,k(−)

) . For this scenario, the average degree of a person’s enemies would be denoted by 
�k(−)�pk(−)

 ; the average degree of a person’s friends would be denoted by �k(+)�pk(+)
 ; the average degree of a person’s 

friends’ enemies would be denoted by �k(−)�p(1)k(+) ,k(−)

 ; and the average degree of a person’s enemies’ friends would 

be denoted by �k(+)�q(1)k(+) ,k(−)

 , where the first two are driven before and the last two are as follows. 

Therefore, we have three different regimes as follows: (1) If we have independent positive and negative worlds, 
i.e., pk(+) ,k(−)

= pk(+)
pk(−)

 , then �k(−)�p(1)k(+) ,k(−)

= �k(−)�pk(−)
 and there is no difference between the average number 

of a person’s enemies and average number of enemies of a person’s friends, and similarly 
�k(+)�q(1)k(+) ,k(−)

= �k(+)�pk(+)
 , which means no difference between the average number of a person’s friends and 

the average number of a person’s enemies’ friends. (2) If there is a positive correlation between the two worlds, 
i.e., ρk(+) ,k(−)

> 0 (or when σk(+) ,k(−)
> 0 ), then we have paradoxes in the mixed world in the same direction as 

the enmity and friendship paradoxes, as a person’s friends have more enemies and a person’s enemies have more 
friends compared to a person. (3) Finally, if there is a negative correlation between the two worlds, i.e., 
ρk(+) ,k(−)

< 0 (or when σk(+) ,k(−)
< 0 ), then we have paradoxes in the mixed world in the opposite direction with 

the enmity and friendship paradoxes, as a person’s friends have fewer enemies and a person’s enemies have fewer 
friends compared to the person.

Computation and representation of enmity paradox for empirical data
Investigating the enmity and friendship paradoxes in practice requires writing the equations using the data—as 
we are given neither the generative probability of the ties nor the joint probability of negative and positive ties. 
The friendship paradox has previously been formulated in two different variations which relate to global bias 
and local  bias1,6. In the “global” formulation, we compare the average degree of a random node i with the average 
degree of a random neighbor of a random node j—or a random end of a random edge. In the “local” formula-
tion, we compare the difference between the average of a random node’s degree and the average of that node’s 
neighbors’ degrees locally (Fig. 1). From now on, by “paradox strength”, we mean the magnitude of the global 
difference δg or of local difference δl , as specified.

The paradox in the global variation is the result of the oversampling of high-degree nodes. In the local vari-
ation, the paradox can be intensified locally if there is a positive correlation between a node’s degree and the 
inverse degree of its neighbors, or it can be attenuated if there is a negative correlation between these variables. 
This correlation measure is known as “inversity”, and, although it is related to degree assortativity, it is not the 
 same12; the relevance of such metrics has also been previously explored  empirically15.

The enmity paradox can similarly be defined for local and global formulations. We first redo the empirical 
computations for the enmity and friendship paradoxes using empirical data, followed by a matrix representation 
of the enmity and friendship paradoxes. These equations (Eqs. 2–5) present a novel matrix algebraic derivation 
of the enmity paradox in the negative world that may also (unsurprisingly) be applied to the friendship paradox 
due to the symmetry in representing positive and negative objects.

The global formulation of the enmity paradox is the comparison between the average degree of a random 
node i, i.e., 

∑

i ki/n and the average degree of its neighbors’ degrees, i.e., 
∑

i k
2
i /

∑

i ki , where the difference can 
be written using matrix formulation as Eq. (2),

where 1 is a vector of ones with length n ( 1T1 = n ). In this notation, the −w and +w indicate the type of one’s 
neighbor, as one’s enemy and friend, respectively. The (−) and (+) denote the type of comparison as enemies or 
friends. This global quantity is a non-positive value due to the Cauchy–Schwarz inequality ( |�u, v�|2 ≤ �u, u��v, v� ) 
with u = A1 and v = 1 , where the equality happens when u = kv , i.e., when we have a k-regular network. As 
a result, degree heterogeneity is directly related to the enmity “paradox strength,” since the numerator of the 
right-hand side in Eq. (2) is the negative variance of the negative degree distribution. These results are similar 
to the results for the friendship paradox.

