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Plasticity‑led evolution 
as an intrinsic property 
of developmental gene regulatory 
networks
Eden Tian Hwa Ng  & Akira R. Kinjo *

The modern evolutionary synthesis seemingly fails to explain how a population can survive a large 
environmental change: the pre‑existence of heritable variants adapted to the novel environment is 
too opportunistic, whereas the search for new adaptive mutations after the environmental change 
is so slow that the population may go extinct. Plasticity‑led evolution, the initial environmental 
induction of a novel adaptive phenotype followed by genetic accommodation, has been proposed to 
solve this problem. However, the mechanism enabling plasticity‑led evolution remains unclear. Here, 
we present computational models that exhibit behaviors compatible with plasticity‑led evolution 
by extending the Wagner model of gene regulatory networks. The models show adaptive plastic 
response and the uncovering of cryptic mutations under large environmental changes, followed by 
genetic accommodation. Moreover, these behaviors are consistently observed over distinct novel 
environments. We further show that environmental cues, developmental processes, and hierarchical 
regulation cooperatively amplify the above behaviors and accelerate evolution. These observations 
suggest plasticity‑led evolution is a universal property of complex developmental systems 
independent of particular mutations.

According to the modern evolutionary synthesis, the standard theory of evolution, all possible phenotypic vari-
ation is almost purely explained by genetic  variation1, either ignoring environmental contributions or treating 
them as  noise2, 3. In this sense, the standard theory is said to be a theory of mutation-led evolution. Therefore, 
the only means for an individual to survive a large environmental change is to possess mutations that produce 
a phenotype already adapted to the novel environment. However, natural selection selects adaptive phenotypes 
in the current environment, making the pre-existence of phenotypes adapted to novel environments highly 
 unlikely4. Suppose instead that adaptive variants only appear after the environmental change. In that case, adap-
tation requires searching for new adaptive mutations, which is likely too slow for the population to  survive5.

Phenotypic plasticity, the ability to change the expressed phenotype in response to environmental cues, has 
been proposed to remedy the above problem because it could produce a phenotype with higher fitness in a novel 
environment without a change in the genotype. Phenotypic plasticity arises from the developmental process, 
which integrates genetic and environmental information to generate a  phenotype6–8. Biological experiments 
suggest that formerly conditionally expressed traits can become constitutively expressed through a process 
called genetic  assimilation9. Genetic assimilation was later generalized to genetic accommodation to include 
any adaptive refinement of phenotype  regulation6, 10.

In plasticity-led evolution, the novel adaptive phenotype is initially induced by novel environmental cues. If 
the novel environment is persistent, then the novel phenotype undergoes genetic  accommodation6, 11, 12. This 
has been deemed to resolve the problem of gradualism implied by mutation-led  evolution13. Levis and Pfennig 
proposed the following four criteria for plasticity-led  evolution11: 

1. The novel adaptive phenotype is initially induced by plasticity.
2. Cryptic mutations are uncovered as a result of the plastic response.
3. The phenotype undergoes a change in regulation.
4. The phenotype undergoes adaptive refinement under selection.
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There are numerous studies on natural populations to evaluate whether plasticity-led evolution has  occurred11. 
However, the mechanisms by which plasticity-led evolution is made possible remain unclear, resulting in mis-
understanding and confusion on the meaning and implications of plasticity-led  evolution1, 10, 12, 14. For example, 
if plastic responses are regulated by particular genes, plasticity itself is a heritable  trait1 and, hence, is subject to 
natural selection. The “plasticity-led evolution” based on such gene-regulated plasticity is, therefore, still within 
the framework of Modern Evolutionary Synthesis, and hence the problem of gradualism remains. This suggests 
that plasticity in plasticity-led evolution should emerge from non-genetic  causes5, 13, 15. This is not to say that 
plasticity does not depend on genetic information. It is to say that the plasticity in plasticity-led evolution should 
be an emergent, collective property of the developmental system, including the genome and environment as a 
 whole5, 13, 15, 16. A similar phenomenon has been suggested for evolutionary  capacitance17.

To pursue this possibility, we study computational models of evolutionary developmental systems. Such 
models should be able to express changes in phenotype in response to changes in environmental cues and pos-
sess a developmental framework and hierarchical  regulation18, 19. In plasticity-led evolution, the environment 
encountered by a population plays two roles. One induces phenotypic response (environment-as-inducer), and 
the other selects phenotypes more adapted to it (environment-as-selector). Existing works incorporate some 
aspects of phenotypic response to different environmental  cues20–23. However, so far, there seem to be almost no 
studies that explicitly correlate the two roles of the  environment4. A notable exception is Draghi and  Whitlock24, 
who used correlated environment-as-selector and environment-as-inducer (modeled as 2-dimensional vectors) to 
study the effect of genetically encoded plasticity on adaptation. The developmental process is often overlooked in 
traditional quantitative genetics models as it does not directly contribute to phenotypic  variation3, 25, 26. However, 
it is an essential process that integrates environmental and genetic information into  phenotype6, 7. Developmental 
processes are naturally modeled by gene regulatory networks (GRNs)27, 28. Biological GRNs have a hierarchical 
 organization18, 19, 28. However, most studies of computational models ignore this biological aspect of development 
(except for Xue et al.29, but their model lacks developmental regulation).

We demonstrate that GRN models incorporating all the above ingredients can satisfy the Levis-Pfennig cri-
teria for plasticity-led evolution under large environmental  changes11. We also illustrate how these ingredients 
cooperatively enhance adaptation and accelerate evolution. We further show that this model exhibits plasticity-led 
evolution as a generic feature independent of specific mutations or particular environmental changes.

Modeling
A computational model of plasticity-led evolution should incorporate several core notions: environment (-as-
inducer and -as-selector), gene regulatory network (GRN), developmental process, selection, and reproduction. 
The environment-as-inducer represents the role of the environmental cue in determining phenotype alongside 
the genome. The environment-as-selector represents the role of the environment as a selection agent. In our work, 
we assume that these two roles of the environment are highly correlated. The GRN represents the regulation 
of phenotype expression through gene-gene and gene-environment interactions. We model the developmental 
process as the recursive regulation of gene expressions over time to express the phenotype. Selection favors 
individuals that have adult phenotypes that better match the environment-as-selector. Selected individuals then 
reproduce. Their genomes are recombined and mutated to produce the next generation of individuals.

