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Conditions under which 
faithful cultural transmission 
through teaching promotes 
cumulative cultural evolution
Seiya Nakata 1,2 & Masanori Takezawa 3,4,5*

It has been argued that teaching promotes the accurate transmission of cultural traits and eventually 
leads to cumulative cultural evolution (CCE). However, previous studies have questioned this 
argument. In this study, we modified the action sequences model into a network exploring model 
with reinforcement learning to examine the conditions under which teaching promotes CCE. Our 
model incorporates a time trade-off between innovation and teaching. Simulations revealed that the 
positive influence of teaching on CCE depends on task difficulty. When the task was too difficult and 
advanced, such that it could not be accomplished through individual learning within a limited time, 
spending more time on teaching—even at the expense of time for innovation—contributed to CCE. 
On the contrary, the easier the task, the more time was spent on innovation than on teaching, which 
contributed to the improvement of performance. These findings suggest that teaching becomes more 
valuable as cultures become more complex. Therefore, humanity must have co-evolved a complex 
cumulative culture and teaching that supports cultural fidelity.

Recent studies have revealed that culture is ubiquitous in the animal world. Non-human animals can socially 
learn various techniques by observing others (e.g.,  Chimpanzees1; common chaffinches (Fringilla coelebs)2; 
French grunt (Haemulon flavolineatum)3; killer whale (Orcinus orca)4; bottlenose dolphin (Tursiops sp.)5; Japa-
nese monkey (Macaca fuscata)6). However, human culture is distinct from animal cultures in its unique ability to 
evolve cumulatively. While chimpanzees transmit and maintain simple cultural traditions, humans continuously 
improve the culture transmitted from previous generations and accumulate the improvements over generations. 
As is summarized in the concept of “ratchet effect”7, human culture accumulates its complexity and utility over 
generations. Cumulative culture eventually attains a level that cannot be invented by a single individual within 
their  lifetime8.

Researchers have investigated two critical mechanisms that produce cumulative cultural evolution (CCE): 
innovation and faithful transmission. Innovation is necessary to increase the utility and complexity of transmit-
ted skills and knowledge. Some research suggests that non-human animals can also  innovate9. Innovations play 
a critical role in producing adaptive behavioral variants in a  population10. However, the faithful transmission of 
complex skills and knowledge seems rare among species other than humans. As culture becomes more complex, 
learning it socially becomes more difficult, causing the culture to potentially disappear. If a complex cultural 
variant is not faithfully transmitted to the succeeding generation, it becomes almost impossible to accumulate 
innovation onto the cultural variants transmitted from the previous generations, resulting in stagnation or 
even deterioration of  culture11. Some researchers have argued that CCE is rare because only humans possess 
mechanisms to accurately transmit advanced complex culture to the next generation 7,8,12,13. One of the candidate 
mechanisms that sustains faithful transmission of culture is  teaching14–16.

The importance of teaching for CCE has usually been discussed based on the results of experimental studies. 
However, given some discrepancies and limitations of empirical studies, a theoretical approach using compu-
tational models may be useful. Here, we developed computational models of teaching to demonstrate that a 
micro-level mechanism, that is, teaching promotes a macro-level phenomenon, that is, CCE.
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Does teaching contribute to cumulative cultural evolution?
Teaching behavior is quite common in human society, and humans developed institutionalized teaching in the 
form of a modern school system. In contrast, teaching is rarely observed among other  animals17. Unlike the 
limited application among other animals, teaching among humans is widely applied in various contexts and 
plays a critical role in transmitting complex skills and knowledge that constitute significant parts of human 
 culture18,19. Furthermore, human teaching is considered to have an ancient history. Archeological and anthro-
pological research has shown that humans possessing proficient tool-making skills have been teaching begin-
ners how to make tools since the age of stone tool-making in the hunter-gatherer  society20,21. In modern times, 
humans’ active teaching behavior appears universally from Western societies to hunter-gatherer  societies22. 
Archeological, anthropological, and historical data provide rich insights into human evolutionary history, but it 
is difficult to prove the causality between teaching and the emergence of CCE. Therefore, researchers have col-
lected indirect evidence through laboratory experiments. For example, Caldwell et al. demonstrated that direct 
active teaching is necessary for transmitting complex knot-tying skills while simple knot-tying skills can be 
transmitted through emulation (i.e., observation of the end-state) or imitation (i.e., observation of intermediate 
states)  alone16. Morgan et al. also showed that teaching with gestural or verbal communication is necessary for 
transmitting complex stone tool-making  skills23. They further showed that, with the help of teaching, levels of 
complexity of tool-making did not deteriorate during transmission across multiple generations.