For the local formulation, we have the difference between each individual’s degree and the average degree of 
its neighbors, which is reminiscent of a Laplacian matrix acting on the degree vector d, where i-th outcome of 
this operation can be written as �i = ki −

∑

j Aijkj/ki ; and, by averaging out these outcomes, we have the local 
formulation of enmity paradox as Eq. (3),

(1a)�k(−)�p(1)k(+) ,k(−)

=
∑

k(+) ,k(−)

k(−)k(+)pk(+) ,k(−)

/

�k(+)�pk(+)
,

(1b)�k(+)�q(1)k(+) ,k(−)

=
∑

k(+) ,k(−)

k(+)k(−)pk(+) ,k(−)

/

�k(−)�pk(−)
.

(2)δg ,−w(−) =
(1TA(−)1)

2 − 1
TA2

(−)1 · 1
T
1

1TA(−)1 · 1
T1

,



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20040  | https://doi.org/10.1038/s41598-023-47167-9

www.nature.com/scientificreports/

where D(−) is the diagonal matrix of negative degrees. Eq. (3) can also be written as δl,−w(−) = 1
TL(−)k(−)/1

T
1 , 

where, L(−) = I− D−1
(−)A(−) is the Laplacian matrix of the negative world acting on the negative degree vec-

tor, k(−) = D(−)1 . Our derivation relies on the fact that A is symmetric since we only consider undirected 
networks here (the formulations for directed networks are in the Supplementary Material, Sect. D). We can 
also demonstrate that this quantity is always non-positive. Since, for any two matrices A and B, we can write 
Tr (AB) = Tr (BA) , thus Eq. (3) can be written as follows,

where J is the matrix of all ones, and, due to the non-positive entries of the matrix 2J− D(−)JD
−1
(−) − D−1

(−)JD(−) 
for each pair (i, j) (see Ref.12), the resultant trace should also be non-positive.

The difference between δg ,−w(−) and δl,−w(−) can be written as Eq. (5), where σ 2
D,(−) is the variance of the 

negative degree of an endpoint of a random edge; σ 2
ID,(−) is the variance of the inverse negative degree of an end-

point of a random edge; and k(−) is the average negative degree. This quantity is negative ( δg ,−w(−) < δl,−w(−) ) 
if the correlation between the degree of one endpoint i and the inverse degree of another endpoint j on a random 
edge (i, j) ∈ E(−) , i.e., ρ(−) = cor(k(−),i , 1/k(−),j|(i, j) ∈ E(−)) is negative; it is positive ( δg ,−w(−) > δl,−w(−) ) if 
the correlation is positive; and it is zero if the correlation is  zero12.

For a mixed world of positive and negative edges, the equations of the mixed-world paradox can be writ-
ten as follows. The global formulation of the difference between number of friends of a random node with the 
number of friends of enemies of a random node can be formulated as Eq. (6a). And the global formulation of 

(3)
δl,−w(−) =

1
TA(−)1− 1

TD−1
(−)A(−)D(−)1

1T1

=
1
TA(−)1− 1

TD(−)A(−)D
−1
(−)1

1T1
,

(4)δl,−w(−) =
Tr

[

A(−)(2J− D(−)JD
−1
(−) − D−1

(−)JD(−))

]

21T1
,

(5)
δg ,−w(−)− δl,−w(−) =

1
TD−1

(−)A(−)D(−)1

1T1
−

1
TA2

(−)1

1TA(−)1

= ρ(−)k(−)σD,(−)σID,(−).

Figure 1.  Global versus local enmity and friendship paradoxes. The networks are induced graphs for vertices 
at distance 2 from one vertex in one village in Honduras. On the left is the enmity network constructed from 
enmity interactions, and on the right is the friendship network constructed from friendship interactions. 
Darker blue represents nodes with maximum paradox, while red represents nodes with balance, and yellow 
represents nodes with the opposite circumstance. The (a, b) value for each node represents the (mean degree, 
mean neighbors’ degree) and the difference, i.e., a− b , represents the individual local paradox. It is the mean of 
all individual local paradoxes that constitutes the “local paradox.” In the case of the enmity paradox, the local 
paradox is equal to − 1.25 , while in the case of the friendship paradox, it is equal to − 1.04 . The “global paradox” 
is the difference between the mean degree of a random node and the mean degree of a random endpoint on a 
random edge. Accordingly, the global enmity paradox is equal to − 0.93 and the global friendship paradox is 
equal to − 0.69 here.
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the difference between the number of enemies of a random node with the number of enemies of friends of a 
random node can be formulated as Eq. (6b). 

