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Characteristics of lactate 
metabolism phenotype 
in hepatocellular carcinoma
Jiacheng Zhang 1,2,4, Keshuai Dong 1,4, Xin Zhang 1,2, Chunlei Li 1,2, Jia Yu 1* & Weixing Wang 3*

Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and more effective prognostic 
markers are needed. Lactic acid has been proved to be an important metabolite involved in cancer 
development, metastasis, and the tumor microenvironment, affecting the prognosis of patients. The 
role of lactic acid metabolism regulators (LAMRs) in HCC is still unclear. In this study, we analyzed 
the status of LAMRs, a gene list containing lactate from Molecular Signatures database, in HCC and 
consensus clustering was performed based on these LAMRs. Cluster B showed higher infiltrations of 
immune cells, higher TME scores, and a poorer prognosis. We further constructed a risk score based on 
DEGs using LASSO and COX regression analysis between two clusters, which could effectively predict 
the prognosis of TCGA-LIHC patients. The GSE14520 cohort confirmed the result. We also examined 
the correlation of risk scores with clinical characteristics, genetic mutations, drug sensitivity, immune 
checkpoint inhibitors(ICIs), and immunotherapy. In conclusion, our findings will facilitate a further 
understanding of the role of partial lactate metabolism related genes in HCC and suggest a new risk 
score to predict prognosis.

Primary liver cancer is one of the most common malignant tumors in the world. It is the third leading cause of 
cancer death worldwide, and among them, hepatocellular carcinoma (HCC) accounts for more than 80% HCC1,2. 
The major risk factors for HCC include chronic infections with the hepatitis B virus (HBV) and hepatitis C virus 
(HCV). In addition, excessive alcohol consumption, long-term smoking, obesity, and genetics are also important 
factors that can cause HCC. The late diagnosis, high metastasis rate, and high recurrence rate ultimately lead 
to a high mortality rate of HCC3. Many clinical indicators help predict patient prognosis, including AFP, TNM 
staging, and vascular invasion4. However, considering the great heterogeneity of HCC, novel prognostic models 
are needed.

Metabolic changes in tumor cells are beneficial to cell proliferation and have profound effects on tumor 
immunity through the release of metabolites, especially lactate. Otto Warburg5 first described that tumor cells 
consumed substantial glucose and secreted lactate even under aerobic conditions in the 1920s, which is now 
known as the Warburg effect, and also is a hallmark characteristic of cancer6. Numerous studies have provided 
evidence that lactate plays an integral role in tumor progression, providing a survival advantage to tumor cells 
through the upregulation of oncogenes, induction of angiogenesis, local infiltration of tumor cells, and distant 
metastasis7,8. Metastasis, tumor recurrence, and low survival in cervical cancer are closely associated with high 
lactate levels in the tumor microenvironment9. Lactic acid and the resulting acidic tumor microenvironment 
(TME) also promote cancer cell immune evasion7,10. There is a strong link between lactic acid and immunity. 
Lactic acid promotes the expression of regulatory T cells’ programmed cell death protein 1 (PD-1) in the micro-
environment of high glycolytic tumors, and found that high glycolytic tumors consume glucose, release excessive 
LA, increase the expression of PD-1, and inhibit the activity of Treg cells, resulting in the ineffectiveness of partial 
PD-1 blocking therapy11. At present, machine learning and bioinformatics analysis have achieved remarkable 
results in many fields12,13, and the role of lactate-related genes in liver cancer analysis by bioinformatics remains 
to be further studied.

In the present study, we first discussed the expression, mutation, and internal relationship of 25 lactic acid 
metabolism regulators (LAMRs), a gene list containing lactate from Gene Ontology and HP. Then we identified 
two clusters related to lactate metabolism based on 25 LAMRs mRNA expression using consensus clustering 
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analysis. And we also described the relationship between two clusters and clinical features and immune infiltra-
tion. Patients were then divided into two gene subtypes based on differentially expressed genes (DEGs) identi-
fied by two LAMR clusters. Furthermore, we developed a risk score to predict OS and further explored the 
relationship between the risk score and mutations, drug sensitivity, immune checkpoints, and immunotherapy.

Methods
Collection of LAMRs
Figure S1 showed the workflow of the present study. The 25 LAMRs were retrieved from the Molecular Sig-
natures database, including GOBP_LACTATE_METABOLIC_PROCESS, GOMF_LACTATE_TRANSMEM-
BRANE_TRANSPORTER_ACTIVITY, and GOBP_LACTATE_TRANSMEMBRANE_TRANSPORT. In total, 
25 Lactic acid metabolism regulators including ACTN3, HAGH, HIF1A, LDHA, LDHAL6A, LDHAL6B, LDHB, 
LDHC, LDHD, MIR210, PARK7, PER2, PFKFB2, PNKD, SLC16A1, SLC16A3, SLC16A7, SLC16A8, SLC25A12, 
SLC5A12, SLC5A8, TIGAR, TP53, MYC, EMB were included in this study. The basic information on the included 
Lactic acid metabolism regulators was shown in Table S1.

