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Efficient spatial and channel net 
for lane marker detection based 
on self‑attention and row anchor
Shengli Fan 1*, Yuzhi Zhang 1*, Shengrong Lu 2 & Xiaohui Bi 1

Lane detection is an important component of advanced driving aided system (ADAS). It is a combined 
component of the planning and control algorithms. Therefore, it has high standards for the detection 
accuracy and speed. Recently several researchers have worked extensively on this topic. An increasing 
number of researchers have been interested in self-attention-based lane detection. In difficult 
situations such as shadows, bright lights, and nights extracting global information is effective. 
Regardless of channel or spatial attention, it cannot independently extract all global information 
until a complicated model is used. Furthermore, it affects the run-time. However trading in this 
contradiction is challenging. In this study, a new lane identification model that combines channel 
and spatial self-attention was developed. Conv1d and Conv2d were introduced to extract the global 
information. The model is lightweight and efficient avoiding difficult model calculations and massive 
matrices, In particular obstacles can be overcome under certain difficult conditions. We used the 
Tusimple and CULane datasets as verification standards. The accuracy of the Tusimple benchmark was 
the highest at 95.49%. In the CULane dataset, the proposed model achieved 75.32% in F1, which is the 
highest result, particularly in difficult scenarios. For the Tusimple and CULane datasets, the proposed 
model achieved the best performance in terms of accuracy and speed.

Autonomous driving is a complex process that involves a variety of sensors such as cameras, lidar and radar and 
requires increasingly complex models and algorithms. The aim is to fully understand the environment in order 
to be able to take appropriate measures. An extremely important part of vehicle control is the lane marking line. 
Some processes such as lane keeping and highway assistance are highly dependent on it. In addition, it is essen-
tial for regional planning and vehicle control. Therefore, increasing importance is being given to improving the 
time-of-flight response and accuracy of vision-based lane marking detection1–6.

The fundamental problem in lane marking identification, as previously mentioned7–9, is how to accurately 
detect the lane line under difficult circumstances. As a result of a lack of visual cues, including significant vehicle 
occlusion, harsh lighting, shadows and wet conditions, errors or false alarms go unnoticed. Traditional vision-
based methods10 are mainly based on hand-crafted features, gray images, ROIs and various edge detection opera-
tors such as SIFT11 and SURF12. However, their ability to adapt to difficult weather conditions and harsh lighting 
conditions is inadequate. This prevents wide generalization and use. CNN has attracted a lot of attention in recent 
years. It works well in extracting features. However, to achieve high performance in classification and regression, 
it is necessary to make a trade-off between the receptive field and the network depth. A2-Net13, Squeeze and 
Excitation Networks14, CBAM15 and Gather-Excite16 are examples of attention and self-attention mechanisms17,18 
that have been developed and advanced using technology support the detection of lane markings. It can spatially 
focus attention on multiple areas or channel attention to comprehensively extract broad information.

Spatial self-attention focuses on spatial relationships rather than channel co-relations. Instead, channel self-
attention emphasizes channel rather than spatial dependence and we thoroughly examine the benefits of channel 
attention and spatial attention to understand many facets of self-attention. We suggest that ESCN is an effective 
spatial and channel network. The main contributions of our proposed model are summarized as follows:

1.	 A brand new ESCN mechanism. To build a novel ESCN model, we merged spatial and channel self-attention 
based on the anchor representations. It can fully utilize channel and spatial correlations simultaneously to 
extract global information, especially under difficult conditions.
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2.	 A powerful, lightweight design. To avoid dimensionality reduction, we recommend 1D and 2D convolutions 
across channels and spaces.

3.	 Numerous experiments. Our benchmarks are CULane and Tusimple. The results show that our proposed 
methodology provides state-of-the-art performance through intensive visualization and experiments.