The numerator of these equations can be reduced to 
∑

i k(−),i
∑

i k(+),i − n
∑

i k(−),ik(+),i which is negative 
when the correlation between the positive and negative degrees is positive.

For the local formulation, these equations reduce to Eq. (). 

Equation (7a) can be also written as the operation of the Laplacian matrix of the negative world on the 
positive degree vector k(+) , i.e., δl = 1

TL(−)k(+) , where, L(−) = I− D−1
(−)A(−) . Similar statements can be shown 

regarding the relationships between δl and δg in a mixed world. The difference between δg ,−w(+) (6a)/δg ,+w(−) 
(6b) and δl,−w(+) (7a)/δl,+w(−) (7b) can be written by introducing the “generailized inversity” measure in the 
mixed world, i.e., the correlation between the positive degree/negative degree of one endpoint i and the inverse 
negative/positive degree of another endpoint j on a random negative/positive edge (i, j) ∈ E(−)/E(+) (see Eqs. S34, 
S37 in Supplementary Material, Sect. G).

Finally, it is possible to use a similar representation to explore when the enmity paradox can be generalized 
for non-topological attributes such as happiness, wealth, and health (e.g., on average, a person’s enemies are richer 
or happier than they are, as has previously been shown for friendship  paradox2). Due to the similarity between 
the enmity paradox and the friendship paradox, we expect that the condition for generalization of the global 
definition is similar to the condition previously studied for the generalized friendship  paradox2. Similarly, the 
condition for the relationship between the local and global formulations of the generalized enmity paradox 
should be similar to the condition of their relationships for the generalized friendship  paradox6. Derivations of 
these effects, and results, are provided in the Supplementary Material, Sect. F.

Higher-order enmity paradox
We can also consider the paradoxes for higher-order neighbors. For example, in the global formulation, if the 
average degree of a random neighbor of a random node is greater than the average degree of a random node, is 
it also the case that the average degree of a random 2-hop neighbor of a random node is also larger—or for any 
random ℓ-hop neighbor of a random node (an ℓ-hop neighbor is a neighbor we arrive through a random walk 
with length ℓ).

In this case, it is more specific to ask if there is a relationship between the paradox strength and the order of 
the neighbors. Here, the equation for global formulation of δg for an order of ℓ can be written as Eq. (8),

where for ℓ = 2 can be written as follows.

Accordingly, we can see different scenarios under different conditions. If the degree of nodes that are con-
nected have a positive correlation, i.e., 1/n

∑

i∼j didj > 1/n2
∑

i di
∑

j d
2
j  , we still have similar paradoxes, i.e., 

the average degree of a neighbor of a neighbor of a random node is larger than the average degree of a random 
node. If we have the opposite inequality, we see a paradox in a counterintuitive sense in comparison with the 
friendship paradox. And if we have equality, we do not see any paradox. However, the paradox is always valid 
for ℓ odd since the numerator of Eq. (8) is always negative for ℓ odd due to Theorem 4.2 in Ref.5 that was origi-
nally proposed in Ref.17. The theorem says that, given positive integers r and s such that r + s is even, we have 
1
TAr

1 · 1TAs
1 ≤ 1

TAr+s
1 · 1T1.

For a local definition, the equation can be reduced to Eq. (10),

(6a)δg ,−w(+) =
1
TA(+)1 · 1

TA(−)1− 1
TA(+)A(−)1 · 1

T
1

1TA(−)1 · 1
T1

,

(6b)δg ,+w(−) =
1
TA(+)1 · 1

TA(−)1− 1
TA(+)A(−)1 · 1

T
1

1TA(+)1 · 1
T1

.

(7a)δl,−w(+) =
1
TA(+)1− 1

TD−1
(−)A(−)D(+)1

1T1
,

(7b)δl,+w(−) =
1
TA(−)1− 1

TD−1
(+)A(+)D(−)1

1T1
.

(8)δ(ℓ)g =
1
TA1 · 1TAℓ

1− 1
TAℓ+1

1 · 1T1

1TAℓ1 · 1T1
,

(9)
δ(ℓ=2)
g =

1
TA1 · 1TD2

1− 1
TDAD1 · 1T1

1TA21 · 1T1

=
Tr

[

A
(

JD2J− nDJD
)]

1TA21 · 1T1
.