These studies demonstrated that active and direct teaching helps retain the transmission of complex skills and 
technology. Other studies have investigated whether teaching promoted the gradual improvement of inherited 
technologies and CCE. For example, Caldwell and Millen conducted an experiment wherein the skill required for 
building paper airplanes that fly the farthest was transmitted in various ways, including emulation, imitation, and 
 teaching24. They did not observe any significant effect of teaching on CCE. Low task difficulty could be a possible 
reason for the insignificant result in their study. Building paper airplanes does not require complex technology, 
and such techniques could be easily identified with observation. To investigate the role of active teaching in 
CCE, Zwirner and Thornton asked participants to build a basket to carry as much rice as possible using 13 dif-
ferent materials, including strings, skewers, and drawing  pins25. This task is more complex than building paper 
airplanes as there are various ways to combine materials to build a basket. The researchers found that, compared 
to imitation and emulation, teaching increases the mass of rice carried by the basket over generations. This result 
suggests that teaching promotes CCE.

Computational model of teaching and cumulative cultural evolution
Mathematical models allow us to examine theoretical hypotheses more rigorously than laboratory experiments. It 
is difficult to bring the complex products of CCE, such as modern technology and scientific knowledge, into the 
laboratory. Formalized models can be used in a complementary way to test theoretical explanations by manipu-
lating important parameters, such as task difficulty. Several researchers have proposed mathematical models of 
teaching and  CCE26,27. These models postulate that as a skill gets more difficult, it becomes increasingly difficult 
for a child to acquire it. Thus, teaching is defined as a costly behavioral phenotype of adults that helps children 
acquire complex advanced skills from a previous generation. These theoretical models demonstrated that cumu-
lative knowledge and teaching co-evolve under certain situations. The models assumed a priori that teaching 
ensures the faithful transmission of complex knowledge and aimed to clarify theoretical relationships such as 
whether the biological cost of teaching is worth it. From a cognitive perspective, cultural transmission (whether 
teaching or observing) is not a process of directly copying information onto the brain. The cultural information 
inside an individual’s mind generates an observable behavior. Then, an observer acquires the information that 
produces similar  behaviors28. The mechanism through which teaching promotes accurate transmission depends 
on the task and learning process. In addition, there are various forms of teaching, such as politely displaying each 
step of the action or attracting the learner’s attention by using gestures and eye contact (cf. Csibra and  Gergely18). 
Transmission fidelity is not an intrinsic property of the social learning  mechanism29. Consequently, it is necessary 
to build a new computational model that expresses the process of learning and teaching of technology. Such a 
model would allow us to elaborate on the various arguments from laboratory experiments, such as the relation-
ship between faithful transmission and  CCE30.

The process of skill acquisition is formulated using reinforcement learning models that are used in a wide 
range of fields, including machine learning, computational neuroscience, and cognitive science. Some researchers 
took a similar approach and formulated computational models of social learning based on reinforcement learn-
ing in the Markov decision  processes31,32. Our study formulated computational processes of teaching based on 
reinforcement learning and investigated how teaching promotes the cumulative evolution of complex technology. 
We defined skill acquisition as learning effective behavior sequences and modeled the process as an exploration 
problem in a huge network. Through this new computational model, we demonstrate that the accumulation of 
micro-processes of learning and teaching creates a macro phenomenon, that is, CCE of advanced technology. We 
also use this computational model to examine two issues that have not been fully explored in empirical studies: 
task difficulty and a time trade-off between innovation and teaching.

Models
Modeling the learning of complex techniques as a multi-goal network
The process of learning complex techniques, such as hunting and producing tools, involves arranging vari-
ous action steps in order. Researchers have modeled the learning process as reinforcement learning of action 
 sequences31–33. We modified the action sequence model into a complex multi-goal network to express the acquisi-
tion of more complex technologies. In the network, nodes represent states, and edges between nodes represent 
possible actions. When agents choose an action, they transition to an adjacent state. Edges are bi-directional, and 
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the agent can move around the network until they reach a goal node. If agents reach a goal, they receive a reward. 
The reward is represented by the square of the shortest distance from the start node, because the larger reward 
gaps between goals make the learning fast and reduce the computation time. In the Supplementary Information, 
we confirmed the difficulty of earning large rewards with the multi-goal network.