Related work
First, computer vision was the primary research method. With the advancement of CNN and transformer tech-
nologies, lane mark detection technology is receiving increasing attention in science. The three main areas of 
interest of research and major achievements are as follows:

1.	 Tradition approaches based on vision. The primary technologies at this level are vision-based methods19–26. 
It includes three sectors: the model-based approach in one, the feature-based method in the other two, and 
the region-based method in the third. Image segmentation, vanishing point selection, orientation estimation 
and lane detection are the four processes that typically involve model-based techniques. During the image 
segmentation step, the entire image was divided into a near field and a far field as separate ROIs. Uses27 
the Gaussian model28 and maximum likelihood to estimate the vanishing point and presents the Gabor 
filter to estimate the orientation. The Canny edge detector, Hough transform, Catmull-Rom spline, spline 
model, cubic spline, IPM and particle filter are also used in track-bound detection. The three feature-based 
techniques include feature extraction, line detection and tracking. To extract features from an ROI29, a local 
thresholding technique was proposed that uses template matching for line detection. The EKF was proposed 
in30–33 for lane marking tracking. The region-based approach includes both region finding and feature track-
ing. The Shi-Tomasi method was proposed by33 for feature extraction, while the Lucas-Kanade tracker and 
optical flow algorithm were proposed separately by34 and35, respectively.

2.	 Segmentation approach using CNN. Several groups are currently working intensively on applying CNN 
techniques36,37 to lane marker detection38,39. Similar to R-CNN, CNNs are data-driven and suitable in feature 
extraction40. Although deep learning-based methods such as CNN41 include numerous convolution and 
pooling layers, they cannot fully utilize the information and context, especially in difficult situations such as 
occlusion, lane marking degradation, and changing road conditions. Semantic segmentation42 and instance 
segmentation43 have been proposed as solutions to this problem44 proposed pixel-level semantic segmenta-
tion to identify lane markings as a step in semantic segmentation. Proposes a UNet-based weakly supervised 
lane marking detection network45. In contrast to semantic segmentation46, presents an end-to-end lane mark 
detection based on instance segmentation, which consists of a lane segment branch and a lane embedding 
branch to increase the speed of lane mark detection. Proposed a fast structured track identification network 
that selects regions with given lines instead of the entire image to avoid extensive processing47.

3.	 With CNN + attention. Detecting lane markings in difficult situations is a significant problem. CNN + seg-
mentation techniques were successful but encountered significant challenges. For example, significant 
computational effort is required to use semantic segmentation-based methods, and the accuracy of lane 
lines and the number of lane lines need to be promoted and improved. Therefore, attention has been paid 
to attention-based methods for lane marking detection48–53. In52, an ESA module based on encoder and 
decoder architecture was proposed. In order to be able to determine the position of the occlusion more pre-
cisely, HESA and VESA were integrated. Proposed to use spatial attention to collect boundary information 
across multiple locations and channel attention in the GCE module to extract information about the global 
context50. For U-Net51, proposed residual blocking and attention mechanisms.

Comparisons between the above methods can be found in Table 1.

Proposed approach
System overview
A2-Net13, Squeeze and Excitation Networks14, CBAM15 and Gather-Excite16 are examples of attention and self-
attention mechanisms17,18 that have been developed and advanced using technology support the detection of 
lane markings. It can spatially focus attention on multiple areas or channel attention to thoroughly extract global 
information.

Spatial self-attention focuses on spatial relationships rather than channel connections. Instead, channel self-
attention emphasizes channels rather than spatial dependence, and we thoroughly examine the benefits of chan-
nel and spatial attention to understand many facets of self-attention. We propose that the ESCN is an effective 
spatial and channel network, as shown in Fig. 1. The main contributions of our proposed model are summarized 
as follows:

As mentioned above, lane marking detection is difficult to solve in challenging scenarios such as severe lane 
erosion, strong shadow and vehicle occlusion. To overcome these problems, we introduce a lightweight and effi-
cient channel attention model that extracts feature maps from DCNN as inputs. To obtain global semantic and 
contextual information, we use cross-channel to match anchor vectors in its own channel and its neighbors. It can 
capture cross-channel interactions to learn effective and efficient channel attention while avoiding dimensionality 
reduction, as shown in Fig. 1. Therefore, it can summarize and abstract all this global information without chang-
ing the receptive field. In addition, it promotes classification precision and location accuracy at the same time.
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Backbone
We used ResNet34 as the backbone of our proposed ESCN. There are four different types of residual blocks. The 
size of their convolution kernel was 33, and their individual kernel and channel numbers were 64, 128, 256, and 
512, respectively. This successfully prevented the gradient from disappearing or exploding.