Data processing
RNA transcriptome sequencing data and clinical data of patients were obtained from the TCGA-LIHC (https://​
portal.​gdc.​cancer.​gov/) and GSE14520 (http://​www.​ncbi.​nlm.​nih.​gov/​geo). Somatic mutation data of HCC was 
also obtained from the TCGA. The FPKM values were normalized with the transcripts per million (TPM) method 
and then converted (log2 + 1) in TCGA. In total, 365 LIHC and 50 normal liver tissues were included in this 
study. The single-nucleotide variants (SNV) data of LIHC which containing 158 samples were also obtained from 
TCGA database. Copy Number Variation (CNV) data were downloaded from UCSC website(http://​genome.​ucsc.​
edu/). GISTIC was applied to calculate the CNV variation type (gain or loss) and frequency of LAMRs in the 
TCGA-LIHC cohort. We further studied the protein expression levels of LAMRs by IHC retrieving them from 
The Human Protein Atlas database (https://​www.​prote​inatl​as.​org/). 6 to 12 LIHC samples from the 25 LAMRs 
were included and analyzed.

mRNA and protein expression level of LAMRs
The difference in mRNA expression of LAMRs between HCC and normal liver samples in TCGA-LIHC was 
realized by the “limma” package. The protein levels of LAMRs expression in HCC samples were determined 
from the Human Protein Atlas (HPA)14, a website that contained immunohistochemical expression data for 
approximately 20 most common types of tumors.

Functional annotation analysis and correlation of LAMRs
The LAMRs and subsequent genotyping of differential genes were then analyzed by Functional Annotation. 
To investigate the biological functions of these regulators, the “clusterProfiler” R package was used to carry out 
Gene Ontology (GO) functional annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
(https://​www.​kegg.​jp/​kegg/​kegg1.​html). Also, to explore the interactions among the LAMRs, we calculated the 
Pearson correlation coefficient among LAMRs by using their expression in TCGA-LIHC data. The r package 
“corrplot” was used for visualization. We uploaded the list of 25 LAMRs to the STRING portal (https://​string-​db.​
org/) to build a protein–protein interaction (PPI) network, which could show the correlation between LAMRs15. 
Visualization of molecular interaction networks for PPI analysis was analyzed using the opensource software 
platform Cytoscape software (Cytoscape3.8.2)16. The degree of genes was further calculated by a tool in Cytoscape 
software named network analyzer to quantify the relationships among LAMRs.

Consensus clustering analysis
Based on the expression of LAMRs in 365 HCC tissues, the “ConsensusClusterPlus” package was used to con-
sensus cluster. To be specific, using agglomerative km clustering with a euclidean distances and resampling 
80% of the samples for 1000 repetitions.The number of clusters ranged from 2 to 9. The consensus matrix and 
cumulative distribution function (CDF) were used to calculate the optimal number of clusters. The difference 
in overall survival (OS) between the two groups was assessed by the Kaplan–Meier method.

Construction and validation of prognostic LAMR riskscore
The “limma” package was used to determine the DEGs between two clusters in TCGA-LIHC. |log2FC|≥ 1.5 and 
false discovery rate(FDR) < 0.05 were considered as the inclusion criterion. GO and KEGG enrichment analyses 
were performed for DEGs to analyze the biological behavior of these genes. Univariate Cox analysis was then used 
to determine whether DEGs were associated with prognosis (P < 0.05). Second, 365 LIHC samples were divided 
into two different subtype groups (lactic acid gene cluster A, and lactic acid gene cluster B) for deeper analysis. 
At the same time, DEGs with prognostic value were selected for further analysis. The least absolute shrinkage 
and selection operator (LASSO) Cox regression algorithm, to avoid overfitting, was used to perform regression 
analysis on the selected genes. The identification of candidate genes was subsequently achieved by utilising the 
optimal penalty parameter λ, employing the 1 − SE (standard error) criterion. The resulting genes were then 
subjected to multifactor regression analysis. Finally, based on the results of multivariate regression analysis17, a 
prognostic risk scoring system was calculated. The risk score was calculated using the following formula:

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
http://genome.ucsc.edu/
http://genome.ucsc.edu/
https://www.proteinatlas.org/
https://www.kegg.jp/kegg/kegg1.html
https://string-db.org/
https://string-db.org/
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where Coef(i) and x(i) were multivariate regression coefficients and the expression of the gene, respectively. 
Based on the median risk score, 365 HCC samples were divided into high- and low-risk groups. The risk score 
distribution, heatmap of genes included in the model, survival curve, and receiver operating characteristic (ROC) 
curve were analyzed. The relationship between risk-score and clinical features, such as age, gender, grade, T, 
and stage, was also evaluated. The efficacy of the risk score in predicting clinical outcomes was validated using 
GSE14520 as external data. In brief, the expression of genes included in the model in GSE14520 was selected, 
and the LAMR risk score for each sample was calculated according to the previous formula. According to the 
median score, they were divided into high and low risk groups for subsequent analysis. For TCGA-LIHC and 
GSE14520, the independent prognostic value of this feature was assessed by univariate Cox regression analysis 
and multivariate Cox regression analysis using the "survival" R package. The variables for analysis included age, 
gender, grade, TNM stage, and risk score.

Tissue samples
Fifteen pairs of hepatocellular carcinoma and paraneoplastic tissues were obtained from patients undergoing 
surgery at the Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University. (Wuhan, China). 
The study was approved by the Ethics Committee of the Renmin Hospital of Wuhan University. The study has 
obtained the informed consent of all participants and/or their legal guardians and all experiments were per-
formed in accordance with relevant guidelines and regulations.