(10)δ
(ℓ)
l =

1
TA1− 1

TD−1AℓD1

1T1
,
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where it can be either positive or negative under different circumstances. Statements similar to the relationship 
of δl and δg can be derived for this purpose.

Hence, theory suggests that the enmity and friendship paradoxes for higher orders may not always be true 
and might only hold under some circumstances (e.g., particular sorts of networks, or particular regimes such 
as related to whether geodesic backsteps are allowed); while we note these mathematical observations here, we 
leave empirical investigation of these details to future work.

Methods
Despite the mathematical isomorphism of the enmity paradox and the friendship paradox formulations (in the 
worlds of positive and negative ties, respectively), the empirical existence and the strength of the enmity para-
dox in real networks is not guaranteed—given the differences between the negative and positive environments. 
Positivity, for example, is characterized by a large clustering coefficient, reciprocity, and  homophily18,19, while 
negativity can even seem like mere  noise18,20. Here, we characterize some of these structural characteristics of 
social networks before investigating the enmity paradox, comparing positive and negative ties. These noteworthy 
differences can be partly explained via the inherent avoidance between the sender and receiver of negative ties, 
which leads to low information  transfer18; in other words, people are more likely to know who likes them (because 
the other persons are more likely to so declare) than they are to know who dislikes them (which is information 
that is more often kept private)21.

Several distinct measures might play an important role in explaining the friendship paradox. (1) We denote 
the clustering coefficient using Tl , which is the local adaptation of the transitivity measure (Supplementary Mate-
rial, Sect. B), and transitivity as Tg . (2) The inversity measure ( Hi ) (which is not the same as degree assortativity, 
with which it is negatively correlated) has a direct effect on the local friendship paradox  strength12. (3) The degree 
assortativity ( Ha ) is also  important14. (4) A heterogeneity index that captures starlike graphs—similar to the 
inversity measure—also plays an important role for the severity of friendship paradox. For degree assortativity, we 
can use extant  measures22; and for starlike strength, we use a measure that represents topological heterogeneity in 
complex networks and is maximal for star graphs ( H∗)23. We also consider (5) the variance of the degree ( Hvar ), 
and (6) a novel heterogeneity measure ( Hdeg−div ) that reflects degree diversity and has a close relationship with 
 entropy24. To characterize other differences between positive and negative ties, we can also compare four more 
topological properties, including the reciprocity, the clustering coefficient, the homophily between the positive 
and negative ties, and the normalized betweenness-centrality (the mathematical definitions for all these measures 
are provided in Supplementary Material, Sect. B).

Maximum paradox strength
The severity of the paradoxes depends on network structure. The global paradox strength is proportional to the 
variance of its degree sequence divided by its average degree. To maximize the global paradox strength given a 
constant average degree, we would need to maximize the degree variance by rewiring the edges so that the degree 
values oscillate between extreme values 1 and kmax . Similarly, a greedy rewiring algorithm can increase the local 
paradox  strength12. A cross-rewiring of paired edges that connect the nodes with extreme degrees—substituting 
connections of smallest degree nodes with the largest degree nodes instead of connection of medium degree 
nodes—can increase the strength of the paradox, with star networks having the maximum value. Therefore, the 
enmity and friendship paradoxes would appear to have the greatest strength in both global and local formula-
tions when connections have a star shape.

Data
We use data from a sociocentric network study of 24,678 people aged 11 to 93 years (with a mean age of 32) in 
176 geographically isolated villages in western  Honduras11. The Yale IRB and the Honduran Ministry of Health 
approved all data collection procedures (Protocol # 1506016012), and all participants provided informed consent 
before enrollment in the study.

We first construct 176 binary directed signed networks. We use three name generators to determine (poten-
tially overlapping) positive ties (“Who do you spend your free time with?” “Who is your closest friend?” and 
“Who do you discuss personal matters with?”). And we use one name generator for negative ties (“Who are the 
people with whom you do not get along well?”). Here, we focus on the enmity paradox for undirected (sym-
metrized) networks (an example village is illustrated in Fig. 2). Results for undirected (reciprocated) and directed 
networks are in the Supplementary Material, Sects. C and D, respectively.

