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Application of multivariate 
chemometrics tools 
for spectrophotometric 
determination of naphazoline HCl, 
pheniramine maleate and three 
official impurities in their eye drops
Khadiga M. Kelani 1,2, Maha A. Hegazy 1, Amal M. Hassan 2 & Mahmoud A. Tantawy 1,3*

This work is concerned with exploiting the power of chemometrics in the assay and purity 
determination of naphazoline HCl (NZ) and pheniramine maleate (PN) in their combined eye 
drops. Partial least squares (PLS) and artificial neural network (ANN) were the chosen models for 
that purpose where three selected official impurities, namely; NZ impurity B and PN impurities 
A and B, were successfully determined. The quantitative determinations of studied components 
were assessed by percentage recoveries, standard errors of prediction as well as root mean square 
errors of prediction. The developed models were constructed in the ranges of 5.0–13.0 μg  mL−1 for 
NZ, 10.0–60.0 μg  mL−1 for PN, 1.0–5.0 μg  mL−1 for NZ impurity B and 2.0–14.0 μg  mL−1 for two PN 
impurities. The proposed models could determine NZ and PN with respective detection limits of 0.447 
and 1.750 μg  mL−1 for PLS, and 0.494 and 2.093 μg  mL−1 for ANN. The two established models were 
compared favorably with official methods where no significant difference observed.

Determining drug purity for ensuring its safety and quality is considered essential step in drug analysis. As a 
result, impurities detection and quantification take a great attention in pharmaceutical  industries1. The demand 
to establish analytical methods which have the ability to determine and quantify the drug along with its impuri-
ties was consequently  evoked2. On the other hand, as the number of the analyzed drugs and their impurities 
increased, the difficulty of their analysis using conventional methods was also amplified, taken in our considera-
tion the simplicity and the availability of the spectrophotometric methods than the chromatographic  ones3–8. In 
such case, multivariate data inspection is better in finding an answer to that complicated  matrices9, 10. Therefore, 
chemometrics is commonly used to analyze such complex data obtained from spectrophotometric measure-
ments to acquire valuable information. It is a useful tool when determining numerous drugs in their combined 
pharmaceutical formulations is  required11, 12.

Naphazoline HCl (NZ), also known as 2-(naphthalen-1-ylmethyl)-4, 5-dihydro-1H-imidazole; HCl, is a drug 
that acts through decreasing pulmonary congestion. It reacts with α-adrenergic receptors located in the con-
junctiva, producing a sympathomimetic effect leading to decrease swelling and edema of the  eyes13. Reviewing 
its pharmacopeial  monographs14, 15, shows that its quantification is achieved using two liquid chromatographic 
methods. Four reported impurities, namely; A, B, C and D, are also stated in its British pharmacopoeia (BP) 
monograph. Carefully reviewed spectrophotometric techniques reveal that NZ has been quantified in the exist-
ence of other  substances16–21.

Pheniramine maleate (PN) is an alkylamine antihistaminic drug having anti-cholinergic properties through 
binding to H1 histaminic receptors. It is a first-generation drug which inhibits phospholipase-A2 and cyclic-
GMP  levels22. Its assay in the United States pharmacopoeia (USP) and BP is through high performance liquid 

OPEN

1Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 
Cairo 11562, Egypt.  2Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology 
and  Information,  El-Hadaba El-Wosta, Mokatam,  5th District, Cairo,  Egypt.  3Chemistry Department, Faculty of 
Pharmacy, October 6 University, 6 October City, Giza, Egypt. *email: mahmoud.eltantawy@pharma.cu.edu.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46940-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19678  | https://doi.org/10.1038/s41598-023-46940-0

www.nature.com/scientificreports/

chromatographic (HPLC) technique. In addition, two impurities, A and B, are reported in its BP  monograph14, 15. 
A spectrophotometric method based on complexation with ferric ion has been published for its simultaneous 
determination with colorpheniramine  maleate23.

