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Decentralized digital twins 
of complex dynamical systems
Omer San 1,2*, Suraj Pawar 1 & Adil Rasheed 3,4

In this article, we introduce a decentralized digital twin (DDT) modeling framework and its potential 
applications in computational science and engineering. The DDT methodology is based on the idea 
of federated learning, a subfield of machine learning that promotes knowledge exchange without 
disclosing actual data. Clients can learn an aggregated model cooperatively using this method while 
maintaining complete client-specific training data. We use a variety of dynamical systems, which are 
frequently used as prototypes for simulating complex transport processes in spatiotemporal systems, 
to show the viability of the DDT framework. Our findings suggest that constructing highly accurate 
decentralized digital twins in complex nonlinear spatiotemporal systems may be made possible by 
federated machine learning.

A recent multifaceted trend in science, engineering, and technology, both in academia and industry, is the digital 
 transformation1, 2. The transformation has caught pace owing to cost-effective sensors, machine learning and 
artificial intelligence breakthroughs, improved computational infrastructure, and readily available course mate-
rials. However, this growth has resulted in several major challenges. First, the data exhibit a high correlation in 
many systems, which implies that more data does not necessarily translate into more information. Second, it is 
computationally demanding to train an end-to-end data-driven machine learning model that can be trustwor-
thily used in future predictions. Third, there is a growing interest in the legal and regulatory landscape relevant 
to data sharing, security, privacy, and intellectual property rights (IPRs).

An outcome of rapid digitalization is the emergence of technologies such as digital twins. A digital twin can 
be defined as an evolving computational model of an asset or process3–5. The significance of digital privacy, primar-
ily focused on safeguarding individual data privacy during statistical analysis, becomes increasingly important 
alongside the development of digital twin technology, which is primarily concerned with creating virtual replicas 
of physical systems for analysis and  optimization6–17. Digital twins interact with physical assets in both ways: by 
controlling real assets and predicting their future states, and by calibrating models using data from the physical 
asset. The digital twin concept has gained a multibillion dollar market capitalization value for years to come, since 
it involves stakeholders from asset creation through decommissioning  stages18. Numerous disruptive concepts 
and start-ups have been continuously evolving to bring more value and impact to society. According to a recent 
report by Research  Dive19, the global digital twin market is predicted to grow at a compound annual growth rate 
of 40%, thereby garnering $125 billion by 2030. In particular, the availability of highly modular open-source 
libraries such as TensorFlow, PyTorch, and Theano, and the flexibility of cross-platforms such as Unity and Unreal 
Engine are lowering the barriers for many different potential use cases from precision  agriculture20 to precision 
 medicine21 and beyond. This open-source ecosystem has allowed scientists and engineers to expose themselves 
faster to the state-of-the-art digital twin technologies with cross-functionalities.

One of the key enablers of digital twins is modeling, which can either be first-principle physics-based mod-
eling (PBM) or data-driven modeling (DDM) each with weaknesses that limits their usage in a digital twin con-
text. To address the weaknesses, more recently, hybrid analysis and modeling (HAM)4 which is a fusion between 
PBM and DDM is rapidly evolving (see, e.g., see  also22–31). Of the three modeling approaches, DDM and HAM 
thrive on the availability of a large amount of high quality data. The data requirement in the context of digital 
twins poses several challenges, especially as one moves towards creating digital twins of increasingly complex 
systems. We enumerate the challenges that are most relevant in the context of the current work:

• Any reasonably complex asset of a physical system or a process consists of multiple sub-components operated 
and maintained by different players who might have competing interests making data sharing difficult.
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• Even when the IPRs involving data are sufficiently resolved, the shared big data characterized by 5Vs (large 
volume, velocity, veracity, variety, value) from different components/vendors can become overwhelmingly 
large that might require an exorbitant amount of compute power in one place to generate knowledge.

• Furthermore, the analysis of a large variety of big data in a centralized approach requires a wide array of 
expertise in one place, which will be difficult to achieve, resulting in sub-par analysis.

• Lastly, the limited bandwidth of data transmission in a centralized data analysis approach limits the amount 
of shared data.