A minimal model incorporating all these notions is a recursive GRN introduced by A.  Wagner27. In the 
Wagner model, the gene expression at the s-th stage of development is represented by a vector g(s). The genome 
is represented by a matrix G where the (i, j) element represents the regulatory effect of the j-th gene on the i-th 
gene. The recursive equation defining the developmental process of the Wagner model is given by

where σ is an activation function.
The developmental process is naturally represented by the sequence of vectors g(0), g(1), g(2), · · · . The indi-

vidual’s phenotype is usually taken as the steady state of Eq. (1) if it converges. The Wagner model has been used 
to demonstrate the evolution of mutational  robustness27, evolutionary  capacitance17, the link between mutational 
and environmental  robustness30, the role of robustness in  evolution31, 32, the role of phenotypic plasticity in 
directing  evolution33 and the emergence of  bistability22, 23. These works provide indirect evidence that the Wagner 
model has the potential to exhibit plasticity-led  evolution4.

However, most previous works using the Wagner model did not include correlations between the environ-
ment-as-inducer and environment-as-selector to validate whether a plastic response is adaptive. These works 
also do not emphasize the roles of developmental processes or hierarchical regulation of GRNs. We, therefore, 
extend the Wagner model by introducing these extra features.

Macro‑environment and environmental cues
Recall that the environment plays two roles in eco-evo-devo biology. The “environment-as-inducer” forms a cue 
integrated into phenotype expression. The “environment-as-selector” determines the fitness of adult individu-
als. We generalize the idea of Draghi and  Whitlock24 to a higher-dimensional case to model a wider variety of 
environments and phenotypes. We define the macro-environment as a 200-dimensional vector e representing 
the average environment exerted on the population. Each element of e takes a +1 or −1 value. We modeled each 
individual’s environmental cue e as the macro-environment e with noise by randomly flipping 5% of elements of 
e . This environmental cue e may be considered as the micro-environment of an individual.
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Genome and developmental process
We now introduce several variants of the Wagner model. The Full model (Fig. 1a) is the main focus of this study, 
which incorporates response to environmental cues, developmental process, and hierarchical regulation. As 
controls, we also introduce NoHier, NoCue, and NoDev (Fig. 1b–d) models to highlight the role of each ingredi-
ent in plasticity-led evolution.

Full model
We introduce a vector p(s) representing the phenotype expressed at the s-th stage of development and p̃(s) as 
the exponential moving average of the phenotype (see "Methods"). To reflect the hierarchical regulation of GRN 
elements (such as epigenetic marks, RNAs, and proteins), we further introduce a layer of vector f(s) to represent 
epigenetic marks and a layer of vector h(s) to represent higher-order complexes (such as proteins, supramolecular 
complexes, etc.). Thus, we assume the following mutually recursive equations:

where E is a matrix that represents the environmental regulation of epigenetic marks, F is a matrix representing 
the epigenetic regulation of gene expression levels, G is a matrix representing the genetic regulation of epigenetic 
marks, H is a matrix representing the genetic regulation of higher-order complexes, J is a matrix representing 
interactions among higher-order complexes, P is a matrix representing regulation of the phenotype. Therefore, 
the matrix ensemble {E, F,G,H , J , P} represents the individual’s genome. We set the base matrix density as 
ρ0 = 0.02 , which is the density of each matrix in the Full model. The matrix densities for the other models are 
determined such that the number of nonzero elements is equal between different models on average. σf , σg , σh, 
and σp are activation functions based on arctangent or hyperbolic tangent functions (see "Methods"). The initial 
conditions are set to f (0) = 0 , g(0) = 1 , h(0) = 0 , and p(0) = 0 , where 0 is the zero vector and 1 is the vector 
with all elements equal to 1. f(s), g(s), h(s), and p(s) are all 200-dimensional vectors in the Full model, the values 
of their elements can be interpreted as their respective normalized values. We iteratively compute the state vectors 
f(s), g(s), h(s), and p(s) for s = 1, 2, · · · until the phenotype p(s) converges (see "Methods").

Note that the environmental cues are fed to the system as e − p̃(s − 1) rather than e alone. In reality, no envi-
ronmental cues can directly influence an organism, but only through some receptors or sensors, which are part 
of the  phenotype34. The e − p̃(s − 1) term can represent these cue-receptor/sensor interactions most straightfor-
wardly. As the population adapts towards e , (selected elements of) p approaches e , and their difference converges 
to 0 . In other words, the influence of the environmental cues on the adult phenotype decreases as adaptedness 
increases. In this way, we expect to model genetic  assimilation13. In contrast, early developmental stages (e.g. 
embryos) are more strongly influenced by environmental cues, in line with experimental  observations9, 35, 36.

NoHier model
To study the effect of hierarchical structure on GRNs, we introduce a developmental model without a hierarchical 
structure, which we name the NoHier model (Fig. 1b):

To preserve the degrees of freedom between the Full and NoHier models, the vector representing gene expression 
levels g(s) is set to 600-dimensional for the NoHier model. The matrix densities of the NoHier model are adjusted 
so that the number of non-zero elements is the same as the Full model, on average (Table 1). The dimensions of 
vectors representing the environment e and phenotype p(s) are kept at 200.

NoCue model
To study the effect of environmental cues on development, we introduce a developmental model where the 
environmental cue e is absent, which we name the NoCue model (Fig. 1c):
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Table 1.  Summary of parameters in model variants.  dim g is the dimension of the g vector. All other vectors, 
if present, are 200-dimensional. Matrix densities (ρG , ρP , ρE , ρH ) are chosen to ensure that the number of 
non-zero elements is equal between different models on average. Our study used ρ0 = 0.02 . ωf ,ωg ,ωh and 
ωp are scaling constants for the input of the respective activation functions (squared values are shown; see    
"Methods").