Efficient channel and spatial attention block
The heart of the ESCN is an efficient channel and spatial attention block. There are two types of attention systems. 
One is an effective block of channel attention, the other is an effective block of spatial attention. This combina-
tion is about placing global contextual information alongside global location information in a single channel. 
Therefore, lane marking features can be effectively extracted even in difficult situations.

1.	 Efficient Channel Attention Block. After extracting the feature maps using of ResNet34, the local feature 
map anchorlocal ∈ RC×H×W served as the input. C,H ,W indicate the channel number, feature-map height 
and feature-map width respectively. Then global average pooling operates on it as shown in (1):

where k = 1, 2, 3, . . . ,C and yk = f (Xk) . So we get Y =
(

y1, y2, y3, . . . yi , . . . , yj , . . . , yC
)T.

(1)f (Xk) =
1

H ×W

H ,W
∑

i,j=1

x
i,j
k (Xk ∈ anchorlocal)

Table 1.   Comparisons among different methods of lane mark line detection.

Methods Strength Limitation Performance

Tradition approaches based on vision

(1) Simple and convenient (1) Only depend on edges, color, thickness 
and shape to detect lanes (1) For simple scenarios

(2) The computing power of the embedded 
platform is not relatively high

(2) The adaptability of the algorithm is not 
strong

(2) Accuracy and F1 indicators are not very 
high

(3) Result in a lot of work and low robust-
ness. When the driving environment changes 
significantly, the effect of lane line detection 
is not good

(3) Speed of FPS is generally is generally fast

(4) Be sensitive to changes in light, weather 
conditions and noise. When the external 
environment changes significantly, many 
traditional lane detection systems fail

Segmentation approach using CNN

(1) Lightweight and efficient networks (1) Require more computing resources (1) Higher accuracy and better robustness

(2) Particularly suitable for embedded sys-
tems and real-time applications

(2) The model is large and the processing 
speed is generally slow (2) Suitable for urban roads

(3) Under strong obstacles, performance was 
poor and prior knowledge of the lane line 
was not fully utilized

(3) Speed of FPS is not too high

With CNN + attention

(1) Emphasizing local information and global 
information (1) Higher computing power requirements (1) Suitable for complex scenarios

(2) Easily to handle the obstruction, lack or 
weak display of the lane lines in complex 
scenes

(2) Network model is more complicated 
and big (2) Higher accuracy and F1 indicators

(3) Better real -time (3) Requiring more memory resources (3) Speed of FPS is high in the case where the 
computing power is guaranteed

Figure 1.   The Architecture of ESCN.
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We also know that many parameters are involved in the linear transformation. Regardless of whether it is a 
full or diagonal matrix, this results in numerous computations. To avoid this, we propose a 1D convolution with 
kernel size k . It is shown as follows:

where Relu indicates the Rectified Linear Unit and C1Dk is the 1D convolution which involves k parameters. 
Therefore it reduces the number of parameters and computation time. It can be easily observed that k represents 
the local cross-channel interaction. This is a key factor in reducing the parameter quantity. To avoid manual 
tuning, we adopted the following adaptive expression54:

where k is an odd number and C indicates the channel number. In our proposed model, we set γ and b as 2 and 1 
respectively. The detailed architecture is shown in Fig. 3. Finally, we obtain the output of efficient channel atten-
tion which indicates anchorchannel_attention . The structure is shown as Fig. 2.

2.	 Efficient Spatial Attention Block. We know that the local feature map anchorlocal is put into channel attention 
and spatial attention blocks. Then in the efficient spatial attention block the local feature map anchorlocal is 
applied with Maxpool and AvgPool operations as follows:

where the anchorspacial,max pool
i,j  indicates the value at location (i, j) after the maxpool operation. And we get 

the feature map anchorspatial,max _pool . Equation (5) is expressed as follows:

Avgpool is shown as follows:

(2)W = Relu(C1Dk(Y))

(3)k = ψ(C) =

∣

∣

∣

∣

∣

logC2
γ

+
b

γ

∣

∣

∣

∣

∣

odd

(4)anchor
spacial,max pool
i,j = max

k∈C
(Xk,i,j) (i ∈ H , j ∈ W)

(5)anchorspatial,max _pool =







anchor
spatial,max _pool
0,0 ... anchor

spatial,max _pool
0,W−1

... ... ...

anchor
spatial,max _pool
H−1,0 ... anchor

spatial,max _pool
H−1,W−1







(6)anchor
spacial,avgpool
i,j =

1

C

C
∑

k=1

Xk,i,j(i ∈ H , j ∈ W)

Figure 2.   The architecture of efficient channel attention block.