Results
Across the whole population, nodes have an average of 6.89 ( SD = 3.79 ) friends, and these friends have an aver-
age of 8.40 ( SD = 2.52 ) friends. In order to find the difference at the individual level, we must remove isolated 
nodes; and the average consequent difference is −1.5 ( SD = 3.57 ). For the enmity networks, a node has an average 
of 1.26 ( SD = 1.70 ) enemies, while these enemies have an average of 3.40 ( SD = 2.11 ) enemies. After removing 
the isolated nodes, the average difference between the number of enemies and the number of enemies of enemies 
is −1.10 ( SD = 2.57 ). For the remaining analyses, we remove the isolated nodes from the constructed networks.

Core topological properties of friendship and enmity networks are presented in Fig. 3. The reciprocity of posi-
tive edges is much larger than the reciprocity of negative edges, in part due to the relative scarcity of negative ties. 
Therefore, we expect the undirected enmity networks constructed from reciprocated edges to be much sparser 
compared to the friendship networks (Supplementary Material, Sect. C). The clustering coefficient of positive 
edges is much larger than the clustering coefficient of negative edges; that is, friendship networks have more 
triangles than enmity networks (Fig. 2). The presence of starlike motifs is therefore expected to be more prevalent 
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in negative environments (Fig. 2). This is in turn aligned with the results for both H∗ , and Hi . The variance of 
degree for positive networks is much larger than the negative networks. Thus, it appears that, among the different 
factors contributing to the strength of the enmity paradox, the starlike indices ( Hi and H∗ ) align with greater 
strength, and the lower Hvar opposes it. Finally, we also plotted the difference between the normalized between-
ness centrality ( N− BC ) of the positive and negative worlds to emphasize how the negative world has a more 
starlike shape as the maximum value of unnormalized BC is achieved by the central point in a star  network25.

First, we study the global and local enmity and friendship paradoxes among the 176 villages, and we present 
the histogram of these values in Fig. 4. We observe large strengths in the enmity paradox and the friendship 
paradox in negative and positive worlds, respectively, although smaller for the negative world (the 95% confidence 
intervals are computed using one sample t-test and provided in Supplementary Material, Fig. S2). Additionally, 
given slightly negative Hi values for friendship networks (Fig. 5), we expect the strength of local paradox to be 
greater than the global paradox for friendship networks as compared to enmity networks (Eq. (5), Fig. 4A,D, Sup-
plementary Material, Fig. 5). The global and local paradoxes for enmity networks and also for the mixed worlds, 
however, are nearly equivalent, as expected due to their balanced Hi values (Fig. 5). (Details regarding the com-
putation of Hi in the mixed world (the generalized inversity) are provided in Supplementary Material, Sect. G).

The results for the mixed worlds for undirected (symmetrized) networks are also presented in Fig. 4B,C. 
Although the mixed-world paradox in the mixed world disappears in undirected (reciprocated) networks due to 
the sparsity of reciprocated negative edges (Supplementary Material, Figs. S1, S2), for undirected (symmetrized) 
networks, the paradox strengths are significantly larger than 0 (Supplementary Material, Fig. S2). In other words, 
in undirected networks using symmetrized edges, our friends are more likely to have more enemies than we 
do (Fig. 4B, Supplementary Material, Fig. S2) and our enemies are more likely to have more friends than we do 
(Fig. 4C, Supplementary Material, Fig. S2).

To understand the effect of different topological properties noted in Fig. 3 on the enmity paradox strength, 
we analyze the relationship between the local and global paradox measures and the topological properties. Using 
regression models, we can characterize the effect of various topological features on friendship and enmity para-
dox strengths (Supplementary Material, Sect. E). Among the measures, the degree variance Hvar and the starlike 
embedding H∗ , besides the degree diversity Hdeg−div and inversity Hi , can explain a significant portion of the 
intervillage variance in paradox strengths ( R2 ∈ [0.94, 0.97] ; with N = 176 villages). Furthermore, Hvar and H∗ 
also have large effects. This relationship is illustrated in Fig. 6 (the relationships between the strength and other 
heterogeneity measures are highlighted in Supplementary Material, Figs. S6, S7). As expected, the larger the 
variance and the more the starlike embedding, the stronger the paradox.

The higher-order enmity and friendship paradoxes are presented in Fig. 7 (for the first to the sixth order). 
Because high-degree individuals are counted exponentially more than individuals with low degrees when increas-
ing the order of random walks through the network, the higher-order enmity and friendship paradoxes are 
more severe than the typical enmity and friendship paradoxes. This phenomenon is much more severe in local 
paradoxes when we compare the degree of a random node with its higher-order neighbors (Fig. 7, bottom row).