Full NoHier NoCue NoDev

Vectors e − p, f , g , h, p e − p, g , p −p, f , g , h, p e, f, g, h, p

Matrices E, F, G, H, J, P E, G, P E, F, G, H, J, P E, F, G, H, P

dim g 200 600 200 200

ρG ρ0 4ρ0/9 ρ0 ρ0

ρP ρ0 ρ0/3 ρ0 ρ0

ρE ρ0 ρ0/3 ρ0 ρ0

ρH ρ0 N.A. ρ0 2ρ0

ω2
f

3× 200ρG N.A. 2× 200ρG 2× 200ρG

ω2
g 200ρG 600ρG + 2× 200ρE 200ρG 200ρG

ω2
h

2× 200ρH N.A. 2× 200ρH 200ρH

ω2
p 200ρP 600ρP 200ρP 200ρP
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Figure 1.  Diagram representing regulation between different layers of different models. Boldface e represents 
the macro-environment. e, f, g, h, p represent vectors. Black solid arrows represent regulatory interactions. The 
red solid arrow represents noise. The black dotted arrow represents selection. E, F, G, H, J, P represent regulatory 
matrices. (a) Full model (Eq. 2); (b) NoHier (Eq. 3); (c) NoCue (Eq. 4); (d) NoDev (Eq. 5).
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Apart from the absence of the vector e, this is identical to the Full model.

NoDev model
To highlight the importance of the developmental process, we use the Full model described by Eq. (2) but set 
the maximum number of developmental steps to 1 for minimal development. We name this the NoDev model 
(Fig. 1d):

Hence, p(1) is immediately considered the adult phenotype. To compensate for the absence of self-regulation of 
the h layer, we double the density of the H matrix (Table 1).

Natural selection and reproduction
We evaluate each individual’s fitness by matching the macro-environment e with the adult phenotype p (assum-
ing that p converges). In other words, the macro-environment e plays the role of environment-as-selector by 
being the optimal phenotype. We also included the number of developmental steps up to convergence into the 
fitness calculation such that individuals with fewer developmental steps are favored. We define the raw fitness 
of the i-th individual as:

where �p− e�1 is the absolute (L1) distance between the first 40 (out of 200) elements of the adult phenotype p 
and the corresponding elements of the macro-environment e , Nstep is the number of developmental steps until 
convergence, and we set α = 20 and β = 1

20 . In other words, only 40 traits (elements of the phenotype vector) 
are subject to selection, and other 160(= 200− 40) traits are allowed to evolve freely. In this paper, we call the 
value of �p− e�1 mismatch. Individuals whose phenotype p(s) does not converge before a pre-specified num-
ber (200) of steps are given a fitness value of zero. The population in which all individuals have completed the 
developmental process is called the adult population in the following. The relative fitness of the i-th individual 
of the adult population is given by

where maxj{ωj} is the maximum raw fitness among the adult population.
The offsprings of individuals are generated as follows: 

 1. Initialize the selected population as an empty set.
 2. Uniformly sample individual i from the adult population.
 3. Sample a random number r from the uniform distribution between 0 and 1.
 4. If r < �i , then a copy of the i-th individual is added to the selected population.
 5. The i-th individual is put back to the adult population.

(4)

fi(s) = σf





200
�

j=1

Gijgj(s − 1)−
200
�

j=1

Eijp̃j(s − 1)



,

gi(s) = σg





200
�

j=1

Fijfj(s)



,

hi(s) = σh





200
�

j=1

Hijgj(s)+
200
�

j=1

Jijhj(s − 1)



,

pi(s) = σp





200
�

j=1

Pijhj(s)



.

(5)

fi(1) = σf





200
�

j=1

Gijgj(0)+
200
�

j=1

Eijej



,

gi(1) = σg





200
�

j=1

Fijfj(1)



,

hi(1) = σh





200
�

j=1

Hijgj(1)



,

pi(1) = σp





200
�

j=1

Pijhj(1)



.

(6)ωi = exp(−(α�p− e�1 + βNstep))

(7)�i =
ωi

maxj{ωj}



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19830  | https://doi.org/10.1038/s41598-023-47165-x

www.nature.com/scientificreports/

 6. Repeat steps 2-5 until the size of the selected population reaches the maximum population size of 1000 
individuals.

 7. Individuals i and i + 1 where i = 1, 3, 5, · · · of the selected population are paired to become parents.
 8. For each pair of parents, two offsprings are produced by randomly shuffling the corresponding rows of the 

genome matrices with probability 0.5 between the parents.
 9. Duplicate the offspring population. Now we have two populations of 1000 offsprings each.
 10. The genome matrices of both offspring populations are independently mutated with a given probability 

(see "Methods").

We then develop one offspring population in the “ancestral” environment and the other in the “novel” environ-
ment (see the following subsection for definitions of the ancestral and novel environments). Only the individuals 
in the “novel” environment are subject to selection. The population in the “ancestral” environment is used only for 
comparison and is discarded after measurement. Adaptive evolution of a population in an environment is there-
fore modeled by repeated cycles of development, selection, and reproduction under the “novel” environment.

Simulating plasticity‑led evolution
To study plasticity-led evolution, we require at least two environments: the ancestral environment, to which the 
population is adapted, and the novel environment, to which the population is to adapt. To let the population 
adapt to an environment, we simulate adaptive evolution for 200 generations. We call this duration an epoch, 
which is considered a unit of evolutionary time scale. In each epoch, the macro-environment is set constant. For 
each model, we simulated adaptive evolution for 50 epochs in turn (Fig. 2). Between two consecutive epochs, we 
introduce a large environmental change by randomly flipping 50% of the elements of the macro-environment 
vector e (Fig. 2). The first 40 epochs serve as the “training phase,” where the randomly initialized population is 
equilibrated. In addition, we expect the developmental systems to learn how to respond to large environmental 
changes during this phase. We then tracked the final ten epochs to assess the properties concerning the criteria 
of plasticity-led evolution. In each epoch, the last adapted and current environments are regarded as the ancestral 
and the novel environments, respectively.

i := 0
Initialize population and 
macro-environment e(i)

i := i+1
Evolve population for 200 

generations in e(i).

i > 50?

e(i+1) = Flip e(i) by 50%

No

Yes

End

Figure 2.  Simulating plasticity-led evolution. During each epoch, a population of individuals is subject to 
selection under a constant macro-environment. Each epoch lasts for 200 generations. At the end of each epoch, 
the macro-environment is changed by randomly flipping 50% of the environmental factors. This process is 
repeated so that the population is subject to selection under 50 different environments in turn. The first 40 
epochs are the training phase; we tracked the final ten epochs to assess plasticity-led evolution.
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Results
We first present a visualization of the trajectory of the phenotype and genotype over evolution. By looking at the 
initial phase of the trajectory, we assess plastic response and the uncovering of cryptic mutations. The visualiza-
tion also lets us track adaptive change in mean value and variation of genotype and phenotype over evolution. 
We compared different models in light of the Levis-Pfennig criteria of plasticity-led  evolution11. We also present 
additional results closely related to plasticity-led evolution.