Quantitative real‑time polymerase chain reaction PCR (RT‑qPCR)
Total RNA was extracted from HCC and paraneoplastic tissues using TRIzol reagent (Servicebio, China). After 
RNA extraction, complementary DNA (cDNA) was synthesized using total RNA and a PrimeScript RT reagent kit 
(Takara). RT-qPCR was performed on a CFX-96 instrument (Roche LightCycler 480 II, Switzerland) using SYBR 
Green Master Mix (Servicebio, China). Primer sequences for qRT-PCR are listed in Supplementary Table S2. 
Gene expression was normalized to β-actin and calculated using the 2−ΔΔCT method.

Immunohistochemistry (IHC) analysis
IHC was conducted using antibodies against PHLDA2 from Proteintech Group Inc. (14661-1-AP, 1:1000, Chi-
cago, USA). Briefly, sections were deparaffinized with xylene and ethanol and rehydrated before antigen retrieval 
by heating to just below the boiling temperature in Tris/EDTA buffer (pH 9.0) for 20 min in a microwave oven. 
Images were acquired using the 3DHIESTECH scanning system and software. The mean integrated option density 
(IOD) of PHLDA2-expressing in each sample was analyzed by Image-Pro Plus 6.0 software (Media Cybernetics 
Inc, Bethesda, USA).

Western blotting analysis
Tissues were lysed in RIPA (Servicebio, G2002, China) buffer with proteinase inhibitor (Servicebio, G2008, 
China). The protein from each group was separated by 8–12% SDS-PAGE and transferred onto a cut PVDF 
membrane (Bio-Rad Laboratory). The membranes were blocked in a protein-free rapid blocking buffer (Epizyme, 
PS108, China). Then the membrane was incubated with specific antibodies overnight at 4℃, and probed with 
appropriate secondary antibodies. The signals were visualized using Bio-Rad ChemiDoc MP. Band intensities 
were quantified using ImageLab. The protein Gapdh was used as the loading control. The primary antibodies 
used for WB analysis included PHLDA2 (14661-1-AP, 1:1000) from Proteintech Group Inc. (Chicago, IL, USA) 
and GAPDH (GB15004, 1:1000, Servicebio, Wuhan, China).

Establishment of a nomogram
Nomogram have been used to predict the prognosis of various cancers by incorporating the clinical character-
istics and risk scores of the patients18. The nomogram is a predictive tool for many tumors prognosis and has 
advantages over traditional clinically relevant indicators19. It improves predictive power and can be used for 
patient identification and stratification20. In this study, Age, gender, grade, stage, and risk were used to construct 
the nomogram for evaluating OS in HCC. Validation of the ability of nomogram to predict prognosis using 
calibration and ROC curves.

Mutation and drug‑sensitivity analysis
The mutation annotation format (MAF) from the TCGA-LIHC was generated using the “maftools” R package to 
identify the difference in somatic mutations of HCC patients between high- and low-risk groups. To study the 
differences in the sensitivity of chemotherapeutic agents commonly used to treat HCC between the two groups, 
we employed the “pRRophetic” package to calculate the semi-inhibitory concentration (IC50) values.

Expression of immune‑related genes and immunotherapeutic responses
48 ICIs were retrieved from published literature and the expression of these ICIs was analyzed between high- and 
low-risk groups to evaluate the potential effects of risk score on the immunotherapy response. The correlation of 
the prognostic risk-score with two of the most widely used ICIs, PD-1 and cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA4) was also determined. Data on immunotherapy for liver cancer are still not available, we 

riskScore =

n
∑

i=1

Coef (i) ∗ x(i)
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used the IMvigor210 dataset derived from immunotherapy to further validate the response of this risk score to 
immunotherapy.

Statistical analyses
R version 4.1.0 was used to perform statistical analyses and statistical significance was set at p < 0.05.

Results
The mRNA and protein expression and genetic alterations of LAMRs in HCC
Firstly, the mRNA expression of LAMRs between HCC and normal tissues was compared using the TCGA_LIHC 
cohort. As shown in the boxplot, 18 LAMRs were significantly different between the tumor and normal group, 
including ACTN3, LDHAL6A, MIR210, PARK7, PFKFB2, PNKD, SLC16A3, SLC16A8, SLC25A12, TIGAR, 
TP53 were upregulated, and HAGH, LDHA, LDHD, MYC, PER2, SLC16A1, SLC5A12 were downregulated 
significantly (Fig. 1A). The protein level of LAMRs was shown in the histogram (Fig. 1B). Red-labeled LAMRs 
represent up-regulated in the transcriptional level and green represents downregulated according to Fig. 1A. 
Consistent with mRNA levels, ACTN3, SLC16A3, SLC25A12, and TIGAR were shown high-expressed or middle 
expressed, HAGH, and SLC5A12 were shown low-expressed or not detected mostly. Part of protein expression 
was inconsistent with mRNA level. PFKFB and TP53 were in low expression and LDHA was in middle expres-
sion (Fig. 1B).

Next, the incidence of somatic mutations and copy number alterations were analyzed overall. Of the 364 LIHC 
samples, 127 (34.89%) had mutations in the LAMRs. Except for TP53, all other LAMRs showed a low mutation 
rate (Fig. 1C). We also found that the somatic copy number of these LAMRs was changed. Among them, the 
copy number variation (CNV) of PFKFB2, MYC, SLC16A3, and EMB generally increased, while the CNV of 
TP53, LDHD, HIF1A, PARK7, and HAGH decreased (Fig. 1D).