To that end, the concept of federated learning can be utilized. Federated learning facilitates collaborative model 
training on decentralized devices (clients) housing local data, allowing updates to the global model without 
centralizing raw data, thereby preserving data privacy across distributed entities. Rich applications for training 
a machine learning model across numerous dispersed edge devices are emerging from this idea, and they do so 
without transferring local data samples across  servers32–35. Although such privacy preserving decentralized and 
collaborative machine learning applications become more of a main stream approach in advertising, financial 
and many other industries with personalized dominance, it is relatively uncharted in advancing functionalities 
and providing technical support to forge a cross-domain, cross-data and cross-enterprise digital twin ecosystem 
that needs to be compatible with the diversity of scales present in data. Federated machine learning algorithms 
have been successfully used for training machine learning models in broader applications ranging from service 
recommendation to wireless communication. However, the multifidelity, multiphysics and multiscale nature of 
the many engineering and transport systems poses additional challenges because the accurate representation of 
each fidelity does not guarantee an improved metrics at the system level, partially because of nonlinear interac-
tions across scales and also due to errors which may propagate and  accumulate36.

In this study, we aim to extend the prospects of this concept to complex dynamical systems in order to provide 
building blocks (from a modeling perspective) for next generation decentralized solvers. With this in mind, our 
chief motivation is to communicate to a wide variety of audiences on how federated machine learning can address 
many of the issues raised above. Consequently, this is more of a concept paper, and we omit providing rigorous 
derivations of the utilized algorithms. Consistently, several relatively simple (but representative) problems have 
been chosen to demonstrate the framework. The plain vanilla versions of learning models have been utilized 
without any particular efforts dedicated to rigorous hyperparameter tuning and model calibration. Rather, our 
focus is laser sharp on highlighting the exploitation of the benefits of federated machine learning in the context 
of digital twin.

Federated learning in the context of digital twins
Digital twins
Digital twin, which is a virtual version of a physical asset that is made possible by data and simulators for 
improved decision-making and real-time prediction, optimization, monitoring, and  control5, is a technology 
penetrating every domain. Figure 1 describes the concept of a digital twin utilizing a decentralized modeling for 
physical realism. On the top right side of the figure, we have the physical asset we want to represent by a digital 

Figure 1.  An overview of a decentralized digital twin concept for wind farm applications.
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twin. The physical asset is often equipped with a diverse class of sensors that give big data in real-time. This data 
has a very coarse spatio-temporal resolution and does not describe the future state of the asset. Therefore, to 
complement the measurement data, models are utilized to bring physical realism into the digital representation 
of the asset. Provided that the same information can be obtained from the digital twin as from the physical asset, 
we can utilize the digital twin for informed decision-making and optimal control of the asset. However, one 
might be interested in risk assessment, what-if? analysis, uncertainty quantification, and process optimization. 
These can be realized by running the digital twin in an offline setting for scenario analysis. The concept is then 
known as a digital sibling.

Additionally, the digital twin predictions can be archived during the asset’s lifetime and can then be used for 
designing the next generation of assets, in which case the concept is referred to as digital threads. Digital twins, 
based on their capability levels, can be categorized on a scale from 0 to 5 as standalone, descriptive, diagnostic, 
predictive, prescriptive, and autonomous. It is evident that modeling plays a vital role in enhancing the capabil-
ity of digital twins. As pointed out in a recent  survey4, any modeling approach should at least be generalizable, 
trustworthy, computationally efficient, accurate, and self-adapting.

Since a digital twin requires a real-time exchange of data between the physical asset and its digital representa-
tion, data privacy and security objectives become an increasingly important topic. Due to the participation of 
multiple stakeholders all the way from the development, through operation to the decommissioning phase of 
physical assets, the gathered data has to be secure both in terms of validity and privacy. Many digital twin systems 
and applications might involve different original equipment manufacturers, and they might want to keep their 
proprietary rights to secure their designs.

The predictive digital twins are now coined with precision sciences, such as precision  agriculture20, precision 
 medicine21 as well as precision  meteorology37, in emphasizing their improved and localized forecasting capabili-
ties. For example, we emphasize the penetration of data-driven modeling in precision meteorology, which often 
refers to accurate microscale weather forecasting that is of great importance in enabling solutions to water, food, 
energy, and climate challenges in the coming  century38. Therefore, an increase in parameterization capabilities 
and characteristics along with enhanced in situ observations within the atmospheric boundary layer becomes a 
key concept to improve the accuracy of such microscale weather forecasting  models39.