Visualizing evolution: the genotype‑phenotype plot
To visualize evolution, we plotted the phenotypic value in the ancestral and novel environments against the geno-
typic value of the population over evolution for each epoch. We call this plot the genotype-phenotype plot (Fig. 3). 
Here, the phenotypic value is computed by projecting the phenotype vector onto an axis where 0 corresponds to 
the adult phenotype perfectly adapted to the ancestral environment and 1 to that perfectly adapted to the novel 
environment. Similarly, the genotypic value is computed by projecting the genome matrices (construed as a 
vector) onto an axis where a value of 0 corresponds to the average genotype of the first generation and a value of 

Figure 3.  Trajectory of projected phenotype against projected genotype. The trajectory of one arbitrary epoch is 
shown. Each point represents the population average of genotypic value (horizontal axis) and phenotypic value 
(vertical axis) after development but before selection at each generation (error bars represent respective standard 
deviations). Cyan and purple represent populations in novel and ancestral environments, respectively. Projected 
phenotypic values of 0 and 1 correspond to perfectly fit phenotypes in ancestral and novel environments, 
respectively. Projected genotypic values of 0 and 1 correspond to the population average genome at first and 
200th generations, respectively. Hence, the trajectory generally proceeds from the lower left to the upper right 
corner. (a) Full model; (b) NoHier; (c) NoCue; (d) NoDev. See also Supplementary Information.
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1 to the average genotype of the 200th generation (see "Methods"). Each generation’s projected phenotypes and 
genotypes are those after development but before selection. The trajectory of adaptive evolution in the novel envi-
ronment generally proceeds from the lower left corner to the upper right corner in the genotype-phenotype plot.

From the genotype-phenotype plots, we observe that all discussed models are capable of adaptive evolution. 
The projected value of the novel phenotype tends to increase as the projected value of the genotype increases. 
The final average value of the projected phenotype for all models is about 1 in the novel environment after an 
epoch, indicating adaptation.

For the Full and NoHier models (Fig. 3a,b), the phenotypes developed in the novel environment show sub-
stantially larger projected values than those developed in the ancestral environment in the first generation, 
indicating an adaptive plastic response. The standard deviation in phenotype in the novel environment is much 
larger than that in the ancestral environment in the first generation. This can be due to uncovered cryptic muta-
tions or amplified phenotypic response to environmental noise. However, a higher rate of change of projected 
genotype observed in the Full and NoHier models during the early stages of adaptation indicates rapid purifica-
tion of heritable variation during that phase. This suggests that the large standard deviation is more likely due to 
uncovered cryptic mutations (see subsection Environmental and genetic variations induce correlated phenotypic 
variation below). A notable difference between the Full and NoHier models is the much larger standard deviation 
in phenotype in the Full model after adaptation.

Environmental cues are absent in the NoCue model (Fig. 3c). Consequently, there is no phenotypic plasticity, 
and the phenotypes expressed in the ancestral and novel environments are almost identical. The slight difference 
in phenotypes in the genotype-phenotype plot is purely due to the difference in mutations. The early stage of 
adaptation is very slow, as seen in the cluttered distribution of points in the lower left corner. This is followed 
by a rapid change in genotype, as seen in the sparse distribution of points around the center of the plot. This 
observation demonstrates that evolution in novel environments without phenotypic plasticity is characterized 
by an initial slow change followed by rapid adaptation once adaptive mutations appear.

We observe some adaptive plastic responses in the NoDev model (Fig. 3d). However, on average, this adap-
tive plastic response is smaller than those of the Full or NoHier models. Similarly, there is less difference in the 
standard deviation in phenotypes between environments compared to the Full or NoHier models, indicating 
less uncovering of cryptic mutations. These observations highlight the importance of the developmental process 
in plasticity-led evolution.

We provide additional genotype-phenotype plots for different novel environments in Supplementary Infor-
mation. We observe that these behaviors are consistent over different novel environments.

Initial plastic responses tend to be adaptive
On the genotype-phenotype plots (Fig. 3), plastic responses are observed as a vertical shift between the ancestral 
and novel environments in the same generation. If the projected phenotype in the novel environment is greater 
than in the ancestral environment, then the plastic response is adaptive. We examined this shift in projected 
phenotype to detect the adaptive plastic response (Fig. 4a). The Full and NoHier models exhibit large adaptive 
plastic responses on average. The NoDev model exhibits some adaptive plastic response, but it is less significant 
than those in the Full and NoHier models. As expected, the NoCue model does not show any plastic response.

Generally, the plastic response in the first generation is adaptive (except for the NoCue model), which shows 
that our models can learn to respond adaptively to a new environment from the past environments experienced 
in the training phase. This observation may appear surprising given that (1) the present macro-environment is 
uncorrelated with past environments and (2) environmental noise is uniformly distributed over environmental 
factors (i.e. no correlations between the factors, unlike “associative memory”20, 21). Nevertheless, the training 
process allows the models to learn each environmental factor independently of the other factors. As a result, the 
models can respond to each component of the environmental cues independently, albeit imperfectly.

To analyze the correlation between phenotype and environmental cues immediately after development but 
before selection in the novel environment, we computed their cross-covariance matrix in the first generation, 
which we call the Pheno-Cue cross-covariance matrix. We performed singular value decomposition (SVD) on the 
Pheno-Cue cross-covariance matrix to find the principal components (see "Methods"). The left singular vectors 
correspond to the principal axes of phenotypes (“phenotype singular vectors”), the right singular vectors cor-
respond to the principal axes of environmental cues, and the singular values correspond to the cross-covariance 
between the corresponding left and right principal components. We performed this analysis for each model 
under ancestral and novel environments.