Functional enrichment analysis and correlation of LAMRs in the TCGA‑LIHC
The biological functions of LAMRs were studied by GO and KEGG analyses. The result of GO annotation indi-
cated LAMRs were mainly enriched in lactate metabolic process, mitochondrial matrix, and organic hydroxy 
compound transmembrane transporter activity, which correspond to biological process (BP), cellular component 
(CC), and molecular function (MF), respectively (Fig. 2A). Furthermore, these LAMRs were enriched in central 
carbon metabolism in cancer, pyruvate metabolism, and propanoate metabolism, as suggested by KEGG enrich-
ment analysis (Fig. 2B) (Table S3).

The relationship between LAMRs was further supported by the correlation analysis. Some correlated LAMRs 
regulator pairs were identified (p < 0.05), for example, TIGAR and HIF1A, SLC16A7 and HIF1A, and EMB 
and HIF1A were positive correlations. SLC16A3 and HAGH, SLC16A3, and LAHD were shown a significantly 
negative correlation (Fig. 2C). Taking LDHD and HAGH for example, the correlation coefficient R = 0.63, and 
p < 2.2e−16, which means they have a strong connection (Fig. 2C). Protein–protein network of LAMRs was shown 
using the STRING website and cytoscape software (Fig. 2D). The specific information for each LAMRs degree is 
in Table S4. LDHD, LDHB, and SLC16A3 were shown a high degree of connectivity (Fig. 2D).

Identification of LIHC clusters by consensus clustering
To further understand the overall role of LAMRs in LIHC, based on the expression profiles of the 25 LAMRs, 
we performed consensus clustering on the 365 samples of LIHC. These patients were divided into different 
clusters (K = 2–9), K = 2 was taken as the optimal cluster number according to the consensus matrix (Fig. 3A), 
and consensus CDF curve (Fig. 3B). In addition, divided the samples into two distribution patterns using PCA 
(Fig. 3C). The Kaplan–Meier curves revealed that the patients in cluster A survived longer than those from cluster 
B (Fig. 3D). Furthermore, a heatmap was shown the differences in clinical features of the different clusters of 
LIHC patients and the expression of LAMRs (Fig. 3E). In cluster B, the expression of LAMRs was higher than 
in cluster A, e.g. HIF1A, LDHA, LDHB, SLC16A3, MYC.

Differences in immunity between two clusters
HCC immunity TME is an important factor affecting cancer progression. Therefore, the ssGSEA was used to 
analyze the differences in 23 kinds of immune cell infiltrations. Cluster B showed higher infiltrations of various 
immune cells, including the B cells, CD4+ T cells, CD8+ T cells, NK cells, and Treg cells (Fig. 4A). Besides, cluster 
B showed higher TME scores in Immune-score, ESTIMATE score, and Stromal-score (Fig. 4B–D).

Identification of gene subtype
Based on the cut-off criterion we set (|LogFC|> 1.5, P < 0.05), a total of 335 DEGs were screened between two 
clusters using “limma” differential analysis (Fig. S2) (Table S5). GO and KEGG analyses further confirmed which 
biological behaviors these genes were enriched in (Fig. S3) (Table S6). Then univariate Cox regression analysis 
was performed to determine genes with predictive prognostic power among these 335 genes and found 194 genes 
associated with OS time (P < 0.05). Genotyping will help to optimize the treatment plan for each tumor patient 
and achieve precision treatment21. Those 194 genes were identified for unsupervised clustering analysis. LIHC 
patients were subsequently divided into two LAMRs gene-related clusters based on the expression of those genes 
(Fig. 5A, B). Cluster B was linked to a better prognosis p < 0.001 (Fig. 5C). The two LAMR gene subtypes showed 
significant differences in LAMRs expression (Fig. 5D). In addition, a heatmap showed the relationship between 
the LAMR gene-related cluster and clinical characteristics (Fig. 5E).
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Construction and validation of the prognostic LAMR risk‑score
LASSO and multivariate Cox analyses were performed on 194 DEGs with subtype-associated prognosis of 
LAMRs to further select the optimum prognostic risk related factors (Table S7). Subsequent LASSO regression 
analysis was carried out, and five genes remained according to the minimum partial likelihood deviance (Fig. 6A, 
B). Then multivariate Cox regression analysis was performed to finally obtain four genes (ADAM9, NT5DC2, 
PHLDA2, and PON1). The forest map showed that PON1 was the protective factor (HR < 1), but ADAM9, 

Figure 1.   The mRNA and protein expression and genetic alterations of LAMRs in HCC. (A) mRNA expression 
of LAMRs, (B) protein expression of LAMRs, (C) mutation landscape map of LAMRs. (D) Frequencies of CNV 
gain, loss, and non-CNV among LAMRs.
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NT5DC2, and PHLDA2 were risk factors (HR > 1) (Fig. 6C). We also analyzed the expression differences of the 
four included genes. Their expressions were obtained from the GEPIA database and found also markedly high 
levels of PHLDA2 and NT5DC2 in LIHC compared with normal samples (Fig. S4). We moreover examined 
the expression of four genes using qRT-PCR on clinical specimens (Fig. S4). The expression of NT5DC2 and 
PHLDA2 were consistent with the GEPIA database. PHLDA2 expression was as a representative verified using 
IHC and WB analysis (Fig. 11). It showed that PHLDA2 was highly expressed in human HCC tissues compared 
with adjacent tumor tissues. The Kaplan Meier survival analysis confirmed that high expression of ADAM9, 
NT5DC2, and PHLDA2 was associated with poor prognosis in patients with LIHC, however, high level of PON1 
was significantly associated with better survival in patients (Fig. 6D). The same conclusion was also confirmed 
in GSE14520 data (Fig. 6E). For both TCGA-LIHC and GSE14520 cohort, the risk score was calculated using 
the following formula:

We also showed the distribution of risk scores and survival status among patients in TCGA-LIHC and 
GSE14520 (Fig. 6F, G). The mortality rate was higher in the high-risk group compared with the low-risk group. 