We adopted a reinforcement learning model of action sequences used in Enquist et al.33. Their model is 
based on a computationally simple theory of conditioned reinforcement and is biologically valid as a learning 
model for action sequences. In the first round, the agents move randomly between the states because they have 
no information about the network. They receive rewards once the agents reach a goal state, and the immediately 
preceding action and state are reinforced (see Supplementary Information for more details).

The model of teaching
We modeled teaching as following the action sequence step by step. A teacher gets a student (a next genera-
tion agent) to trace the path they took in the final round (i.e., a quasi-optimal path) for T rounds. If the teacher 
took the path state1 → state2 → state3 (goal) in the final round, the student is taught to follow the same path 
state1 → state2 → state3 (goal) for T rounds. In the first teaching, the student updates the value of a state just 
before the goal (state2) and an action to reach the goal (state2 → state3); in the second teaching, the value of the 
same state and action is further updated, plus another previous state (state1) and action (state1 → state2). By 
repeating this process, the student becomes more likely to follow the same path as the teacher when exploring 
in individual learning. It should be noted that teaching is not a perfect copy. For instance, 10,000 students were 
taught the shortest path to a goal of distance 5 in the network shown in Fig. S1; after being taught the path for one 
round (i.e., T = 1 ), only 5.75% arrived at the goal in the following round. Due to the nature of the reinforcement 
learning algorithm, students learn more accurately when teaching involves more rounds (T). However, since 
the agent’s choice of action is probabilistic, a completely accurate copy cannot be guaranteed even if students 
are taught for a longer time. Although our teaching model may not apply to all real-life teaching scenarios. we 
assume a form of careful teaching intending to faithfully transmit complex techniques.

The path teachers took in the final round is selected probabilistically with the SoftMax rule. In the Supple-
mentary Information, we examined greedy teachers who produce the path to be taught in the next generation 
by always selecting actions having larger Q values (which is analogous to applying the SoftMax rule with the 
positive infinite inverse temperature). Interestingly, CCE was less likely to occur under the greedy teacher model 
compared to the probabilistic teacher model. In the Results section, we report only the results of the probabilistic 
teacher model and, in the Discussion section, consider why the current model outperforms the greedy teacher 
model.

Previous studies have formulated mathematical models of social learning that involve direct learning of very 
short action sequences observed by naive learners (e.g., Lind et al.32). Our model is distinct from such models 
of other social learning. Looking at our model as observational social learning, once agents have observed the 
process, they must memorize and reinforce all paths (actions) to the goal. However, if the number of steps to 
the goal is very large, it becomes impossible to learn the action sequence by observation alone. In actual simula-
tions (described later), the paths taken by the agent involved several hundred steps in some cases. Thus, careful 
step-by-step teaching is necessary rather than observation and memorization to follow such long paths without 
error. Furthermore, from the point of view of teacher behavior change, our model is considered as teaching, not 
other social  learning34. In the teaching phase, teacher agents stop learning and repeatedly show the same action 
sequence (quasi-optimal solution learned by the teacher) to the student. Thus, teachers change their behavior 
to promote student learning.

Our model can be clearly linked to the basic framework of cumulative cultural  evolution35. Individual learn-
ing exploration leads to a change in behavior. Teaching transfers behavior to other individuals. With learned 
behavior, agents acquire higher rewards, which is a proxy for genetic and/or cultural fitness. These processes are 
then repeated across generations.

Trade-off between teaching (faithful transmission) and individual learning (innovation)
Complex cumulative cultures often comprise considerable amounts of information, and the faithful transmission 
of complex cultures requires longer periods of  teaching36. However, individuals have limited time available. If 
learners spend too much time being taught for cultural fidelity, they are likely to lose the opportunity to innovate 
through individual learning. In other words, there is a time trade-off relationship between innovation through 
individual learning and faithful transmission through teaching, both of which are essential for CCE. Ignoring 
this trade-off would lead to an overestimation of the impact of teaching on CCE.