We observed a larger total cross-covariance between phenotypes and environmental cues in novel envi-
ronments than in ancestral environments (Fig. 4b). This suggests that populations are far more susceptible to 
environmental noise in novel environments than in ancestral environments. Among all models, the Full model 
has the largest cross-covariance, followed by the NoHier model. This suggests that a hierarchical structure in 
GRNs exaggerates phenotypic variation due to environmental noise. NoCue has little cross-covariance because 
the model itself is insensitive to environmental cues. NoDev exhibits smaller cross-covariances than the Full 
and NoHier models. This demonstrates that the developmental process amplifies variation in phenotype due to 
environmental noise in novel environments.

Previous works suggest that if the phenotypic variation is developmentally biased in line with the environ-
mental change, such developmental bias, i.e. the tendency to generate certain phenotypes more readily than 
others, can facilitate evolution in novel  environments24, 37. To detect any developmental bias in our models, we 
examined the proportion of the first singular component for each model under ancestral and novel environments. 
Fig. 4c shows that the proportion of the first singular value tends to be larger in the novel environment than 
in the ancestral environment. This indicates that the phenotypic variation due to environmental noise is more 
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biased in the direction of the first principal component in the novel environment. In particular, the Full model 
exhibits the greatest bias in phenotypic variation, where nearly 80% of the total cross-covariance is explained 
solely by the first singular component. The NoHier model shows less bias than the Full model, where the first 
singular component accounts for around 40% of the total cross-covariance. This shows that hierarchical regula-
tion enhances developmental bias. The NoCue and NoDev models exhibit little bias in the novel environment. For 
the NoCue model, this is easily explained by the absence of environmental cues. For the NoDev model, the result 
emphasizes that the developmental process is essential in generating developmental bias. In contrast, all models 
exhibit small developmental biases in the ancestral environment. Together with the small total cross-covariances 
(Fig. 4b), this implies that all models are highly robust against environmental noise in adapted  environments31.

To see if the above developmental bias is aligned with environmental change, we computed the correlation 
between the first phenotype singular vector and the direction of environmental change (Fig. 4d). The Full and 
NoHier models exhibit good alignment (roughly 0.7), with NoHier exhibiting a larger variance in alignment. 
Given the small proportions of the first singular values, the correlations for the NoCue and NoDev models are 
spurious.

Developmental process uncovers cryptic mutations
As we mentioned above (Visualizing evolution: the genotype-phenotype plot), the large phenotypic variation 
in the novel environment compared to the ancestral environment during the early phase of evolution is most 

Figure 4.  Adaptive plastic response in the first generation. (a) Boxplot of projected phenotype under ancestral 
and novel environment. (b) Boxplot of total cross-covariance between phenotype and environmental cue. (c) 
Boxplot of the percentage contribution of the first singular value of the cross-covariance matrix to the total 
cross-covariance between phenotype and environmental cue. (d) Boxplot of alignment between phenotype 
variation and environmental change, where the alignment is the correlation between the first phenotype singular 
vector of the Pheno-Cue cross-covariance matrix and the direction of environmental change.
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likely due to the uncovering of cryptic mutations (Fig. 3). We compared the magnitude of variance in projected 
phenotypes between ancestral and novel environments (Fig. 5a). We observed a small variance in projected phe-
notype in every model in the ancestral environment. This can be explained by the evolved robustness in adapted 
 environments17, 22, 23, 27, 30, 31, 38. The Full model exhibits the largest variance of projected phenotype in the novel 
environment on average, followed by the NoHier model, indicating that hierarchical regulation amplifies the 
effects of genetic variation. Compared to these, the NoDev model exhibits a smaller variance in projected phe-
notype in the novel environment. This indicates that the developmental process is critical in uncovering cryptic 
mutations. The NoCue model does not exhibit any difference in projected phenotype because environmental 
cues are necessary to uncover cryptic mutations.

To analyze the phenotypic variation due to mutations, we calculated the cross-covariance between the phe-
notype and the genome, called the Pheno-Geno cross-covariance matrix (see "Methods"). As we did for the 
Pheno-Cue cross-covariance matrix in the previous subsection, we performed SVD analysis on the Pheno-Geno 
cross-covariance matrix. Here, the left singular vectors still correspond to the principal axes of phenotypes 
(“phenotype singular vectors”), but the right singular vectors correspond to the principal axes of mutations 
instead of environmental cues.

We notice that the SVD analysis on the Pheno-Geno cross-covariance (Fig. 5b–d) is qualitatively similar 
to that of the Pheno-Cue cross-covariance (Fig. 4b–d). That is, the Full and NoHier models exhibit large total 

Figure 5.  Uncovering of cryptic mutations. (a) Boxplot of variance in projected phenotype in ancestral and 
novel environments. (b) Boxplot of total cross-covariance (square of Frobenius norm) between phenotype and 
genome. (c) Boxplot of the percentage contribution of the first singular value of the cross-covariance matrix to 
total cross-covariance between phenotype and genome. (d) Boxplot of alignment between phenotype variation 
and environmental change, where the alignment is the correlation between the first phenotype singular vector of 
the Pheno-Geno cross-covariance matrix and the direction of environmental change. Variation due to mutations 
and environmental noise is qualitatively similar (c.f. Fig. 4).
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cross-covariances between phenotype and mutation (Fig. 5b), their phenotypic variation due to mutations are 
highly biased in novel environments (Fig. 5c), and phenotypic variations are biased in the direction of envi-
ronmental change (Fig. 5d). On the other hand, NoDev and NoCue models have smaller total cross-covariance 
(Fig. 5b) and lack developmental bias (Fig. 5c,d).