Risk Score =
(

0.1709∗ ADAM9expression
)

+
(

0.1641∗ NT5DC2expression
)

+
(

0.1634∗ PHLDA2expression
)

+
(

−0.0978∗ PON1expression
)

.

Figure 2.   Functional enrichment analysis and correlation of LAMRs. (A) The top significant GO enrichment 
pathways. (B) The top significant KEGG enrichment pathways (www.​kegg.​jp/​kegg/​kegg1.​html). (C) The 
correlation of LAMRs in the TCGA-LIHC cohort. (D) Protein–protein interaction network of LAMRs proteins.

http://www.kegg.jp/kegg/kegg1.html
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In addition, ADAM9, NT5DC2, and PHLDA2 were significantly upregulated in the high-risk group, while PON1 
was significantly downregulated (Fig. 6F) (Table S8), which was consistent with the calculation of our risk score. 
The results of GSE14520 cohort were consistent with the above results (Fig. 6G) (Table S9).

Figure 3.   Identification of LIHC clusters using consensus clustering. (A) Consensus clustering matrix at K = 2. 
(B) The CDF curves for clusters at k = 2 to 9. (C) PCA plot for the two clusters. (D) Survival analysis for LIHC 
samples is stratified to the two clusters. (E) Heatmap expression of LAMRs and the clinical parameters of the 
two clusters.
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Association of risk score with clinical characteristics
The Kaplan–Meier survival analysis showed that compared to the high-risk group, the low-risk group had a 
better prognosis in the TCGA-LIHC group (Fig. 7A) and the GSE14520 group (Fig. 7C). Besides, the risk score 
also exhibits high accuracy in predicting the prognosis of HCC patients. The AUC of the risk-score was 0.732 at 
1 year, 0.664 at 3 years, and 0.629 at 5 years, respectively (Fig. 7B). The AUC of the risk-score in GSE14520 was 
0.701 at 1 year, 0.655 at 3 years, and 0.641 at 5 years (Fig. 7D).

We then compared the differences in risk scores between clusters, and as expected, the risk-score of cluster 
A was lower than cluster B (Fig. 7E). The risk score of gene subtype A was higher than subtype B, as shown in 
Fig. 7F. In addition, we illustrated the distribution of samples in the two LAMR clusters, two gene subtypes, 
risk-score groups and survival condition (Fig. 7G). Furthermore, we also analyzed the correlation of the risk-
score with the clinical features in TCGA-LIHC (age, gender, grade, T stage, and stage) (Fig. 7H-L) (Table S10). 
We found that the risk-score was significantly different for the grade and stage, especially G1 risk-score was 
significantly lower than that of high-grade patients (Fig. 7J). T stage and stage had the same result (Fig. 7K–L).

Figure 4.   Differences in immunity between two clusters. (A) Abundance of 23 infiltrating immune cell types in 
the two HCC clusters. (B) Correlation between the two clusters and immune-score. (C) Correlation between the 
two clusters and ESTIMATE-score. (D) Correlation between the two clusters and stromal-score.
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The independent predictive ability of the risk‑score and establishment of a prognostic 
nomogram
To assess the ability of risk scores to independently predict prognosis, univariate and multivariate Cox regres-
sion analyses were carried out. T stage and stage were related to OS in univariate Cox regression analyses in the 
TCGA-LIHC cohort (HR = 1.657, 95% CI = 1.363–2.014, P < 0.001; HR = 1.678, 95% CI = 1.367–2.059, P < 0.001) 
(Fig. 8A). The risk-score was also significantly associated with OS (HR = 2.072, 95% CI = 1.594–2.693, P < 0.001) 

Figure 5.   Identification of gene subtypes based on DEGs. (A) Consensus clustering matrix at K = 2. (B) The 
CDF curves for clusters at k = 2 to 9. (C) PCA plot for the two clusters. (D) Survival analysis for LIHC samples 
is stratified to the two clusters. (E) Comparison of 23 types of immune cells between two clusters. (F) Heatmap 
and the clinical parameters of the two clusters. *P < 0.05.
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(Fig. 8A). Moreover, multivariate Cox analysis showed that the risk-score remained an independent factor 
(HR = 1.856, 95% CI = 1.402–2.457, P < 0.001) (Fig. 8B).

Figure 6.   Construction and validation of the prognostic LAMR risk-score. (A,B). LASSO Cox regression 
analysis of 194 prognosis-related differentially expressed genes. (C) Forest plot of the four target genes that 
compose the risk-signature. (D) The Kaplan Meier analysis of the four target genes in TCGA-LIHC. (E) The 
Kaplan Meier analysis of the four target genes in GEO14520. (F,G) The risk score distribution, survival status, 
and heatmap for the expressions of the four genes in TCGA-LIHC cohort and GSE14520 cohort.
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We established a novel prognostic nomogram using the risk-score and clinical features, such as age, grade, 
gender, and stage (Fig. 8C). The nomogram could predict the overall survival of HCC patients. Calibration 
curves were plotted to visually illustrate the performance of the nomogram, showing that the predicted results 
were consistent with reality (Fig. 8D). ROC curve analyses showed the AUCs of 0.750 at 1 year, 0.730 at 3 years, 
and 0.731 at 5 years (Fig. 8E). It clearly demonstrated that the nomogram could predict the prognosis of HCC 
samples from the TCGA-LIHC.