Our chief motivation in this study relies on the fact that a greater than ever penetration of sensors and smart 
devices (e.g., smart weather stations, smartphones, and smartwatches) has remained an unexplored technology in 
many spatiotemporal extended systems, and crowdsourcing data-driven modeling could be a key enabler toward 
their emerging digital twin applications. For instance, there will be more than 7 billion smartphones worldwide 
by  202540. Compared to the few official meteorological stations distributed throughout the world, this number 
is large. While the use of data from a small number of edge devices may not result in reliable forecasts, process-
ing data from several connected, smart devices that have sensors may revolutionize weather monitoring and 
forecasting. Numerous applications of smartphones toward citizen-centered monitoring, detection and warning 
systems have been discussed in a recent  overview41 including examples from earthquake predictions to traffic, 
pavement and structural engineering projects. All of these case studies support the utilization of smartphones as 
cost-effective instruments for collecting real-time data. Moreover, as discussed in a recent  report42, the Weather 
Company uses information from over 250,000 personal weather stations. Furthermore, Chapman et al.43 provided 
their insights on how using Netatmo weather sensors and the crowdsourcing data-driven modeling paradigm 
might advance the field of meteorology. The security and privacy risks of such linked and smart weather sta-
tions have also been highlighted as more focus switches to the internet of things (IoT)  devices44. Additionally, 
we point readers to recent discussions on IoT uses for meteorological purposes and low-cost design of weather 
 stations45–48. Furthermore, it is noteworthy that there is a contemporary inclination towards the utilization of 
federated large language  models49. This trend is propelled by the fact that data generation is primarily driven by 
end users, and when coupled with advancements in wearable device  technology50, federated models might exhibit 
a heightened effectiveness, particularly when harnessed in the context of generative models, for the purpose of 
adapting to screenless computing devices.

Federated learning
Federated machine learning is the collective training of machine learning models without the actual data being 
shared. We follow the pioneering work in federated  learning51, which provides a federated averaging technique 
in which clients cooperatively train a shared model. The federated learning strategy is contrasted with the cen-
tralized approach in Fig. 2. Typically, the local dataset is moved from clients to a central server and the model 
is trained using data that is saved there when utilizing the centralized approach. However, the local dataset is 
never sent from clients to a server in federated learning. Instead, based on the local dataset, each client iteratively 
computes an update to the global model kept by the server, and only weights of the model are sent in each round. 
The federated averaging approach makes the assumption that a synchronous updating scheme is used in rounds of 
communications and that there is a fixed set of K clients with a fixed local dataset. The global state of the model, 
or the current model parameters, are sent by the central server to each client at the start of each communication 
round. Based on the global state and local dataset, each client computes the update to the global model, which 
is then communicated to a server. Following then, the server updates the model’s overall state using the local 
updates that it has received from each client, and the cycle repeats. The federated averaging algorithm’s objective 
function can be expressed as follows

(1)f (w) =

K
∑

k=1

nk

n
Fk(w),
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where

Here, w denotes the parameters of the trainable model, nk denotes the cardinality of Pk , fi(w) = l(xi , yi;w) 
denotes the loss of the prediction on sample (xi , yi) , and Pk denotes the data on the kth client. Any machine 
learning algorithm can be used with the aforementioned aggregation technique. We emphasize that the meth-
odology we employ in our  study51, 52 only weights edge devices proportionally according to the data they pos-
sess. These restrictions can be mitigated by more sophisticated  methods53–57, but such methods are outside the 
purview of this paper.

In accordance with the provided pseudocode from prior  research52, the primary server initializes the process 
by transmitting the global model state (i.e., model parameters) to all participating clients at the outset of each 
communication round. Subsequently, the central server accumulates these gradients and applies an update rule 
to the received data, producing the next iteration of model parameters through a weighted-average aggregation 
of local gradients. These updated parameters are then dispatched by the central server to the active clients. In 
essence, each client utilizes its local data to execute a single gradient descent step on the current model, after 
which the server computes a weighted average of the resulting models. This process is repeated for a specified 
number of gradient descent steps conducted by each client on their local dataset before transmitting their updates 
to the server. Consequently, varying federated algorithms can be formulated based on the number of training 
cycles executed by clients and the selection criteria for clients participating in each parameter update round.