Figure 3.   The architecture of efficient spatial attention block.
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where anchorspacial,avgpooli,j
 are the location value positions (i, j) . After the avgpool operation we obtained the 

feature map anchorspatial,avg_pool.

After we obtain the anchorspatial,max _pool and anchorspatial,avg_pool , we concatenated them. Then we apply 
Conv2d with kernel size 3 and a sigmoid function Finally we acquire the output of the efficient spatial attention 
block which is the anchorspatial_attention . The detailed architecture is illustrated in Fig. 3.

Classification network and regression network
anchorglobal is input into Classification networks and Regression networks separately. Each network 
passes through a linear layer and reshaping operation. They then join together to become a tensor 
proposals

(

proposals ∈ Rbatch×anchors×(K+n_offset)
)

 where K is the classification number and n_offset represents 
the offset number in X coordinate frame. Finally the proposals are performed iteratively using a non-maximum 
suppression NMS (Non Maximum Suppression) operation in batch dimensions. The softmax operation is per-
formed to  score[:, 2](scores ∈ Ranchors×(K+n_offset) which in our study K is set as 2. Therefore in anchor rows we 
find out whose probabilities are greater than conf_threshold, which is a possible threshold for judging whether 
it is a lane marking. In this way we obtained the classification results. We also find the anchor position index, 
which represents the regression result, because each classification and regression component is in the same row 
and positions different columns. The detailed architecture of the classification and regression networks is shown 
in Fig. 4. The loss function is given by (8):

where ci , ai are the prediction results of the classification and regression respectively, c∗i , a
∗
i  are the ground truths 

for the anchor i . Na is the total number of anchors. kc , kr are the coefficients of the classification and regression 
loss functions respectively, and are used to balance the loss value. In the proposed model kc = 10 and kr = 1 . 
Meanwhile we also set �class to Focal Loss54 and take � as Smooth L1 individually.

Experiments
Dataset
To demonstrate the effectiveness of the model and evaluate the results of our proposed methodology, we used 
two commonly used benchmark datasets, TuSimple55 and CULane1. Most highway scenarios of the TuSimple 
dataset. Due to the uniform illumination, it is much easier to detect the lane marking line, while the CULane 
dataset is far more complicated than the previous one. Nine difficult scenarios were considered: crowd, no queue, 
normal, blinding night, shadow, curve and arrow in city and highway environments. Table 2 provides a detailed 
explanation of the two data sets.

Evaluation metrics
The TuSimple and CULane benchmarks use different evaluation metrics. Accuracy served as the evaluation 
standard for the TuSimple benchmark.

For the CULane benchmark, the final evaluation metric was the F1 combined with two other metrics:Precision 
and Recall.

(7)anchorspatial,avg_pool =







anchor
spatial,avg_pool
0,0 ... anchor

spatial,avg_pool
0,W−1

... ... ...

anchor
spatial,avg_pool
H−1,0 ... anchor

spatial,avg_pool
H−1,W−1




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(8)f
(

{ci , ai}
Na−1
i=0
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i

�class

(
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i

)
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i

�
(

ai , a
∗
i

)

Figure 4.   The Architectures of Classification Network and Regression Network.

Table 2.   Overview of dataset description used in this paper.

Dataset #Frame Train Validation Test Resolution #Lane #Scenarios Environment

Tusimple 6408 3268 358 2782 1280 × 720  ≤ 5 1 Highway

CULane 133,235 88,880 9675 34,680 1640 × 590  ≤ 4 9 Urban and highway
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Implementation details
In the experiment, all images were resized to 360 × 640 pixels for TuSimple and CULane respectively. Therefore 
H and W were set as 360 and 640 respectively. The epoch was set to 50 for the TuSimple benchmark and 15 for 
CULane. The batch size was set to eight and the learning rate was set to 0.0003 using the Adam optimizer. We 
use pthon3.7, pytorch 1.6.0, cuda 10.1 and Cudnn 7.2 as the experimental environment.