Figure 7.   Relationship between the risk score and clinical features. (A) The survival analysis of risk score in 
TCGA-LIHC cohort. (B) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival 
according to the risk-score in TCGA-LIHC cohort. (C) The survival analysis of risk score in GSE14520 cohort. 
(D) ROC curves according to the risk-score in GSE14520. E. Differences in risk-score between LAMR clusters. 
(F) Differences in risk-score between gene clusters. (G) Mulberry figure of subtype distributions in groups with 
different risk-scores and survival outcomes. (H–L) The correlation of the risk-score with the clinical features 
(age, gender, grade, T stage, and stage).
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Mutation and drug susceptibility analysis
We also assessed differences in the top 20 gene mutations between the high- and low-risk groups. Patients in 
the high risk-score group had significantly higher frequencies of TP53, and FAT3 mutations compared to those 

Figure 8.   The independent predictive ability of the model and establishment of a prognostic nomogram. (A) 
Univariate Cox analysis of age, gender, T stage, stage, grade, and risk-score. (B) Multivariate Cox analysis of age, 
gender, T stage, stage, grade, and risk-score. (C) Establishment of a nomogram using grade, gender, age, stage, 
and risk. (D) Calibration curves of nomogram. (E) AUCs of nomogram at 1, 3, and 5 years.
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in the low risk-score group. However, the mutation levels of CTNNB1 and TTN were completely opposite to 
those in the former (Fig. 9A, B). Next, we selected chemotherapeutic agents currently used in the treatment of 
LIHC, as well as future agents that may target the role of lactate regulation in the treatment of hepatocellular 
carcinoma, to assess the sensitivity of these agents in two group of patients. We discovered that the IC50 value 
of sorafenib, cisplatin, and AZD8055 was lower in the patients with the high risk-score (Fig. 9C–E), while IC50 

Figure 9.   Mutation and drug sensitivity analysis. (A) The mutation of top 20 genes in high-risk group. (B) The 
mutation of top 20 genes in low-risk group. (C–F) Relationships between risk-score and drug sensitivity (C) 
sorafenib, (D) cisplatin, (E) AZD8055, (F) DMOG.
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values of DMOG were significantly lower in those with low risk-score (Fig. 9F). Totally, these results showed 
that risk-scores were related to drug sensitivity.

Differential expression of ICIs and evaluation of immunotherapy response
Recently, important advances have been made in the response to ICI tumor immunotherapy of several tumors, 
including HCC. To verify whether risk scores correlate with immunotherapy response, we examined the expres-
sion of 48 ICIs in the high- and low-risk groups. The results showed that all ICIs were differentially expressed. 
Except ARG1, ICI expression in high-risk group was higher than that in low-risk group (Fig. 10A, B). PD-1 
and CTLA4 were extensively studied ICIs and have been applied in clinical practice. The expression levels of 
above two genes were positively correlated with the risk-score (PD-1: R = 0.44, P < 2.2e−16, CTLA4: R = 0.45, 
P < 2.2e−16) (Fig. 10C, D). To further validate the response of this risk score to immunotherapy, we used the 
IMvigor210 dataset derived from immunotherapy for renal cell carcinoma. In this data set, the low-risk score had 
a better prognosis, which was consistent with the previous results (Fig. 10E). Rates of clinical response (CR, PR, 
SD, PD) to anti–PD-L1 immunotherapy in high or low risk-score groups in the IMvigor210 cohort were shown 
in Fig. 10F. Differences in scores of different clinical responses showed that risk-score of CR was significantly 

Figure 10.   Differential expression of ICIs and evaluation of immunotherapy response. (A,B) The relationships 
between risk-score and expression of 48 ICIs. (C) The correlation between risk-score and PD-1 expression. (D) 
The correlation between risk-score and CTLA4 expression. (E) Prognostic analysis of risk-score in IMvigor210 
cohort. (F) Rate of clinical response (CR, PR, SD, PD) to anti-PD-L1 immunotherapy in high or low risk-score 
groups in IMvigor210. (G) Differences in scores of different clinical responses. (H) ROC analysis of risk-score in 
IMvigor210.
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lower other three clinical responses (Fig. 10G). The ROC analysis of the IMvigor210 cohort also demonstrated 
that the risk-score was a predictive biomarker to immunotherapeutic benefits (AUC = 0.737, Fig. 10H).

Validation of PHLDA2 expression in HCC
Among the four genes included in the model, PHLDA2 was selected for further verification. In our 58 patients 
with HCC and normal samples, PHLDA2 was significantly overexpressed in HCC (Fig. 11A, B) (Table S11). 
Western blot results further confirmed this result (Fig. 11C).