For the treatment of inflammatory eye disorders and allergic conjunctivitis, the approach of using NZ and 
PN together in combined eye drops is found to be more useful than using each drug  alone24. Literature review 
reveals that NZ and PN have been quantified together using  HPLC25–28, capillary  electrophoresis29 and thin 
layer  chromatography30. Two of these chromatographic methods have been published by our research group 
where their determination along with three reported official impurities, NZ impurity B, PN impurity A and PN 
impurity B, was  achieved28, 30. In spite of the applicability of the chromatographic technique in analyzing such 
complex mixtures, it is still considered challenging. This is attributed to the requirements for the successive 
sample pretreatment steps as well as the selection of suitable mobile phase and stationary phase to attain the best 
separation and system suitability parameters. Besides all of this, the time needed for optimization, the expensive 
tools required, and the hazardous organic reagents utilized are considered potential obstacles to that  technique31. 
On the other hand, spectrophotometric techniques can overcome these previously mentioned drawbacks as it is 
fast, cheap, simple and time  saving32. To this end, our aim is to simultaneously analyze NZ, PN, and three official 
impurities, namely; NZ impurity B, PN impurity A and PN impurity B, using simple chemometrics-assisted 
spectrophotometric methods. Calibration mixtures are prepared based on five-level five-factor design. Partial 
least squares (PLS) and Artificial neural network (ANN) regressions are the chosen models for the determination 
of the five cited compounds (Fig. 1) in marketed dosage form and laboratory prepared mixtures.

Results and discussion
Among different analytical techniques used for drugs determination in their pharmaceutical formulations, spec-
trophotometry is the widely applicable one. This is attributed to simplicity and rapidity of spectro-analytical 
methods which has no need for neither sophisticated apparatus nor chemical pretreatment as other chroma-
tographic  methods9. Due to presence of sever overlapping between the spectra of the five studied components, 
Fig. 2. Multivariate spectrophotometric are the technique of choice to resolve this overlap. It was found that 
readings below 250.0 nm showed high noise which may affect the obtained result, otherwise readings above 300.0 
nm gave almost zero absorption leading to invaluable information, thus the range between 250.0 and 300.0 nm 
was the range of choice in calculation. Brereton five-level calibration design was followed in order to prepare 
different mixtures of the five cited  drugs33. 25 mixtures were prepared and divided into two groups. 15 mixtures 
for the calibration group whereas the remaining 10 mixtures were utilized for the validation one.

Figure 1.  Chemical structures of the five cited components.
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Partial least squares model
During construction of PLS model, mean centering of all spectral data was adopted. After applying the leave-
one-out as a cross-validation tool, latent variables’ number was  obtained6, 34. The plot relating this number to root 
mean square error of calibration (RMSEC) revealed that six was the optimum number to be utilized, Fig. 3. It is 
worth noting that numerous models for calibration were tried and built whereas obtaining least noise as well as 
satisfactory recovery results were the parameters for selecting the optimum  one35.

Artificial neural network model
Three transferable layers (input, hidden and output) are usually incorporated in ANN  model8, 12 In our model, 
the 251 points of spectral data were used as input  neurons11, 35. On the other hand, 5 neurons related to number 
of drugs determined by such model comprised the output layer. For the hidden layer, various numbers were 

Figure 2.  Normalized spectra of NZ (----), PN ( _.._ ), NZ impurity B ( _._ ), PN impurity A (——) and PN 
impurity B (……) using methanol as solvent.

Figure 3.  Root mean square error of calibration (RMSEC) versus the number of latent variables used to 
construct the PLS calibration for the assay of NZ, PN, NZ impurity B, PN impurity A and B in their mixtures.
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tried whereas RMSEC was calculated in each time. It was found that the lowest error (< 0.1 for the five drugs) 
was gained upon using 4 neurons in this layer with no further enhancement upon increasing their number. It is 
worth noting that pure-line transfer function, 0.1-learning rate as well as 50-epochs were also utilized.

The prediction’s capability of the two proposed models was verified by the aid of the validation group mixtures. 
For each drug, average recovery percentages as well as relative standard deviations were tabulated, Table 1. It is 
worth noting that the concentration ranges of the two drugs were chosen to facilitate their direct determination 
in the challenging eye drops ratio. Linearity parameters, limits of detection and quantification were obtained, 
Table 2. As shown, our proposed models could detect NZ and PN impurities at limits of about ≈1% and ≈2%, 
respectively, of their parent drugs’ highest calibration concentration. Moreover and in order to test the presence 
of possible over-fitting, root mean square error of prediction (RMSEP) and standard error of prediction (SEP) 
were computed as well. As shown in Table 2, their close values assured over-fitting absence in our models.