Environmental and genetic variations induce correlated phenotypic variation
We observed that the results from SVD analysis of the Pheno-Cue cross-covariance matrix are qualitatively 
similar to that of the Pheno-Geno cross-covariance matrix, leading to similar conclusions (c.f. Figs. 4 and 5). To 
examine the correlation between the phenotypic variation due to environmental noise and that due to mutations, 
we compared the first singular values of the Pheno-Cue and Pheno-Geno cross-covariance matrices (Fig. 6a). 
The distribution of the first singular values over different models is qualitatively similar between the Pheno-
Cue and Pheno-Geno cross-covariances. That is, the first singular values decrease in the order of Full, NoHier, 
NoDev, and NoCue models in the novel environments. In contrast, all models exhibit minimal first singular 
values in the ancestral environment. Quantitatively, the first singular values of the Pheno-Geno cross-covariance 
matrices (right vertical axis of Fig. 6a) are much greater than those of the Pheno-Cue cross-covariance matrices 
(left vertical axis of Fig. 6a). This is because the number of elements of the genome vector is much larger than 
that of the environmental cue vector.

We next calculated the correlation between the first singular vector of the Pheno-Cue cross-covariance matrix 
and that of the Pheno-Geno cross-covariance matrix to see the alignment between them (Fig. 6b). These axes are 
highly correlated, especially in the novel environment. In particular, the Full and NoHier models have almost 
perfect alignment in the novel environment. We remark that the apparent high correlations in all other cases are 
spurious because the phenotypic distributions of these populations are unbiased (c.f. low percentage of first sin-
gular values from Figs. 4c and 5c), and the spurious correlation is due to the idiosyncrasies of the SVD algorithm 
used rather than actual good alignment. These observations indicate the interchangeability of environmental and 
mutational perturbations in producing phenotypes, consistent with the existing  literature6, 30, 39, 40.

Full model exhibits fastest change in regulation
To study the change in regulation or the reorganization of the genome, we track the genetic variance (i.e. the 
sum of the variance in each element of the genome matrices) over evolution (Fig. 7a). A rapid decrease in genetic 
variance implies strong purifying selection. A gradual increase in genetic variance means the accumulation of 
neutral or beneficial mutations. The Full and NoHier models immediately experience strong selection in the 
novel environment, with the Full model experiencing the most stringent selection (largest decrease in the shortest 
time). The NoDev model experiences weaker selection than the Full and NoHier models. In contrast to the other 
models, the genetic variance of the NoCue model initially increases slightly and then decreases rapidly before 
gradually increasing again. The initial increase in genetic variation in the NoCue model may be attributed to the 
random search for adaptive mutations in the novel environment.

The genetic variance of the NoDev model is consistently greater than those of all the other models. Due to 
the lack of development, the NoDev model cannot fully express genetic variation in phenotype. Hence, selection 
cannot effectively purify the genetic variation. The genetic variance of the NoCue model is slightly smaller than 
that of the NoDev model but consistently greater than those of the Full and NoHier models. This suggests that 
most mutations remain latent in the NoCue model, highlighting the role of environmental cues in uncovering 
cryptic mutations.

Figure 6.  Environmental variation and genetic variation induce correlated phenotypic variation. (a) Boxplot 
of first singular values of Pheno-Cue and Pheno-Geno cross-covariance matrices in ancestral and novel 
environments. (b) Boxplot of (Pheno-Cue)-(Pheno-Geno) alignment; calculated as the correlation between 
the first phenotype singular vector of the Pheno-Cue cross-covariance matrix and the first phenotype singular 
vector of the Pheno-Geno cross-covariance matrix. These quantities were computed in the first generation after 
development but before selection in the novel environment.
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We define the genetic bottleneck as the generation when the genetic variance is minimal (c.f. Fig. 7a). To track 
the rate of adaptation, we examined the number of generations to the genetic bottleneck measured from the first 
generation (Fig. 7b). The Full model has the lowest time, followed by the NoHier model. The NoDev and NoCue 
models reach the genetic bottleneck later than the Full and NoHier models.

We next examined the effectiveness of purifying selection by comparing the decrease in genetic variance from 
the first generation to the genetic bottleneck (Fig. 7c). The Full model exhibits the largest decrease in genetic 
variance among all models. The NoCue model exhibits a slightly larger decrease in genetic variance than the 
NoHier and NoDev models. This suggests that hierarchical developmental regulation enhances selection.

We also present the trajectory of projected genotypic value (c.f. Fig. 3) over evolution in the novel environ-
ment (Fig. 7d). The genotypic value generally increases rapidly when the genetic variance decreases rapidly, 
indicating strong purifying selection. On the other hand, the genotypic value generally increases slowly when 
the genetic variance increases slowly, indicating a gradual accumulation of neutral or adaptive mutations. These 
correlations indicate that the trajectory of the genetic variance is a suitable proxy for studying the change in 
regulation. Consistent with Fig. 7a, we observe that the Full model exhibits the fastest increase (largest gradient) 
in genotypic value during the initial phase of evolution, indicating the fastest adaptation. For the NoCue model, 
the slow increase in genotypic value during the initial phase corresponds to the search for adaptive mutations 
via genetic drift.

Figure 7.  Change in regulation. (a) Trajectory of genetic variance over evolution. (b) Boxplot of the number 
of generations to genetic bottleneck, where the genetic bottleneck is the generation when the genetic variance is 
minimal (c.f. panel a). (c) Boxplot of drop in genetic variance between generation 1 and the genetic bottleneck. 
(d) Trajectory of projected genotype over evolution.
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Full model exhibits greatest adaptive refinement
We now compare the effectiveness of adaptive refinement, or the increase in fitness in novel environments, 
between different models. To do so, we examined the trajectories of the mismatch between the adult phenotype 
and the selective environment for different models in the novel environments (Fig. 8a). All models exhibit a 
decrease in mismatch over evolution, trivially demonstrating that all models undergo adaptive refinement. All 
models, except for the NoCue model, exhibit a rapid decrease in mismatch immediately during the initial phase 
of evolution. In contrast, the mismatch of the NoCue model remains constant for around 25 generations before 
rapidly decreasing. This delay corresponds to the time required to find adaptive mutations in the novel envi-
ronment (c.f. Fig. 7). This observation highlights the roles of environmental cues in inducing adaptive plastic 
phenotype and uncovering cryptic mutations to the selection, thereby accelerating evolution.