Discussion
In this study, we first distinguished the expression of 25 LAMRs, a gene list containing lactate from Gene Ontol-
ogy and HP, between tumor and normal tissues. The results of GO and KEGG enrichment analysis revealed that 
they were mainly enriched in the lactate metabolic process and central carbon metabolism in cancer, respectively. 
The Warburg effect is a key event in hepatocarcinogenesis, where pyruvate tends to be converted to lactate cata-
lyzed by lactate dehydrogenase (LDH) even under aerobic conditions. LDHA is highly expressed in a variety of 
tumors and associated with worse overall survival22. MYC, and HIF-1α-mediated signaling enhances glycolysis 
in HCC by promoting upregulation of LDHA23,24. In contrast, knockdown of LDHA significantly inhibited tumor 
growth and metastasis of hepatocellular carcinoma25. Lactate is mainly transported by the monocarboxylate 
transporter (MCT) on the cell membrane, MCT1 (SLC16A1) mainly imports lactate, and MCT4 (SLC16A3) 
mainly exports lactate. MCT4 is highly expressed in HCC and promotes tumor progression, which is consistent 
with our results26. MCT1 inhibits lactate export and glucose metabolism, and inhibits HCC proliferation27. The 
strong association between these LAMRs and the progression of HCC provides a robust basis for their utilization. 
Further analysis suggests that LAMRs also interact with each other. There is a significant positive correlation 
between LDHD and HAGH expression, which suggests that both of them are involved in lactic acid metabolism. 
LDHD was negatively correlated with SLC16A3. In addition, LDHA, as an important protein in lactate transfor-
mation and SLC16A3 as an important protein in lactate transport, also plays a central role in LAMRs, connecting 
other LAMRs in tandem and jointly regulating lactate metabolism in HCC23,28,29. LAMRs exhibit certain genetic 
alterations in HCC, and TP53 has a high mutation rate, which is consistent with previous studies30. Copy-number 
changes of chromosomal segments are a common feature of human cancers and have been proposed as a driving 
force of tumorigenesis31. We found that MYC showed copy number amplification, which is consist with previous 
study, and MYC amplification predicts unfavorable prognosis in HCC32,33. However, these genetic alterations on 
lactate metabolism in HCC remains to be further investigated.

Thus, according to the expression of 25 LAMRs in TCGA-LIHC, we identified two distinct molecular clusters. 
Compared to cluster A, patients in cluster B had more advanced clinical staging, grading, and worse OS. Heat-
map analysis showed that the expression of most LAMRs in cluster B was higher than that in cluster A. There 
were also significant differences in TME characteristics between the two clusters. The content of immune cells 
in cluster B including CD4 T cells, and CD8 T cells, was significantly higher than that in cluster A. Furthermore, 
immuneScore, ESTIMATEScore, and stromalScore also showed the same trend. Numerous studies have shown 
that lactate plays an integral role in tumor progression, providing a survival advantage to tumor cells through the 
upregulation of oncogenes, induction of angiogenesis, local infiltration of tumor cells, and distant metastasis7,8. 

Figure 11.   Validation of PHLDA2 expression in HCC. (A) Expression levels of PHLDA2 in HCC tissues and 
adjacent tissues by IHC. (B) Immunohistochemical analysis of PHLDA2 expression in 58 pairs of HCC tissues 
and adjacent tissues. (C) Western Blot analysis of PHLDA2 expression in 6 pairs of HCC tissues and adjacent 
tissues.



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19674  | https://doi.org/10.1038/s41598-023-47065-0

www.nature.com/scientificreports/

Lactic acid and the resulting acidic tumor microenvironment (TME) also promote cancer cell immune evasion7,10. 
Thus, for cluster B, the inhibition of lactic acid metabolism may serve as a promising therapeutic strategy.

To further study the relationship between LAMRs and HCC patients, we identified two gene subtypes 
based on the DEGs between the two LAMR clusters. Next, we constructed a four-genes (ADAM9, NT5DC2, 
PHLDA2, and PON1) prognostic risk-score model using Cox regression and Lasso Cox regression analysis in 
DEGs between two LAMR cluster. It confirmed that high expression of ADAM9, NT5DC2, and PHLDA2 was 
associated with poor prognosis in patients with LIHC, however, high level of PON1 was significantly associ-
ated with better survival in patients. We divided the samples into high- and low-risk groups according to the 
median risk score. Patients in the high-risk group had a poorer prognosis, and the same result was confirmed 
in GSE14520. We also observed determined risk factors for tumor progression in the high-risk group of LIHC 
patients, including higher advanced T stage and grade. The risk score was an independent predictor of prognosis 
for LIHC patients, meaning that it can play a better role in predicting patient outcomes. Finally, by integrating 
age, gender, grade, the risk-score, and tumor stage, we established a nomogram that can moreover improve the 
prediction and facilitate the use of risk scores. To our satisfaction, the prognostic nomogram model can be used 
in the LIHC cohort and demonstrated excellent predictive ability. Four-genes expression including ADAM9, 
NT5DC2, PHLDA2, and PON1 were all validated in our own HCC tissues.

All four genes are closely related to the prognosis of HCC34–36. PON1 can regulate glucose metabolism, 
pentose phosphate pathway (PPP)、fatty acid oxidation (FAO)、peroxisome proliferator-activated receptor 
gamma (PPAR-γ) activity, and glucose metabolism via upregulation of glucose transporter-1 (GLUT-1)37,38. 
The potential involvement of ADAM9 in the regulation of lactate levels has been postulated. ADAM9, as a 
disintegrin and a metalloprotease 9, it has cleaved insulin B chain,and insulin-like receptor protein 5 (IGBP5) 
which can regulate lactate39,40. However, the link between other two genes (PHLDA2 and NT5DC2) and lactate 
metabolism remained unclear. Furthermore, additional research is required to investigate the specific impact of 
the four genes on the regulation of lactate.