Eye drops application
Successful determination of NZ and PN in naphcon-A drops was attained by the proposed multivariate chemo-
metrics models. As shown in Table 3, good recoveries were obtained and the models’ validity was further assured 
through recoveries of the added standards.

Statistical analysis
Student’s t-test as well as F- one were statistically applied to compare obtained results with that acquired by BP 
methods of NZ and PN analyses. Table 4 summarizes the outputs of this comparison along with average recover-
ies, standard deviations, variances, and number of observations utilized in those tests. It is worth noting that the 
lower t and F values obtained relative to theoretical ones assured the statistical absence of significant differences.

Comparison with reported chromatographic methods
Comparing our proposed models with the reported chromatographic methods for the determination of NZ, PN, 
and the three selected impurities was conducted. The solvents used, the linearity ranges as well as the obtained 
LOD values were the chosen items for this comparison, Table 5. The table proved the superiority of these pro-
posed PLS and ANN spectrophotometric models in terms of the simplicity of solvents required. Lower LOD 
values were also obtained compared to the reported HPLC method.

Conclusion
In this work NZ, PN along with three selected official impurities are determined in their mixtures and eye drops 
pharmaceutical dosage form using accurate and simple chemometrics assisted spectro-analytical models. The 
proposed models are considered time-saving and cost-effective comparing with the reported chromatographic 
methods. The two proposed models show the advantage of the low values for prediction error. PLS supposes 
that the error is scattered equally between the two matrices; concentration and spectral response. As a result, 
robust results were given by this model through removing the absorbance as well as concentration data noises 
simultaneously. On the other hand, the ANN model’s predicting ability was exploited for obtaining more precise 
results during studied drugs’ quantification.

Methods
Instrument
A dual-beam Shimadzu, UV 1601 spectrophotometer, Kyoto, Japan. Spectra Scanning was conducted at 
200.0–400.0 nm range with 0.2 nm intervals using 1.00-cm quartz cuvettes. The utilized  Matlab® software (7.0.1) 
was integrated with a PLS Toolbox 2.1.

Materials
Standards
The studied drugs were supplied by Eva-pharma Co. (Egypt). Purities were checked as per BP methods to be 
100.12% for NZ, and 99.58% for  PN15. The impurities were purchased from Alfa Aesar Co. (Germany). Poten-
cies were certified to be 99.00%, 100.30% and 99.70% for NZ impurity B, PN impurity A and PN impurity B, 
respectively.

Pharmaceutical dosage form
Naphcon-A drops, Alcon lab. INC. B. N. H13949-0615, containing 0.25 mg NZ and 3.0 mg PN in one mL.

Reagents
Methanol of analytical-grade was used (Alpha, Egypt).

Solutions
Five standard solutions, of 1.0 mg  mL−1 concentration, were prepared separately using methanol.

Procedures
Construction of the calibration models
Spectral features of the five studied substances were determined through their normalized spectra using methanol 
as a blank. Twenty-five mixtures containing different concentrations of the five cited compounds were prepared 
following a five-levels five-factors experimental design to reach concentration ranges of 5.0–13.0 μg  mL−1 for 
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Table 2.  Regression parameters of the validation sets calculated for each developed model.

Component Model Slope Intercept R
LOD
(µg  mL−1)