Therefore, we introduced a time trade-off between innovation (individual learning) and faithful transmission 
(teaching). Figure 1 represents a conceptual diagram of this trade-off. Parameter R is the number of rounds that 
agents can spend on learning per generation. Agents of the second generation spend the first T rounds in the 
teaching phase and the remaining R-T rounds in the individual learning phase. If the teaching phase is longer, 
the agent can learn a path from the teacher (the agent of the first generation) more faithfully. However, when 
R-T becomes shorter, the agent of the second generation loses opportunities to explore other goals with higher 
rewards.

Results
Difficulty of the task: the simulation of individual learning using the multi-goal network
We use a network comprising three clusters (Fig. 2a). We constructed three random undirected networks of 20 
nodes using the Erdős–Rényi model and connected them  linearly37. Inspired by the task design with a multi-
modal adaptive  landscape38,39, we designed this type of structure to make it more difficult for agents to reach 
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distant goals. To test the difficulty of the task, we ran simulations where agents explored the network for only 
one round (i.e., random exploration). Consequently, 96% of the agents reached goal 1 or 2, and none of them 
reached goals 5 and 6 (see Supplementary Information for more details).

Even when the reinforcement learning algorithm allowed the agent to learn beneficial behaviors with higher 
rewards, it took a significant number of rounds to reach the distant goal. Figure 2b shows the frequency of 
agents reaching each goal when 1,000 agents explored the network for 40,000 rounds with individual learning. 
As mentioned earlier, most agents could only reach goals 1 or 2 in the first round. Repeating the exploration 
process many times through reinforcement learning increases the proportion of agents who can reach farther 
goals. After more than 400 rounds of exploration, about 70% of the agents reached goal 2 (Fig. 3c). With further 
exploration, the number of agents reaching goal 4 gradually increased, and almost all agents reached goal 4 in the 
5000th round (Fig. 3d). Even after increasing the number of rounds, few agents reached goals 5 or 6 (Fig. 3e,f). 
Thus, it was very difficult to obtain high rewards in our multi-goal network.

In the Supplementary Information, we replicated all the simulations with a single-cluster network, which 
facilitates agents to more easily reach distant goals than the three-cluster network. We confirmed that the qualita-
tive results reported in the next section remain unchanged.

The effect of teaching on cumulative cultural evolution
Cumulative culture is often described as a complex and sophisticated culture that a single individual cannot 
invent. This has two possible interpretations. First, an individual cannot invent it because it is theoretically 
impossible. Second, an individual can invent it theoretically; however, it is practically impossible because of 
time limitations. Many CCE studies have adopted the second interpretation as the definition of the  CCE40–43. 
We employed the latter definition. We compared the mean performance achieved in each generation with the 
mean performance of agents who explore alone within the fixed time. If the former exceeds the latter, we call it 
CCE. We also examined CCE based on the first interpretation by comparing it with the performance of immortal 
agents who could explore the task for a very long time.

Figure 1.  A conceptual diagram of the time trade-off between individual learning and teaching. First 
generation agents learn individually for all rounds. After the second generation, for the first T rounds, agents are 
taught to follow the path taken by agents of the previous generation in the final round. (a) The case where R = 10, 
T = 1. When agents spend only 1 round in the teaching phase, they have more opportunities to innovate instead 
of inaccurately transmitting. (b) The case where R = 10, T = 9. When agents spend 9 rounds in the teaching 
phase, they are more likely to reproduce the same action sequences of the previous generation, instead of having 
fewer opportunities to innovate.

Figure 2.  (a) An undirected multi-goal network containing three random sub-networks connected in series. 
The six nodes at the shortest distance from the start node, from 1 to 6, were set as goals. The reward for reaching 
each goal was set to be the square of the shortest distance. (b) Frequency of the agents who reached each goal 
among 40,000 rounds of individual learning ( α = 0.9,β = 0.5 ). Goal 0 indicates the frequency of agents who 
failed to reach the goal within the upper limit of 1000 steps.
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Following the above discussion, task difficulty was operationalized by manipulating the amount of time an 
individual can engage. The difficulty of a task may be considered as an intrinsic property of the  task44. Therefore, 
one possible way to manipulate task difficulty is to fix the time and vary the network’s size and density. However, 
task difficulty is also affected by the amount of time an individual can spend on it. Indeed, in many experiments, 
participants improved their performance in proportion to the time they spent (e.g., virtual arrowhead  design38; 
basket production from a predetermined list of  materials25; paper and pipe-cleaner tools  manufacture44). Our 
method of manipulating task difficulty according to the time (parameter R) is advantageous over the manipula-
tion of task structure. Changing the network’s size or density qualitatively alters task properties and may hinder 
the examination of the continuous nature of task difficulty, which is described in Figs. 2b and 3.