Demonstration cases
To demonstrate the value of the federated learning we chose the following frameworks and testbeds.

Federated reduced order modeling framework
The one-dimensional Burgers equation, a common example of a nonlinear advection-diffusion problem, serves 
as our first test case for illustrating the DDT framework.

The viscous Burgers equation can be written as follows

where u(x) ∈ R
Nx is the velocity field. We can write an analytical solution of the Burgers equation that satisfies 

Eq. 3 as follows

where t0 = exp(1/8ν) . We parameterize the Burgers equation using the time t and viscosity ν as the parameter 
space, i.e., µ = (t, ν)T . The first step of the reduced order modeling (ROM) is to generate the data. We gener-
ate the data for different values of parameters. Specifically, the parameter t is varied between 0 and 2, and the 
parameter ν lies between 0.001 to 0.01. The matrix A ∈ RNx×N , whose columns are the un corresponding to µn , 
is formed after the data is generated. The matrix is then subjected to singular value decomposition

(2)Fk(w) =
1

nk

∑

i∈Pk

fi(w).

(3)∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 1],

(4)u(x, t) =

x
t+1

1+
√

t+1
t0

exp
(

x2

4ν(t+1)

)

,

Figure 2.  Overview and schematic illustrations of the centralized and federated machine learning approaches.
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where W is an Nx × N matrix with orthonormal columns, wk , V  , which is an N × N square matrix with ortho-
normal columns, vk , and � is also an N × N matrix with non-negative diagonal entries, often known as singular 
values, arranged so that σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0 . The proper orthogonal decomposition (POD) modes are 
represented by the vectors wk , and the set of POD basis functions is represented by � = {φk}

R
k=1

58.
The following is then a representation of the approximate velocity field using POD modes

where R is the number of modes that are retained in our model, and αk(µ) denotes the kth modal coefficient.
The relative information content (RIC) can be used to determine how much energy POD modes maintain. 

We determine R from the RIC index given by

where we set RIC(R) = 99.99%.
We first project snapshot data to POD modes (i.e., forward POD transformation). The neural network is then 

trained to learn the relationship between the parameters of the Burgers equation to the POD modal coefficients. 
Once the neural network is trained, we can predict the POD modal coefficients for a new set of parameters (i.e., 
inverse POD transform), and the velocity field can be reconstructed using Eq. 6. In the case of the federated 
ROM framework, the low-dimensional data is assumed to be distributed across clients and the training is done 
using the federated averaging  algorithm51. The complete federated ROM framework is illustrated in Fig. 3 where 
clients collaboratively learn an aggregated model while keeping all the training data on their respective client. 
The machine learning model is a feed-forward neural network with four hidden layers and forty neurons per 
hidden layer. We use the rectified linear unit (ReLU) activation function to introduce nonlinearity and the linear 
activation function is used at the output layer.

Federated autoencoder framework
Our second test case is the decentralized autoencoder for the nonlinear dimensionality reduction of the NOAA 
OI SST V2 analysis dataset. Autoencoders are widely used in unsupervised machine learning tasks. Closely 
 following52, we use an encoder network to map an input to a low-dimensional latent space, and a decoder network 
to translate latent variables back into the original inputs. This dataset has been created utilizing in-situ (ship and 
buoy) and satellite see surface temperature (SST) measurements along with sea-ice cover simulations of SSTs. The 

(5)A = W�V
T =

N
∑

k=1

σkwkv
T
k ,

(6)u(x,µ) =

R
∑

k=1

αk(µ)φk(x),

(7)RIC(R) =

∑R
j=1 σ

2
j

∑N
j=1 σ

2
j

,

Figure 3.  Federated reduced order modeling framework. This approach enables clients to collaboratively learn 
an aggregated model while keeping all the training data on each client. In other words, it encourages knowledge 
sharing without sharing the actual data. It deals with training a model across multiple decentralized edge devices 
(or servers) without exchanging local data samples between them.
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satellite data is corrected for  biases59, 60 before the analysis is computed. This dataset is composed of the weekly 
average sea surface temperature on a 1◦ latitude × 1◦ longitude global grid ( 180× 360).