When we compared the total decrease in mismatch among all models from Generation 1 to Generation 
200, the Full and NoCue models exhibited greater decreases in mismatch than the NoHier and NoDev models 
on average (Fig. 8b). The decrease in mismatch for the NoCue model is the most consistent, while that for the 
NoHier model is the least consistent. For the NoHier model, the small decrease in mismatch could be attributed 
to low initial mismatch from the large adaptive plastic response (c.f. Fig. 4a).

We dissected the decrease in mismatch into the contributions before and after the genetic bottleneck (Fig. 8c; 
see also Fig. 7a). The Full model exhibits similar amounts of decrease in mismatch before and after the genetic 
bottleneck. In contrast, the decrease in mismatch before the genetic bottleneck tends to be significantly greater 
than after the genetic bottleneck for all other models. The implications of this behavior are unclear and could 
be an interesting topic for future studies.

Figure 8.  Adaptive refinement. (a) Trajectory of mismatch between phenotype expressed in a novel 
environment and selective environment over evolution. (b) Boxplot of the total decrease in a mismatch from 
Generation 1 up to Generation 200. (c) Boxplots of decrease in the mismatch before and after the genetic 
bottleneck. (d) Boxplot of the mismatch at generation 200.
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To compare the quality of phenotypes after evolution, we examined the mismatch of the models at Generation 
200 (Fig. 8d). The Full and NoCue models attain a significantly lower mismatch value at Generation 200 than 
the NoHier and NoDev models. This suggests that hierarchical developmental regulation is essential in refining 
phenotype quality. However, the lower mismatch for the NoCue model may also be explained by the absence of 
environmental noise in developmental regulation.

Full model accumulates the most mutations after the genetic bottleneck
The uncovering of cryptic genetic variation through plastic response under large environmental changes is one of 
the core criteria of plasticity-led  evolution11. This criterion assumes that cryptic genetic variation has accumulated 
in the ancestral environment. We compare the accumulation of cryptic mutations between different models by 
measuring the increase in genetic variance after the genetic bottleneck in the novel environments (Fig. 9). The 
Full model exhibits a significantly larger increase in genetic variance than all the other models. In contrast, the 
NoHier and NoDev models exhibit the smallest increase in genetic variance on average.

We also observe that the gain in genetic variance after the genetic bottleneck correlates to the drop in 
genetic variance before the genetic bottleneck (see Fig. 7a,b). This can be explained by the fact that the length 
of each epoch is kept constant at 200 generations, so the same amount of cryptic mutations are accumulated in 
every epoch. Since the accumulation of cryptic mutations is made possible by the robustness of developmental 
 systems17, 31, 38, 41, we may deduce that the Full model is the most robust of all the discussed models.

Discussion
We have shown that the Full and NoHier models can satisfy all the Levis-Pfennig criteria of plasticity-led evolu-
tion under large environmental change. In particular, the Full model has additional favorable properties, such 
as amplifying the uncovering and the accumulation of cryptic mutations, accelerating change in regulation, and 
undergoing better adaptive refinement compared to the NoHier model. These observations suggest that environ-
mental cues and the developmental process are essential for plasticity-led evolution, and hierarchical regulation 
enhances the desirable properties of plasticity-led evolution. These models consistently exhibit plasticity-led 
evolution over different environments, suggesting that plasticity-led evolution is an intrinsic behavior of these 
systems. This is not in line with the view that plasticity is explained by genetic  variation1. We discuss the impli-
cations of this conflict below.

Contrary to our results, studies with natural populations suggest that plastic response is not always adaptive. 
For instance, spadefoot toad populations subjected to a dry condition during their larval stage express stunted 
development, potentially reducing  fitness42. Another example is observed in populations of blue tits that use 
temperature cues to determine egg-laying periods: due to climate change, adult blue tits now prematurely lay their 
eggs, therefore, missing out on the optimal period when the caterpillar population (food source) is  abundant43. 
In these studies, however, the “environment-as-inducer” does not match the “environment-as-selector,” so it is 
natural that the induced phenotypes are not adaptive. Ghalambor et al.44 introduced a population of guppies 
previously adapted to a high-predation (HP) environment to a low-predation (Intro) environment and com-
pared the transcript abundance of the introduction populations with that of a population already adapted to a 
low-predation environment (LP). They claimed that transcription factors associated with initial plasticity are 
opposite to the direction of adaptive evolution, suggesting that non-adaptive plasticity can enhance evolution. 
However, the “non-adaptive plasticity” by Ghalambor et al.44 simply means that the genes responsible for the 
initial plastic response do not coincide with those responsible for later change of regulation, not that the plastic 
response is non-adaptive concerning the environmental change. In fact, Fig. 1 of Ghalambor et al.44 suggests that 
the plastic response of the Intro populations is indeed in the same direction as the LP population, hence adaptive.

Figure 9.  Accumulation of cryptic mutations. Boxplot of increase in genetic variance from genetic bottleneck 
up to generation 200.
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Developmental bias, the tendency to generate certain phenotypes more readily than others, has been sug-
gested as a critical mechanism for directing and thereby facilitating  evolution24, 37, 45. We observed that phenotypic 
variation due to environmental cues is unbiased in adapted environments but is highly biased in novel environ-
ments for the Full and NoHier models (Fig. 4c). This biased phenotypic variation was consistently aligned with 
the direction of environmental changes (Fig. 4d). Furthermore, we observe the same behavior for phenotypic 
variation due to mutations (Figs. 5c,d, and 6). These results imply that phenotypic variation due to uncovered 
mutations is aligned with environmental change, which, in turn, enhances the selection of adaptive mutations 
(and elimination of maladaptive mutations) in the novel environment. The exact causes of this behavior are 
unclear, it arises from the interplay between environmental cues and the developmental process since the NoCue 
and NoDev models do not exhibit this behavior.

Most studies on plasticity-led evolution observe the change in regulation through the changes in reaction 
 norms11, 16, 25, 46, 47. However, reaction norms assume that phenotypic plasticity in the studied traits arises from 
particular genes that produce particular responses to particular environmental cues. Although reaction norms 
are helpful for studying the evolution of phenotypic  plasticity48, this kind of phenotypic plasticity does not 
resolve the problem of gradualism implied by the Modern Evolutionary Synthesis. The problem may be resolved 
if, as proposed above, plasticity-led evolution is an emergent, collective property of the developmental system 
as a whole, independent of particular genetic variation. To validate this hypothesis, it may be helpful to study 
populations over many different novel environments and measure all traits subject to natural selection instead 
of some specific  traits12.