Further, we examined the extent to which accurate transmission facilitates CCE. In our model, there is a time 
trade-off between teaching for accurate transmission and individual learning for innovation. We ran several 
simulations with varied ratios of teaching to individual learning to investigate whether spending more time on 
teaching would promote CCE, even if the opportunity for innovation is lost.

In this section, we show only the results of simulations with R = 10 (we will change the value of R in the next 
section.). This is the minimum value of the parameter R in this study. In other words, it is the most difficult set-
ting for agents to achieve high performance within their limited time. We varied the length of the teaching phase 
from 10 to 90% in 10% increments over 10 rounds (i.e., one to nine rounds). We ran 1000 simulations with 7000 
generations for each length of the teaching phase. Figure 4a depicts the mean reward for each length of teach-
ing phase over generations. The minimum reward is 1 (goal 1). The maximum reward is 36 (goal 6). Each data 
point represents a mean reward of 1000 agents in the final round of each generation. The dashed lines represent 

Figure 3.  Frequency of agents reaching each goal in a particular round of individual learning 
( α = 0.9,β = 0.5 ). Goal 0 indicates the frequency of agents who failed to reach the goal within the upper limit 
of 1000 steps.
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the mean reward (= 3.43) of 1000 agents who performed 10 rounds of individual learning as the reference line. 
Mean reward above the reference line indicates CCE.

The mean reward is far from the reference line as the generation increases, except in the case where the length 
of the teaching phase is 10–30% (Fig. 4a). In other words, teaching among generations causes CCE except when 
the length of the teaching phase is 10–30%, wherein the mean reward is almost the same as the reference line 
even as the generation progresses; that is, agents are stuck in the first cluster with goals 1 or 2, and the level of 
technology remains stagnant.

We found that long-term teaching promotes the speed of CCE. Figure 4b represents the mean reward by the 
length of teaching phase in the 7000th generation. We observed a correlation between the length of the teaching 
phase and the mean reward (Fig. 4b).

The effect of task difficulty (the length of time spent by agents)
In the model, a longer period of teaching facilitates more accurate transmission. Given the findings of previ-
ous studies, long-term teaching contributes to CCE, especially when the technology is complex and difficult to 
acquire within the time individuals can engage. As discussed above, task difficulty is determined by the length of 
time the agent can spend on it. If an agent has sufficient time, they would be able to achieve a high performance 
without any teaching. Thus, by increasing the value of parameter R, task difficulty for the agent decreases and 
vice versa. To clarify the impact of task difficulty, we ran simulations with varied values of R, that is, 100, 400, 
and 5,000. Total lengths of generations varied for each simulation due to the hardware limitations of running 
simulations; however, we ran simulations until the effects of teaching became clear. The length of the teaching 
phase was set as 10–90% in 10% increments with respect to R. That is, if R = 100, the length of the teaching phase 
is 10, 20, 30, … 80, 90.

First, as well as the simulation with R = 10 (Fig. 5a,b), CCE occurs except for a few conditions. However, 
task difficulty (the value of R) determines the effect of teaching length on CCE. In the simulation with R = 100, 
the condition where the task is easier for the agent than at R = 10, we find the positive relationship between the 
length of teaching performance again (Fig. 5d). In the simulation with R = 400, wherein the task is even easier, 
the positive correlation between length of teaching and mean reward disappears (Fig. 5f). In the simulation with 
R = 5,000, the relationship between length of teaching and performance is reversed, showing a negative correlation 
(Fig. 5h). When R is 5000 and the length of teaching phases is above 70%, the performance of taught agents was 
below the performance of an individual who explored solely through individual learning within the duration of 
the same time (dashed line). In other words, long-term teaching deprives agents of the opportunity to explore and 
reduces their performance in situations where agents can easily achieve high performance in their limited time.