Despite seasonal fluctuations giving the SST dataset a strong periodic structure, complicated ocean dynamics 
produce interesting flow physics in this dataset. This dataset has been used in a variety of recent works, including 
multi-resolution dynamic mode  decomposition61, flow  reconstruction62, and geophysical  emulation63.

More specifically, the autoencoder is utilized for nonlinear dimensionality reduction of the NOAA OI SST 
V2 dataset. The autoencoder is composed of the encoder function η(w) which maps the high dimensional sea 
surface temperature field to low dimensional latent space and a decoder function ξ(w) which maps the low 
dimensional latent space to the same sea surface temperature field. Both encoder and decoder are parameterized 
by the weights w and these parameters are learned through training. We can represent the reconstruction of the 
temperature field with the autoencoder as follows

where θ is the sea surface temperature field, z represents the low dimensional latent space and R is the dimen-
sionality of the latent space at the bottleneck layer of the autoencoder. Here, we train the autoencoder model 
using the data from October 1981 to July 2010 (1500 snapshots), and we compare the performance of the trained 
autoencoder model with the unseen data using the data collected after July 2010.

Federated physics-guided machine learning framework
In our final demonstration case, we devise a framework integrating physics-guided machine learning (PGML) 
within a federated environment to construct a DDT model, which was then applied to lift coefficient data from 
various NACA standard airfoils for comprehensive training and testing across diverse conditions. As elucidated 
by Robinson et al.64 in their works, PGML operates as a HAM approach merging simplified theories to con-
struct robust machine learning models, integrating this knowledge both during training and deployment phases. 
Consequently, the neural architecture, including hyperparameter optimization and the definition of nodes and 
layers, plays a pivotal role in PGML’s efficacy, with a trade-off observed: overly narrow networks exhibit limited 
expressiveness impacting predictions, while overly complex architectures, coupled with insufficient training data, 
can lead to overfitting and reduced generalizability, as indicated by an escalating validation loss after several 
training iterations.

The concept of injecting data into machine learning models revolves around the convergence of data sources 
related to a physical system, encompassing data from high-fidelity numerical simulations, experiments, or various 
data acquisition methods such as in-situ sensors, satellite observations, and field measurements, all contribut-
ing to the understanding of the system’s behavior as a unified reality. In this study, we extend our prior PGML 
 model65 into a federated architecture. In the current context, the concept of inductive bias holds paramount 
importance for efficient DTT modeling. Inductive bias encompasses a set of assumptions regarding the underly-
ing phenomenon or data structure, typically derived from prior knowledge and experience, enabling effective 
adaptation to novel data. In the context of federated computing, we advocate the incorporation of inductive bias 
into the internal layers of neural operators. Broadly, every assumption and belief concerning the data represents 
an instance of inductive bias, which mitigates prediction uncertainty in ML models and facilitates early resolution 
of learning and memory issues. It is worth noting that inductive bias proves particularly reliable for overparam-
eterized systems, rendering our approach a viable strategy for decentralized digital twins.

As shown in Fig. 4, each client possesses distinct airfoil geometries, and without sharing geometric specif-
ics or relevant flow field data, our objective is to train a global model accommodating diverse local scenarios. 
Clients collaborate in learning an aggregated model while safeguarding the privacy of their individual training 
data. This decentralization of training data ensures data privacy, as raw data is not exchanged with the central 
aggregator. Clients utilize their own computational resources to perform local computations on their datasets, 
incorporating shared parameters based on the global model’s state. Consequently, the sole information transmit-
ted to the server comprises the model updates generated by the clients using their local data. Upon receiving 
these updates, the parameter server adjusts its global model by updating the weights learned from each client’s 
local dataset through iterative iterations. In summary, our approach involves two critical phases: local updating 
with PGML network, where clients perform gradient descents to minimize the local loss function with respect 
to their data, and global aggregation, encompassing the collection of updated model parameters from multiple 
client devices, their consolidation, and the subsequent distribution of the aggregate parameters to clients for 
further training iterations. Utilizing the identical architecture as previously detailed in our earlier  work65, we 
abstain from reiterating the specifics of the PGML network in this context. Instead, we present this example as an 
illustrative case showcasing the seamless extension of a specific PGML architecture into its federated counterpart 
while preserving its inherent characteristics and feasibility.