Results

1.	 Results on TuSimple dataset.

The accuracy of the proposed model is 95.49% for the TuSimple benchmark and 95.12% for the top technique. 
The accuracy of our model was improved by 0.37% compared to the other techniques. The proposed model had 
FP and FN values of 0.0307 and 0.0342, respectively. The former has the lowest values for all methods and there 
is hardly a gap of 0.0118. Thus, the proposed model is the most effective among all methods. Furthermore, it was 
performed on the state-of-the-art TuSimple dataset, as shown in Table 3.

2.	 Results on CULane dataset.

With the CULane benchmark, we also know that the accuracy of our proposed model outperforms all other 
methods. In nine challenging scenarios, it outperforms all other methods, namely 75.67%. We can see that it 
increases by 13.48% in the total scenario compared to ResNet-184 and increases by 4.17% for R-34-E2E, which 
is the highest among all methods. In the cross scenario, the values are FP, the value of our model is also the low-
est. We know for embedded system run time is priority. Although the inference speed of our model is slower 
than ResNet-18, it significantly outperforms its accuracy. For embedded systems, real-time performance is a 
top priority. According to the comparison of FPS indicators in Table 4, the speed of our recommended model 

Table 3.   Comparison between our model and other methods based on TuSimple dataset.

Model Accuracy (%) FP FN

ResNet-184 93.78 0.1035 0.0964

ResNet-344 94.66 0.0804 0.0775

LaneNet2 93.38 0.0780 0.0224

SCNN1 95.12 0.0610 0.0643

PolyLaneNet3 93.36 0.0942 0.0933

ERFNet6 94.34 0.0850 0.0777

ENet5 94.68 0.0977 0.0603

ESCN model based on Resnet-34(ours) 95.49 0.0307 0.0342

Full Matrix Channel and Spatial attention based on ResNet-34(ours) 95.30 0.0322 0.0368

Table 4.   Accuracy comparison between our model and other methods based on CULane dataset. Significant 
values are in [bold].

Model Total (%) Normal (%) Crowd (%) Highlight (%) Shadow (%) Arrow (%) Curve (%) Cross Night (%) No line (%) FPS

SCNN1 68.39 87.59 66.64 57.53 57.95 81.88 63.14 2079 62.26 39.76 7.5

ResNet-184 62.19 82.69 59.11 48.71 53.13 73.36 57.47 1922 56.49 31.63 123.46

ResNet-344 66.23 86.74 63.27 56.60 62.83 78.02 59.39 2571 59.96 37.93 67.74

Res18-VP56 69.1 89.2 61.9 59.3 81.6 59.3 60.8 2919 62.6 41.7 75.54

ENet5 63.83 83.99 62.60 51.18 55.13 73.81 59.65 3657 57.81 36.52 43.68

Res18-ultra57 68.4 87.7 66.0 58.4 62.80 81.0 57.9 1743 62.1 40.2 23.46

ERFNet6 69.28 88.97 67.09 58.10 60.38 80.53 62.86 3363 64.88 43.05 85.87

FastDraw58 – 85.9 63.6 57.0 59.9 79.4 65.2 7013 57.8 40.6 63.26

R-34-SAD59 70.70 89.90 68.50 59.90 67.70 83.80 66.02 1960 64.60 42.20 75

R-34-E2E6 71.50 90.40 69.90 61.50 68.10 83.70 69.80 2077 63.20 45.01 57.43

ESCN model based on 
Resnet-34(ours) 75.32 91.23 73.03 66.04 71.56 86.63 66.92 1175 69.46 48.10 90.34

Full Matrix Channel and 
Spatial attention based on 
ResNet-34(ours)

75.67 91.34 73.21 66.02 72.01 86.45 67.01 1157 69.57 47.98 65.36
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is better than most models. In the FPS comparison, our proposed model is 82.84 faster than the slowest model 
and only 33.12 slower than the fastest model. However, the accuracy of our model is 13.14% higher than that 
of the fastest model.