To investigate the relationship between a node’s contribution to the local enmity and friendship paradoxes 
and its topological location, we can plot the nodal contribution versus the location of the nodes in a network. 
The location of the nodes is defined by using a simple fact in networks, namely that the nodes in the center of a 
network have a smaller distance from other nodes, while the nodes in the periphery have a larger distance from 
other nodes. Therefore, if we embed every node using its average and standard deviation of distances from other 
nodes in a network—normalized by the network diameter within each network component separately—we find 
that, in a network, peripheral nodes have a greater paradox strength than central nodes (Fig. 8).

Finally, the results for the generalized enmity paradox are provided in Supplementary Material, Sect. F, 
Tables S4, S5, Figs. S9 and S10. The results document the existence, for instance, of the generalized paradoxes 

Figure 2.  A visualization of the enmity, friendship, and signed networks within one Honduras village. The 
negative ties tend to be arranged in a star-shaped pattern, whereas the friendship ties contribute more towards 
larger-scale transitivity. Red indicates negative ties and blue indicates positive ties.
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in both enmity and friendship with respect to wealth. Due to the higher correlation between non-topological 
features and positive degree, the generalized friendship paradox is stronger than the generalized enmity paradox.

The results for undirected (reciprocated) and directed networks are provided in Supplementary Material, 
Figs. S1 and S4, respectively. For undirected (reciprocated) networks, the enmity and mixed-world paradox 
strengths in the negative world and the two mixed worlds, respectively, are significantly smaller compared to 
undirected (symmetrized) networks (Supplementary Material, Fig. S2)—due to the small reciprocity in enmity 
networks. Regarding directed networks, we observe that the global enmity paradox strength is usually greater 
than the corresponding local strength in a purely negative world (the unpaired t-tests for comparison of global 
and local paradox strengths are provided in Table S2). Interestingly, the enmity paradox for directed negative 
networks conveys contradictory information. Negative values of the global paradox strength δg represent the 
enmity paradoxes on a global scale, whereas positive values of the local paradox strength δl indicate that the 
paradoxes are in the opposite direction locally (more details in the Supplementary Material, Sect. D). The dif-
ference between local and global enmity paradox strengths for directed networks can be explained using an 
inversity measure (Supplementary Material, Sects. D, G, Fig. S13).
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Discussion
Our perception of the world can be distorted by the sampling bias towards high-degree nodes that arise as a 
result of the friendship  paradox1. In our minds, if not in reality, our friends have more friends, our collabora-
tors have more collaborators, and our colleagues are wealthier or happier than we ourselves are. Here, we have 
shown empirically that the same observations hold with respect to antagonistic ties. Yet, with a lower clustering 
coefficient, lower degree assortativity, and greater inversity, we expect even more starlike shapes in enmity net-
works. These factors all make the enmity paradox even more probable than the friendship paradox. Moreover, 
the enmity paradox obtains in a negative world when comparing the number of an ego’s enemies with their 
enemies’ enemies as well as in mixed worlds when we compare an ego’s friends with the ego’s enemies’ friends 
and an ego’s enemies with an ego’s friends’ enemies.

Our approach to, and equations regarding, the mixed world have the versatility to be effectively implemented 
in multiplex networks that consist of multiple layers of types of ties more generally. That is, the argument gen-
eralizes to the case of any network with two (or more) distinct edge types (not just friends/enemies, but also 
friends/family, emotional/physical sources of support, and so on). Consequently, we can investigate paradoxes 
that emerge between the layers of such networks. It is noteworthy that a positive correlation between the degrees 
across the different layers is essential for such paradoxes (alter-biased perception) to surface. If the correlation 
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Figure 4.  Histograms of δg and δl for undirected (symmetrized) networks among 176 village networks. The 
histograms of enmity and friendship paradoxes are provided in (A,D), respectively. Other panels represent the 
histograms of mixed-world paradox strengths for the mixed worlds. The histogram in (B) shows the global and 
local paradox distributions for the difference between the number of a person’s enemies and the number of 
enemies of their friends, while (C) represents the difference between the number of a person’s friends and the 
number of friends of their enemies.
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between layers is small, there is no difference between the perceptions coming from different layers. Of course, 
a negative correlation between layers can support paradoxes in the opposite direction.