Results
Federated reduced order modeling framework: Burgers system
In our demonstrations, we employ K = 10 clients for the federated learning, with each client model being trained 
for 5 local epoch with a batch size of 32. The centralized model is trained with a batch size of 320 to ensure fair 

(8)η(w), ξ(w) = argmax
η(w),ξ(w)

�θ − (η(w) ◦ ξ(w))θ�,

(9)Encoder:=η(w) : θ ∈ R
N → z ∈ R

R,

(10)Decoder:=ξ(w) : z ∈ R
R → θ ∈ R

N ,



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20087  | https://doi.org/10.1038/s41598-023-47078-9

www.nature.com/scientificreports/

comparison. The mean squared error loss for the validation dataset during the training of centralized and feder-
ated ROM frameworks is shown in Fig. 5. The validation loss for both centralized and federated learning follows 
a similar trajectory during the training indicating that there is no loss in federated learning. Therefore, feder-
ated learning can provide us with a deep learning model with a similar level of accuracy as centralized learning 
without the need to share the data. The performance of the parametric ROM framework for µ = (0.02, 0.00475)T 
is shown in Fig. 6. Compared against the FOM data, which is the analytical (true) solution in this example, we 
see that both centralized and federated ROMs are highly accurate in reconstructing the velocity field for the 
Burgers equation.

Loss
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Figure 4.  Illustration of the federated physics guided machine learning framework as a key enabler toward 
decentralized digital twins.

Figure 5.  Validation loss during training of the centralized and federated neural network for the ROM 
framework of Burgers equation.
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Federated autoencoder framework: NOAA optimum interpolation sea surface temperature 
dataset
First, we show the performance of centralized and decentralized or federated autoencoders for different dimen-
sionality of the latent space at the bottleneck layer. The encoder is composed of three hidden layers with the 
number of neurons being {800, 400, 200} across the first, the second, and the third hidden layer, respectively. 
The decoder has the same architecture in reverse order, i.e., three hidden layers with {200, 400, 800} neurons. 
The number of neurons in the bottleneck layer is varied between R = 10 to R = 25 with an increment of 5. The 
encoder and decoder architecture remain the same for all the numerical experiments. In each case, we use K = 10 
clients, with each client model trained for 1 local epoch with a batch size of 16. To guarantee fair comparison, the 
centralized model is trained with a batch size of 160. Figure 7 depicts the validation loss during both centralized 
and federated training of the autoencoder. The validation loss for federated learning is slightly higher compared 
to the centralized learning from the first epoch. This can be attributed to the fact that in federated averaging 
the weights of the global model are initialized by simply averaging the weights of the client model. The simple 
averaging of weights might not be the most effective strategy especially when the amount of the data is small 
for each client. Despite this, the validation loss for both centralized and federated learning follows a similar 
trajectory with the loss reduced by almost one order of magnitude from the initial loss. The reconstruction of 
the weekly average temperature field for the fourth week of March 2018 is shown in Fig. 8 for both centralized 
and federated autoencoder along with the full order model, i.e., the analysis.

Federated PGML framework: Aaerodynamic characterization
In this demonstration, the model was specifically trained, tested, and validated using NACA 4-digit and 5-digit 
series data pertaining to variations in the lift coefficient for diverse airfoil types. In line with the PGML  model65, 
we extend its federated architecture to leverage pertinent physics-based characteristics from the panel method, 
enhancing the generalizability of data-driven models in a federated setting. For training purposes, numerical 
simulations are employed to generate data for a federated neural network involving K = 10 clients. The primary 
objective of this section is to compare federated and centralized approaches concerning prediction accuracy, 
both enriched with inductive bias and tested with distinct data sets from their training data. The training dataset 
encompasses lift coefficient data across various Reynolds numbers spanning from 1× 106 to 4× 106 and angles 
of attack ranging from −20 to +20 , amounting to a total of 168 sets of two-dimensional airfoil geometries. This 
dataset covers NACA 4-digit, NACA210, NACA220, and NACA250 series airfoils, each with 201 points, fea-
turing maximum thickness ratios ranging from 6% to 18% of the chord length. The testing dataset comprises 
NACA23012 and NACA23024 airfoil geometries, notably exceeding the maximum thickness ratios present in 
the training dataset and originating from a different NACA230 series not included in training.