Methods
Activation functions
We use modified arctangent or hyperbolic tangent activation functions where the input, output, or both are 
scaled. For σf , σg and σh , we use the following modified arctangent function:

where the factors 6
π

 and 1√
3
 were derived in the same spirit as LeCun’s tanh  function49. This maximizes the rate 

of change of σ(x) at around x
ω
= ±1 , hence facilitating selection in the later stages of evolution. The constant ω 

is introduced so that the estimated variance of x
ω

 is 1 (See Table 1). For σp , we use the following hyperbolic tangent 
function:

where ωp is a constant introduced so that the estimated variance of x
ωp

 is 1 (See Table 1).

Convergence of developmental process
To check the convergence of the developmental process of an individual, we used the limit of the exponential 
moving average (EMA) of the phenotype vector p(s). Denote the EMA of the phenotype as the vector p̃(s) and 
its variance as the vector v(s). Let 0 < α < 1 be given as the “step size” of the exponential moving average. In our 
work, we used α = 1/3 . The values of p̃(s) and v(s) are recursively updated as follows:

We say that the phenotype has converged when 
∑

i vi(s) < 10−5 for s ≤ 200 and take the adult phenotype as 
p̃i(s) , otherwise, we say that the phenotype does not converge.

Mutation
To randomly introduce mutations during reproduction, we let the mutation rate and matrix density be γ and ρ , 
respectively, between 0 and 1. The mutation rate γ represents the proportion of the genome matrix elements to 
be mutated per reproduction. We mutate the genome of each offspring as follows: 

1. Initialize n = 0.
2. Sample the number of mutations N from a Poisson distribution where the mean is the product between γ 

and the genome size. (In our work, we used γ = 0.005 , so we sampled from a Poisson distribution with mean 
� = 0.005× 200× 200× 6 = 1200.)

3. Uniformly select an element in the genome matrix ensemble. The selected element is set to 0 with probability 
1− ρ , +1 with probability ρ/2 , and −1 with probability ρ/2 . Increase n by 1.

4. If n < N , return to step 3. Otherwise, terminate the process.

Visualizing evolutionary trajectory on genotype‑phenotype space
To visualize the evolutionary trajectory of a population, we project the phenotype and genotype of individuals 
in the population at each generation onto a 2-dimensional genotype-phenotype space. First, the phenotype axis 
is defined as en−ea

�en−ea�22
 where en is the first 40 elements of the novel macro-environment, ea is the first 40 elements 

(8)σ(x) =
6

π
arctan

(

x√
3ω

)

(9)σp(x) = tanh

(

x

ωp

)

(10)
p̃i(s) = αpi(s)+ (1− α)p̃i(s − 1),

vi(s) = (1− α){v(s − 1)+ α[p̃i(s − 1)− pi(s)]2}.
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of the ancestral macro-environment and �en − ea�2 is the Euclidean (L2) distance between en and ea . We consider 
only the first 40 out of 200 elements because they correspond to the traits subject to selection. We project the 
phenotype p of an individual as:

This way, the projected phenotypic values p of 0 and 1 correspond to phenotypes perfectly adapted to the ancestral 
and novel environments, respectively.

Next, the genotype axis is defined as follows. Let Gij be the vectorized genotype matrix of the i-th individual 
of the j-th generation. Let Gj = 1

N

∑N
i=1 Gij be the population average genotype vector on the j-th generation. 

The genotype axis is defined as G200−G1

�G200−G1�22
 . We project the genotype of the i-th individual of the j-th generation 

onto a genotype axis as:

This way, projected genotypic values gij of 0 and 1 correspond to the average genotypes before and after one 
epoch of evolution in a novel environment, respectively.

Singular value decomposition (SVD) analysis of cross‑covariance matrix
We use cross-covariance matrices to study the correlation between selected phenotypes and environmental noise 
or mutations. Hence, we only consider the phenotype vector’s first 40 out of 200 elements, which comprise the 
traits subject to selection. We define the Pheno-Cue cross-covariance matrix as

where pik is the i-th trait of the phenotype vector of the k-th individual, ejk is the j-th factor of the environmental 
cue vector of the k-th individual, and pj and ej are the population averages of pik and ejk , respectively. We use all 
200 elements of the environmental cue vector.

We define the Pheno-Geno cross-covariance matrix as

where pik and pi are as defined previously, Gjk is the j-th element of the vectorized genome of the k-th individual, 
and Gj is its population average.

If Cij is the Pheno-Cue or Pheno-Geno cross-covariance matrix, then the total cross-covariance is defined as

This is used in Figs. 4b and 5b.
Just as we apply eigenvalue decomposition to a variance-covariance matrix to find principal components that 

maximize the variance (principal component analysis, PCA), we can apply singular value decomposition (SVD)50 
to a cross-covariance matrix to find pairs of principal components that maximize the cross-covariance51. We may 
apply SVD to any matrix C to obtain orthonormal components as follows.

where the superscript ⊤ indicates transpose. In Eq. (16), ui and vi are the i-th columns of U and V, respectively, 
called the i-th left and right singular vectors. � is a diagonal matrix where the diagonal elements σi are singular 
values arranged in decreasing order. In the case where C is a Pheno-Cue (or Pheno-Geno) cross-covariance 
matrix, the left singular vectors correspond to the principal axes of phenotypic variation in response to the 
corresponding principal axes (the right singular vectors) of environmental noises (or mutations). The singular 
values correspond to the cross-covariance between the left and right singular components.

To quantify developmental bias, we used the proportion of the first singular value

This is used in Figs. 4c and 5c.
The alignment between the principal axis of phenotypic variation and environmental change is measured by 

the magnitude of the normalized dot product

(11)p = (p− ea) ·
en − ea

�en − ea�22
.

(12)gij = (Gij − G1) ·
G200 − G1

∥
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where en is the novel macro-environment and ea is the ancestral macro-environment. This is used in Figs. 4d 
and 5d.

Data availability
Computer code is provided in the GitHub repository: https:// github. com/ arkin jo/ evode vo/ tree/ Ng23.
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