Comparison with the performance of no loss of information
A certain amount of information will be lost when technologies and knowledge are transmitted from individual 
to individual. The loss of information becomes more noticeable as the culture to be transmitted becomes more 
complex; this deteriorates transmission fidelity. The role of teaching may be to reduce information loss and pre-
serve the complex culture in the course of cultural transmission. To examine such effects of teaching, we meas-
ured the performance of immortal individuals who continued individual learning alone for several thousands 
of generations, wherein learned information was never lost. The solid black lines in Fig. 5a,c,e,g represent the 
mean reward of 1,000 immortal agents who performed individual learning for the rounds corresponding with 
the number of previous simulations with the cultural transmission. Comparisons with immortal agents also show 
whether the first type of CCE mentioned above has occurred in the current simulations. The results show that 
immortal agents without information loss improved their performance much faster than agents who received 
teaching. However, when the task was relatively difficult (R = 10 and 100, Fig. 5a,c), mortal agents could catch up 
to and exceed the performance of immortal agents over generations if the teaching durations were long enough.

Figure 4.  Mean reward for each length of teaching phase (R = 10, α = 0.9,β = 0.5 ). (a) Colored lines represent 
the mean reward (n = 1000) at the final round of each generation in each length of teaching phase. (b) Bars 
represent mean reward of 1000 agents in the 7000th generation for each teaching phase. The error bars represent 
standard deviation of reward. The dashed lines in both figures show the mean reward acquired through 
individual learning alone for 10 rounds as the reference line.
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Discussion
It has been argued that faithful transmission through teaching is the key to CCE, but previous studies have 
reported inconsistent conclusions. Using computer simulation, we examined the conditions under which faithful 
transmission through teaching promotes CCE. We built a computational model that incorporates the following 
two elements: goals with higher rewards are more difficult to reach and a time trade-off between innovation 
through individual learning and faithful transmission through teaching. In addition, since previous studies have 

Figure 5.  Comparison of the performance of immortal agents with that of agents with teaching 
( α = 0.9,β = 0.5 ). Left column: The solid black lines represent the mean reward of 1,000 agents who have 
performed only individual learning corresponding with the cumulative number of rounds of the simulation with 
teaching. The line is plotted per each R rounds; 10 rounds for R = 10, 100 rounds for R = 100, and so on. Colored 
lines show the mean reward in the final round of each generation for each length of teaching phase. Right 
column: Colored bars show the mean reward in the last generation for the length of teaching phase, and the 
black bar shows the mean reward of immortal agents in the final round. Error bars show the standard deviation. 
The dashed lines in all figures show mean reward acquired through individual learning alone for R rounds.
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suggested that task difficulty is a critical factor, we controlled the relative task difficulty by varying the number 
of rounds per generation.

To summarize the results of our research, the effect of faithful transmission through long-term teaching on 
CCE depends on the number of rounds per generation (R). When R is low, long-term teaching promotes CCE 
even though agents lose opportunities for innovation (i.e., individual learning). In contrast, when R is high, long-
term teaching is less effective. Instead, spending more time on individual learning for innovation contributes to 
CCE. Our findings suggest that the value of teaching that promotes faithful cultural transmission is high in an 
environment where complex technologies exist. It may also indicate the effectiveness of long-term teaching in an 
environment where there are so many types of skills to learn. In our model, the agent had only one task to learn, 
but individuals who learn more diverse skills are likely to have an advantage. Even if the total time spent learning 
each skill is reduced, they would likely be able to acquire more skills efficiently by prioritizing expert instruction. 
In the Supplementary Information, we have confirmed that a series of simulation results can be reproduced with 
different parameters of reinforcement learning and a different network structure of task.

We also examined situations where there was no trade-off between accurate transmission and innovation. 
When agents had infinite time and no information loss, their performance improved rapidly. However, immortal 
agents did not always outperform those that transmitted incomplete information through teaching, especially 
when the task was difficult. In other words, teaching caused a more strictly defined CCE. Our results emphasize 
that the task difficulty is important for understanding CCE, and examining the effect of task properties would be 
an important theoretical contribution to CCE of technology in general. For example, large average path lengths 
and average degrees would make the exploration more difficult. Investigating how their interaction would change 
the form of transmission required for CCE is a promising direction.

Focusing on task difficulty helps us understand the results of existing experimental studies. When the tasks of 
previous studies are not complex, the conclusion is likely to be drawn that teaching and high-fidelity transmission 
are not necessary for  CCE24,45,46. On the other hand, experimental studies showing the usefulness of teaching 
used more complex  tasks25,47. Relationships between teaching and complex technologies may be bi-directional: 
while our study showed that high-fidelity teaching promotes the CCE of complex technologies, Lucas et al.44 
and Montrey and  Shultz47 suggested that complex technologies drive the evolution of high-fidelity teaching.