Each client in the federated environment adopts a neural network architecture with four hidden layers, each 
containing 20 neurons. At the third hidden layer, latent variables and physical parameters, specifically the Reyn-
olds number and angle of attack, are concatenated. By incorporating physical flow parameters, lift coefficient, 
and pressure drag coefficient predictions from the panel technique, we augment the latent variables at the third 
layer of the PGML model. The machine learning model consists of a feed-forward neural network with four 
hidden layers, each housing 20 neurons, and employs the ReLU activation function to introduce nonlinearity. 
To gauge predicted uncertainty, we employ an ensemble approach, combining predictions from multiple neural 
networks. These networks are trained with varying weight initializations and serve as an indicator of epistemic 
uncertainty. The ensemble of models is created by initializing each model’s weights and biases using the Glorot 

Figure 6.  Reconstruction performance of the centralized and federated learning approaches for Burgers 
equation for µ = (0.02, 0.00475)T.
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uniform initializer and employing various random seed numbers to ensure unique parameter sets for each model. 
The ensemble collectively provides an estimate of the expected lift coefficient model uncertainty.

Figure 9 presents the lift coefficient predictions for NACA23012 and NACA23024 airfoils to illustrate the 
difference between standard ML and PGML. The PGML model provides more precise lift coefficient predictions 
with reduced uncertainty compared to the ML model for both airfoil types, particularly within an angle of attack 
range of -10◦ to +10◦ . Higher uncertainty is expected outside this angle of attack range due to the successful 
application of the Hess-Smith panel method in analyzing inviscid flow for smaller angles of attack. It’s worth 
noting that airfoil thickness in the training dataset does not exceed 18% of the chord length. The NACA23024 
airfoil exhibits greater uncertainty in ML model predictions compared to the NACA23012 airfoil. The incorpora-
tion of physics-based information from the panel approach in the PGML model reduces this uncertainty. These 
findings highlight the advantages of enhancing neural network models with condensed theories and employing 
the PGML framework in physical systems.

Figure 10 displays the reconstruction RMSE for centralized and federated modeling approaches, both for 
100 and 800 training epochs. Divergent convergence trajectory characteristics are observed in the context of 
centralized and federated ML and PGML methodologies as the number of training epochs increases. While 
both approaches exhibit error values converging to similar levels, the PGML method demonstrates slightly 
lower errors, particularly in extended training epochs. It is noteworthy that federated learning plateaus at a 
higher error level, as indicated by the initial rapid reduction in loss within the first 100 epochs, followed by a 
more gradual decrease compared to centralized learning. This sharper convergence of the centralized approach 
results in a lower RMSE in loss, contrary to the trend depicted in Fig. 6. Consequently, our investigation sug-
gests that instead of making a blanket assertion that federated learning is as effective as centralized learning, it 
is imperative to acknowledge the disparity in their convergence trajectories. This divergence may be attributed 
to a combination of various factors, including hyperparameters, batch sizes, data distribution imbalances, and 
the non-monotonic characteristics inherent to neural network-based approaches. Furthermore, the centralized 
model shows noticeable error fluctuations, absent in the federated model, due to the noise reduction effect in 
federated learning. This arises from the averaging of model parameter values contributed by participating clients.