From Fig. 5, we can easily see that the lane marking line detection results of our proposed model are better 
than those of the other visualization methods. For example, from the visualization results, it is not difficult to see 
that other models predict lane lines. Most lane lines have jitter and position deviation, and the lane lines cannot 
have a parallel relationship. Therefore, it is obvious that our proposed model also achieves the state-of-the-art 
performance on the CULane benchmark as shown in Table 4.

Ablation study
Conv1d and Conv2d were used instead of the full matrix in our proposed model. Our goal is to reduce the num-
ber of calculations and parameters to see if we can achieve the effect of not significantly reducing the accuracy 
of the model. Judging from the actual comparison results in Table 5, when the channel-related self-attention 
mechanism is optimized, the F1 index is only reduced by 0.35, which is about 0.46%. Table 5 shows that our ESCN 
model performs better than the entire matrix model in the TuSimple test. Accuracy improved by 0.19%. FP and 
FN received promotions. The values increased by 0.0015 and 0.0026 respectively. In the CULane benchmark, 
we can also see that although F1 decreased by 0.45%, as shown in Tables 5 and 6, convolution was used instead 
of matrix calculation, which significantly reduced the calculation.

From Fig. 6, we can easily see that the loss parameter changes rapidly at the beginning of the training phase, 
regardless of whether it is the Tusimple dataset or the CULane dataset. The loss change gradually stabilizes for 
the Tusimple dataset. However, the loss changes of the CULane dataset are still quite intense. For the learning 
rate parameter, whether it is the Tusimple data set or the CULane data set, their changes are basically the same, 
they gradually become smaller and then gradually increase.

Conclusion
In this study, we propose an effective spatial and channel network aimed at detecting lane marking lines, espe-
cially in difficult environments. We used channel self-attention, which deals with global and contextual informa-
tion in a single channel, and spatial self-attention, which focuses more on location in many channels, to identify 

Figure 5.   Comparison between our proposed model and other methods in visualization based on CULane 
benchmark.

Table 5.   Ablation comparison on TuSimple benchmark dataset. Significant values are in [bold].

Model Accuracy (%) FP FN

ESCN model based on Resnet-34(ours) 95.49 0.0307 0.0342

Full Matrix Channel and Spatial attention based on ResNet-34(ours) 95.30 0.0322 0.0368

Table 6.   Ablation comparison on CULane benchmark dataset. Significant values are in [bold].

Model TP FP FN Precision (%) Recall (%) F1 (%)

ESCN model based on Resnet-34(ours) 72,383 14,910 32,503 82.91 69.01 75.32

Full Matrix Channel and Spatial attention based on ResNet-34(ours) 72,611 14,401 32,275 83.44 69.22 75.67
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aspects that are likely to be missed in difficult situations. We evaluated our proposed model using the TuSimple 
and CULane benchmarks. With an individual advantage of 3.82% and 0.37% over all other methods. Undoubt-
edly, it delivers excellent performance. However, there are also three limitations in our proposed model. First, 
we only simplify the channel-wise attention model through a global average pooling operation. Although it 
promotes inference speed, it reduces accuracy compared to the fully connected matrix. Second, we take the same 
measures for the spatial channel. As a result, global information is easily ignored and the relationship between 
different pixels is missing. In addition, the kernel size limits the receptive field. Finally, our proposed model pays 
significantly more attention to the information in an image while neglecting the associated connection between 
continuous images. We now also understand that the self-attention mechanism is only able to retrieve global 
information across channels and locations, but not semantic and contextual information between frames. Accu-
racy in the lane marking detection phase is crucial for autonomous driving. Runtime applications on embedded 
platforms are a crucial part of future research. In future work, we will consider a comprehensive technology to 
construct our model. Like rnn, lstm, semantic segmentation and instance segmentation, we will combine them 
with attention or self-attention to combine their advantages and obtain an improved model. If we don’t limit 
ourselves to compatibility for embedded systems, we also consider large models.

Data availability
The data presented in this study are openly available in https://​github.​com/​TuSim​ple/​tusim​ple-​bench​mark and 
https://​xinga​ngpan.​github.​io/​proje​cts/​CULane.​html.
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