In the early-stage HCC patients, surgical treatment, ablation, or liver transplantation are all effective treat-
ment modalities that can significantly improve the survival time of patients. For patients with advanced HCC, 
systemic treatment is the only option to improve survival41,42. Pharmaceutical therapies to treat HCC have 
made great progress in recent years, including targeted tyrosine kinase inhibitors, immune based therapies, and 
combination of chemotherapy43. Sorafenib has been approved by FDA as the first line treatment for HCC 44. Our 
results showed that the high-risk score group had a higher sensitivity to sorafenib. Cisplatin, a commonly used 
chemotherapy drug, showed similar result. Lactate is an evolutionarily conserved metabolite and may have an 
effect on drug therapy for HCC. The secretion of lactic acid by tumor cells is closely related to hypoxia-inducible 
factor-1α (HIF-1α)45 and mechanistic target of rapamycin (mTOR)46. As expected, patients with high-risk score 
were more sensitive to mTOR inhibitor (AZD8055) and less sensitive to HIF-1α agonist (DMOG). Therefore, 
the difference in sensitivity of different subgroups to different drugs may provide precise therapeutic options 
for clinical patient treatment.

Although lenvatinib, like sorafenib, has recently been added as a first-line treatment for advanced liver 
cancer47, regorafenib, cabozantinib, ramucirumab were also included in second-line therapy, the prognosis of 
HCC after therapy is still poor47,48. This is partly due to the heterogeneity of HCC, but also due to drug resist-
ance reasons. As immunotherapy becomes another major breakthrough treatment for advanced liver cancer, 
improving immune response and screening patients who respond well to the immune response is becoming 
more and more important. Studies have shown that lactate secretion and lactate shuttle in TME are involved in 
regulating immune response7,49,50. Elevated lactic acid promotes immune escape of tumor cells by increasing 
the accumulation of H+ in TME and maintaining a lower pH value. In CD8+ T cells, lactate reduced prolifera-
tion, cytolytic activity, and inflammatory mediator secretion51–53. Lactate can also suppress CD4+ cell motility, 
and promote T cell differentiation. Interestingly, Treg cells do not require lactic acid for survival, they use lactic 
acid to maintain suppressor function in TME, a high lactate condition54. Our result showed that LAMR cluster 
A had a low risk-score, a better prognosis, and lower infiltration of activated memory CD4+ and CD8+ T cells, 
revealing that they play a positive role in the development of HCC.

Immune checkpoint inhibitor therapy has been used in the treatment of many types of tumors. In fact, 
immunotherapeutic drugs for tumors, such as liver cancer, lung cancer, and melanoma, have shown beneficial 
results55–57. These immune checkpoint drugs typically exert their antitumor effects by inhibiting PD-1/PD-L1 
and CTLA4. The low-risk group showed lower levels of immune checkpoint expression, including PD-1 and 
CTLA4, and the low-risk group had lower immune cell content above-mentioned. This may be closely related to 
better outcomes in the low-risk group. The overexpression of PD-L1 induces the development of an immunosup-
pressive TME in breast cancer58. PD-L1 is usually overexpressed on tumor cells to evade immune surveillance, 
which partly explained why the high-risk group had worse outcomes. However, it has also been reported that 
high PD-L1 expression can make tumor cells more sensitive to PD-1/PD-L1 inhibitors59. Therefore, the high-risk 
group may be more sensitive to the blockade of CTLA-4 and PD-1/PD-L1.

There was no doubt that the study also had some limitations. Firstly, Majority analysis were performed based 
on retrospective data in public databases. Due to insufficient funding, we were unable to conduct basic experi-
mental and clinical verification for our LAMR risk-score using our own samples. Furthermore, the potential 
biological functions in HCC and the interaction between lactate and TME were only briefly studied, especially 
in terms of TME and immune cell infiltration, which need to be further investigated. Nevertheless, these current 
findings retain their research significance and warrant further investigation. For future work, our focus will be 
on the clinical implications of this risk score and validating the predictive ability of our model. Additionally, we 
will conduct relevant basic experiments to analyze how related genes regulate lactic acid metabolism in liver 
cancer, further enhancing our understanding of the role of lactate metabolism in HCC.
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Conclusions
In conclusion, we assessed the expression and prognostic significance of LAMRs, and divided TCGA samples 
into two clusters by consensus clustering based on LAMRs. Furthermore, we constructed risk scores based on dif-
ferential genes, which can predict the prognosis of HCC patients. At the same time, the high and low risk groups 
also showed significant differences in mutation, drug sensitivity, immune cell infiltration, immune checkpoint 
genes, immunotherapy, and other aspects. Classification of tumor patients and individualized treatment will 
help to improve the prognosis of tumor patients21.

Data availability
The datasets analyzed for this study can be found in the TCGA database (http://​www.​cancer.​gov/​tcga), including 
LIHC gene expression data (HTSeq-Counts and HTSeq-FPKM), GSE14520 (https://​www.​ncbi. nlm.nih.gov/geo) 
and IMvro210(http://​resea​rch-​pub.​Gene.​com/​imvig​or210​coreb​iolog​ies). The original data files and codes for all 
images and tables can be also downloaded from https://​www.​jiang​uoyun.​com/p/​DfFvn​AIQpZ​vAChj​1obsE​IAA
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