Figure 7.  Validation loss during training of the centralized and federated neural network for the NOAA 
Optimum Interpolation Sea Surface Temperature Dataset.
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Figure 11 investigates the models’ performance concerning the angle of attack for both NACA23012 and 
NACA23024 inputs, using both 100 and 800 training epochs. Predictions by all models are more accurate within 
the angle of attack range of -10◦ to +10◦ , thanks to the superior accuracy of the panel method in this range. 
Models trained with NACA23012 data generally outperform those trained with NACA23024 data, which requires 
extrapolation, leading to deviations from the reference. Despite this, federated models demonstrate comparable 
or even superior performance, especially when tested with data outside the training range. The 800-epoch com-
parison in Fig. 11 highlights the stability of models trained with NACA23012 data throughout the entire angle 
of attack spectrum. However, with longer training epochs, a noticeable difference emerges between federated 
and centralized methods for models using NACA23024 data. Federated learning performs proportionally with 
centralized methods, underscoring the noise-canceling and filtering benefits of the federated environment, as 
shown in Fig. 12.

Figure 8.  Weekly averaged temperature field in degrees Celsius for the fourth week of March 2018 along with 
reconstructed temperature field from the centralized and federated autoencoders.
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Discussion
In this work, we explore the potential of federated machine learning in the context of a digital twin operated by 
multiple vendors to model complex spatio-temporal dynamical systems. In particular, we investigated federated 
learning for physics-guided neural networks and nonlinear dimensionality reduction of dynamical systems. 
Federated learning makes it possible to train a model jointly while maintaining the decentralized nature of the 

Figure 9.  Uncertainly quantification of ML and PGML approaches using the centralized training.

Figure 10.  Validation loss of the proposed centralized and federated approaches. The first row shows the 
relaxation histories for the early truncation of 100 epochs, while the second row illustrates up to 800 epochs.
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Figure 11.  Predictive performance of the proposed centralized and federated models after 100 epochs.

Figure 12.  Predictive performance of the proposed centralized and federated models after 800 epochs.
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training data. Our numerical experiments reveal that a federated model does not achieve equivalent accuracy 
compared to a model trained on centralized data collected from all clients. Instead, our investigation emphasizes 
the importance of refraining from making definitive claims regarding the equivalence of federated learning 
and centralized learning. This divergence in convergence behaviors is attributable to a combination of factors, 
including hyperparameter configurations, batch sizes, data distribution disparities, and the non-monotonic 
traits inherent to neural network-based approaches. Nevertheless, it is essential to highlight that the federated 
learning process enables the updating of a global model without disclosing locally collected data from diverse 
sources. In summary, we provided insight for the following challenges:

• Since the data generated by individual vendors never leaves the local servers, a decentralized setting guaran-
tees better security, and addresses key concerns related to IPRs. Furthermore, since each vendor can focus 
on individual sub-component of the asset, the data quality can be significantly enhanced.

• Since each data owner can conduct the training using the limited amount of data that they generate and own, 
they can work with significantly low compute power in a cost-effective way.

• Since the data are converted into knowledge which is generally a highly compressed representation, the 
knowledge transfer can take place over very limited bandwidth.

Although the primary focus of this study is federated learning in the context of spatiotemporal reconstruction 
of dynamical systems, the research findings may enhance broader modeling and simulation software capa-
bilities for designing capable and secure predictive digital twins for cross-domain simulations. We discuss the 
prospects of such decentralized digital twin (DDT) modeling paradigm in various computational science and 
engineering applications. The DDT approach is built on a federated learning concept to collaboratively learn an 
aggregated model while keeping all the training data on each client. Our results indicate that federated machine 
learning might be a key enabler for designing highly accurate DDT applications involving complex nonlinear 
spatiotemporal systems.

In summary, the trained models contributed by the different stakeholder can be reversed engineered thereby 
compromising data security. To create new surrogate models that are compatible with heterogeneous computer 
environments, in our future studies, we intend to use decentralized learning methodologies in the context of 
precision science and create novel distributed physics-guided federated learning approaches. Also, we would 
like to investigate which federated learning approach is best for combining weights. The demonstration cases 
handled here are relatively simple, but that was completely intentional as it eases the communication and dis-
semination of the work to a larger audience. However, the next logical step should be to apply the approach to 
a more complex problem.

Data availability
The synthetic data that supports the findings of this study is available within the article. The weekly see surface 
temperature data can be found at the NOAA Optimum Interpolation (OI) SST V2 webpage: https:// psl. noaa. 
gov/ data/ gridd ed/ data. noaa. oisst. v2. html. The datasets used and/or analysed during the current study are also 
available from the corresponding author on reasonable request.
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