We considered task difficulty in terms of how much reward could be achieved in a limited amount of time and 
attempted to control for relative difficulty by the number of rounds. On the other hand, other studies using the 
NK model have controlled for task difficulty more directly and have successfully examined the relationship with 
 performance48,49. Our model may also be able to control task difficulty independent of the number of rounds. 
For example, the effect of network size and density on the goals that agents can achieve should be systematically 
investigated in large-scale studies, either by simulation or by laboratory experiments with human participants. 
It would also be possible to investigate whether a more difficult network would produce similar results to those 
obtained with a shorter number of rounds.

In the Supplementary Information, we examined greedy teachers who teach paths that fully exploit their 
experience by consistently selecting a path with the highest Q values. CCE was rarely observed under the greedy 
teacher model, however. Contrasts between the two models may indicate the importance of probabilistic fluctua-
tions caused by the teacher’s exploration. The paths taught to students by a probabilistic teacher contained many 
redundant paths, rather than the shortest path to the goal. Such redundancy may promote students’ exploration 
in individual phases. It has been argued that more explicit and direct teaching (high fidelity transmission), which 
strongly constrains children’s behavior, may inhibit exploration and  innovation15. Teaching with redundancy 
may help escape from such constraints caused by faithful teaching.

We analyzed the effect of the length of the teaching phase on CCE and found positive or negative correlations 
in some conditions. However, varying the length of the teaching phase in one-round increments may produce 
inverted U-shaped relationships. For example, in a simulation with R = 100, the mean reward was maximum at 
the 90% teaching phase but will decrease if the teaching phase is extended to 99 rounds. Similarly, in the simula-
tion with R = 5,000, the mean reward was maximum at a 10% teaching phase but will decrease if the teaching 
phase is only one round.

While most studies of cultural evolution use black-box models of the processes of learning and transmission 
of culture, we constructed a model that assumes a cognitive agent. Miton and DeDeo similarly constructed a 
model based on statistical physics that takes into account the cognitive processes of learning and  teaching50. 
Both studies suggest the importance of both individual and social learning in cultural transmission. On the 
other hand, their model showed that teaching only a few key features can achieve accurate transmission. In our 
model, if the teacher can selectively teach important information, the student can achieve the same goal as the 
teacher with a shorter teaching phase. For example, if the teacher teaches the shortest path to the goal instead 
of the redundant path, accurate transmission is easier to achieve in a short teaching phase. In addition, Miton 
and DeDeo analyzed accuracy using Hamming distance. Our model could also analyze the relationship between 
teaching and fidelity by measuring the distance between the action sequence transmitted by a teacher and the 
action sequence finally learned by the agent. Cognitive models such as ours and Miton’s may open the way to 
directly study the relationship between transmission fidelity and cumulative cultural evolution.

Researchers have shown that a type of cumulative cultural variation is observed among non-human animals. 
A cumulative cultural optimization in a fixed solution, which cannot expand the problem  space28, has been 
observed among non-human  animals45,51. Mesoudi and  Thornton35 and  Derex52 argued that the uniqueness of 
CCE among humans is open-endedness. Our model represents the discovery of new cultural traits, but it is still 
a kind of cumulative cultural optimization because the number of goals in our task was finite. Open-ended CCE 
is worthy of  investigation53, and it is an important avenue for further testing the impact of teaching on open-
ended CCE. To study open-ended CCE, it may be necessary to consider not only a one-to-one model of cultural 
transmission, as in this study, but also a larger group model of cultural transmission. Some studies have found 
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that a large population size is necessary for  CCE11,54,55. Given the large population size, information is transmitted 
not only from parents (vertical transmission) but also from other unrelated adults (oblique transmission) and 
people in the same age group (horizontal transmission). In addition, complex interactions such as population size, 
structure, and transmission mechanisms have been shown to influence  CCE56–58. These allow the population to 
innovate and combine various traits, thus future research should incorporate these interactions into the model.

Data availability
All simulation codes are available at https:// github. com/ Seiya NAKATA/ ABM_ Teach ingAn dCCE. git.
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