Some topological differences between enmity and friendship networks (e.g., the smaller variance and smaller 
reciprocity in enmity networks) suggest possibly divergent perceptional biases. For example, since the paradox 
strength is proportional to the degree variance, it could be lower for enmity networks; however, we observe 
similar paradox patterns in both enmity networks and in a mixed world of friendship and antagonistic ties.

There is also a fundamental connection between the generalized friendship paradox (involving non-topologi-
cal features) and the enmity paradox. If we treat the number of enemies a person has as simply a non-topological 
attribute for the positive network, then the enmity paradox just follows from the generalized friendship paradox. 
Looking at the correlation between positive and negative degrees reveals these observations (Supplementary 
Material, Fig. S11). As a result of the positive correlation between positive and negative degrees in most of the 
village networks ( Pearson’s correlation = 0.18 , p < 10−16)—in other words, the empirical reality that people 
who have many friends also tend to have more enemies—we are able to actually answer the question of why the 
enmity paradox exists in the first place through the lens of the generalized friendship paradox.

These paradoxes have further implications. Our understanding of social norms and of our social standing 
is influenced by our perceptions of those around us. For instance, the friendship paradox can help explain sys-
tematic biases in social perceptions such as regarding the prevalence of binge drinking and risky  behaviors16,26. 
Furthermore, the friendship paradoxes can explain why a given behavior in a society can be amplified. This can 
occur in two interwoven phases, where popular individuals act more intensely for activities associated with 
strategic complementarities, and those who are prone to certain behaviors interact more with other people who 
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Figure 5.  The village-level inversity distribution for undirected (symmetrized) networks. In terms of notation, 
the −w and +w indicate the type of one’s neighbor, as one’s enemy and friend, respectively. The (−) and (+) 
denote the type of comparison as enemies or friends. These inversities are aligned with four cases: the enmity 
paradox in the negative world, −w(−) ; the friendship paradox in the positive world, +w(+) ; and the mixed-
world paradox in the two mixed worlds, −w(+)/+w(−) . The distribution of these correlations over 176 village 
networks in the Honduras dataset is represented in the upper row, while the P-values of these correlation tests 
for these networks are represented in the bottom row. These (correlations, p-values) for the whole dataset for 
the above four cases can be summarized as (−0.09,< 2.2e−16) , (−0.21,< 2.2e−16) for enmity −w(−) and 
friendship +w(+) paradoxes, and (−0.09,< 2.2e−16)/(−0.05,< 2.2e−16) for the mixed-world paradox in the 
two mixed worlds, when we compare one’s number of friends/enemies with the number of friends/enemies 
of their enemies/friends −w(+)/+w(−) . For the friendship paradox +w(+) , the distribution of inversity is 
predominantly distributed over negative values, which results in δg < δl , whereas the other distributions are 
around 0, making the local and global strengths almost identical (Fig. 4).
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are also involved in that behavior, amplifying the effects of this  behavior16. As a result, perceptions of behavior 
increase, and this could contribute to an increase in the behavior along the lines of the perception. Mispercep-
tions about the habits of one’s enemies could act similarly.

Such inter-personal influence, even if biased, can in turn be exploited to foster cascades, as field experiments 
have  shown10,11,13,27. Indeed, as a result of phenomena like the friendship and enmity paradoxes, we could further 
perfect network targeting algorithms that exploit the friendship paradox; and taking into account a person’s 
enemies could make network targeting even more effective.

Biases associated with our antagonistic ties could be consequential in still another way. For instance, the 
friendship paradox may intensify homophilous patterns in network formation due to the  misperception16,28. 
Because of these paradoxes and the misperceptions they can give rise to, people might form a miscalbirated 
assessment of their own attributes and thus seek out connections with people different than they might otherwise 
truly wish or “deserve.” The enmity paradox might similarly change our perceptions of reality and may func-
tion as a deterrent force in the formation of network ties between a person and the social connections around 
a person’s antagonists. When people judge whom to either befriend or avoid, they may be biased in ways that 
might harm their interests.
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Data availability
The full datasets generated and/or analyzed during the current study are not publicly available due to several 
considerations, including the commitments to the research subjects and the sensitive nature of the health and 
social data in these small communities that could potentially allow decryption or individual identification, but 
they are available from the corresponding author on reasonable request, and subject to a DUA. The replication 
code and the network data for a sample of 22 signed villages are provided at https:// github. com/ Aghas emian/ 
Enmit yPara dox.
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