LOQ
(µg  mL−1) SEP RMSEP

NZ
PLS 1.0209  − 0.1881 0.9989 0.447 1.354 0.161549 0.144494

ANN 1.0046  − 0.0224 0.9987 0.494 1.497 0.160227 0.143312

PN
PLS 0.9901 0.1796 0.9996 1.750 5.303 0.602116 0.538549

ANN 1.0025 0.0281 0.9994 2.093 6.344 0.686162 0.613722

NZ impurity B
PLS 0.9739 0.0468 0.9994 0.138 0.419 0.056296 0.050353

ANN 0.9959 0.0074 0.9994 0.144 0.435 0.046329 0.041438

PN impurity A
PLS 1.0245  − 0.0763 0.9992 0.454 1.375 0.190702 0.170569

ANN 1.0010 0.0144 0.9994 0.384 1.163 0.12557 0.112314

PN impurity B
PLS 0.9925  − 0.0112 0.9994 0.389 1.180 0.14163 0.126678

ANN 1.0084  − 0.0925 0.9997 0.277 0.839 0.106399 0.095166

Table 3.  Determination of NZ, PN in their dosage form and application of standard addition technique using 
the proposed PLS and ANN models. a Average determinations of four eye drop dosage form.

Naphcon-A® eye drop
% Found
Meana ± SD

Standard addition technique

Taken Added Recovery%

PLS

NZ 99.6 ± 0.7 4.00 µg  mL−1

2.00 µg  mL−1 102.0

4.00 µg  mL−1 100.1

8.00 µg  mL−1 99.6

Mean ± SD 100.6 ± 1.3

PN 100.0 ± 0.8 10.0 µg  mL−1

5.00 µg  mL−1 100.3

10.0 µg  mL−1 100.4

20.0 µg  mL−1 101.1

Mean ± SD 100.6 ± 0.4

ANN

NZ 99.9 ± 1.8 4.00 µg  mL−1

2.00 µg  mL−1 100.3

4.00 µg  mL−1 99.9

8.00 µg  mL−1 99.0

Mean ± SD 99.7 ± 0.7

PN 98.9 ± 1.3 10.0 µg  mL−1

5.00 µg  mL−1 100.2

10.0 µg  mL−1 99.3

20.0 µg  mL−1 100.0

Mean ± SD 99.8 ± 0.5

Table 4.  Statistical comparison between the results obtained by the proposed PLS and ANN models and 
the official BP method of analysis of NZ, PN. a NZ was analyzed using stationary phase octylsilyl silica gel 
and mobile phase of sodium octane sulphonate in a mixture of 5.0 mL of glacial acetic acid, 300.0 mL of 
acetonitrile and 700.0 mL of water, flow rate 1.0 mL  min−1 and detection at 280.0 nm. PN was analyzed using 
stationary phase C18 with gradient mobile phase of sodium heptane sulphonate pH 2.5 and acetonitrile, flow 
rate 1.0 mL  min−1 and detection at 264.0 nm. b These values represent the corresponding tabulated values of t 
and F at p = 0.05.

Parameter

PLS ANN
Official BP 
 methoda

NZ PN NZ PN NZ PN

Mean 99.5 99.8 100.2 100.0 99.6 99.7

SD 1.82 1.84 2.12 1.83 0.98 1.15

Variance 3.31 3.39 4.49 3.35 0.96 1.32

n 10 10 10 10 5 5

Student’s t-test 0.11 (2.16)b 0.08 (2.16)b 0.56 (2.16)b 0.35 (2.16)b – –

F-test 3.48 (5.60)b 2.55 (5.60)b 4.72 (5.60)b 2.52 (5.60)b – –
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NZ, 10.0–60.0 μg  mL−1 for PN, 1.0–5.0 μg  mL−1 for NZ impurity B and 2.0–14.0 μg  mL−1 for two PN impuri-
ties. Scanning of the prepared solutions were then conducted at 200.0–400.0 nm range. The range from 250.0 to 
300.0 nm was used for further calculations. The data were analyzed using  Matlab®, where multivariate calibration 
models were built by using fifteen mixtures from the previously prepared solutions.

Validation of the calibrated models
The remaining ten mixtures from the previously prepared solutions were used for the validation purpose. PLS 
and ANN obtained parameters were used for quantification of the five cited compounds.

Application to naphcon‑A drops
A 1.0-mL solution was transferred from naphcon-A drops to a 50-mL flask, and 25.0 mL methanol was intro-
duced. Sonication was then applied for 10.0 min. A final concentration of 5.0 µg  mL−1 NZ and 60.0 µg  mL−1 PN 
was obtained after completing the volume with methanol. The prepared solutions were scanned and concentra-
tions were predicted by the developed models.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 12 July 2023; Accepted: 7 November 2023
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