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Calculation of exact Shapley values 
for explaining support vector 
machine models using the radial 
basis function kernel
Andrea Mastropietro 1, Christian Feldmann 2 & Jürgen Bajorath 2*

Machine learning (ML) algorithms are extensively used in pharmaceutical research. Most ML models 
have black-box character, thus preventing the interpretation of predictions. However, rationalizing 
model decisions is of critical importance if predictions should aid in experimental design. Accordingly, 
in interdisciplinary research, there is growing interest in explaining ML models. Methods devised 
for this purpose are a part of the explainable artificial intelligence (XAI) spectrum of approaches. In 
XAI, the Shapley value concept originating from cooperative game theory has become popular for 
identifying features determining predictions. The Shapley value concept has been adapted as a model-
agnostic approach for explaining predictions. Since the computational time required for Shapley 
value calculations scales exponentially with the number of features used, local approximations such 
as Shapley additive explanations (SHAP) are usually required in ML. The support vector machine 
(SVM) algorithm is one of the most popular ML methods in pharmaceutical research and beyond. SVM 
models are often explained using SHAP. However, there is only limited correlation between SHAP and 
exact Shapley values, as previously demonstrated for SVM calculations using the Tanimoto kernel, 
which limits SVM model explanation. Since the Tanimoto kernel is a special kernel function mostly 
applied for assessing chemical similarity, we have developed the Shapley value-expressed radial basis 
function (SVERAD), a computationally efficient approach for the calculation of exact Shapley values 
for SVM models based upon radial basis function kernels that are widely applied in different areas. 
SVERAD is shown to produce meaningful explanations of SVM predictions.

Machine learning (ML) is a key component of computer-aided drug  discovery1,2. Fast-growing volumes of chemi-
cal and biological discovery data provide a sound basis for the derivation of ML models for practical applications. 
The data deluge also causes a need for predictive modeling in support of experimental programs. In early-phase 
drug discovery, many ML applications focus on prediction of candidate compounds with desired biological 
 activity3–5. In interdisciplinary research, it is usually required to rationalize predictions for experimental design. 
However, with the exception of linear regression or simple decision tree models, most ML methods have a black-
box  character6, that is, model decisions cannot be understood by humans, which often limits the impact of ML on 
experimental programs. Consequently, there is increasing interest in approaches to rationalize ML predictions, 
which belong to the spectrum of explainable artificial intelligence (XAI)  methods7,8. For example, among other 
approaches, methods for model explanation often assess the contributions of input features and identify features 
that determine  predictions9–18. While interest in XAI is steadily increasing, the field is far from being mature and 
relevant approaches are often still in early exploratory stages, which also applies to the chemical sciences and 
drug  discovery12–15. Importantly, XAI approaches should not only help domain experts to rationalize predictions, 
but model explanations should also be accessible to non-expert investigators in interdisciplinary  settings14,15.

An exemplary generally applicable XAI method is local interpretable model-agnostic explanations (LIME)10, 
which determines feature importance for an ML model by performing a local permutation of the input data and 
deriving a linear approximation. Furthermore, the Shapley value  concept19 from collaborative game theory has 
been adapted for quantifying feature importance in ML. The Shapley value formalism was originally designed 
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to determine the contributions of individual players of a team to the performance in a game and divide the gain 
among players  accordingly19. Therefore, Shapley values are calculated to quantify the contribution of each player 
by considering all possible ordered player coalitions. In the XAI adaptation of the Shapley value concept, players 
correspond to features and the game is the prediction of a test instance. Given the need to enumerate and calculate 
the marginal contribution of a feature in each possible coalition, the computational requirements of Shapley 
value calculations scale exponentially with increasing feature numbers. Hence, Shapley value calculations become 
infeasible for ML models based upon large feature sets. Therefore, corresponding to  LIME10, an approximation 
of the Shapley value approach has been introduced, termed Shapley additive explanations (SHAP)20, represent-
ing another model-agnostic approach. For a given non-linear ML model, SHAP derives local linear models in 
the feature space vicinity of test instances to approximate Shapley values. To this end, Monte Carlo sampling 
strategies have also been  employed21 and the SHAP formalism has been extended to cover graph-structured data 
and graph neural  networks22,23. Compared to other feature importance methods adapted for the interpretation 
of quantitative structure–activity relationship (QSAR) models in cheminformatics, a hallmark of the Shapley 
value/SHAP approach is that it can quantify contributions of features that are present or absent in test instances 
to their prediction. This is a distinguishing characteristic of the Shapley value/SHAP methodology. Furthermore, 
algorithms enabling the calculation of exact Shapley values for large feature sets provide a principal advantage 
compared to local approximation methods. However, another methodology has recently been introduced to 
adjust the Shapley value formalism for individual data  sets24, providing an alternative approach compared to the 
calculation of exact Shapley values in ML.

In XAI, calculation of exact Shapley values has thus far only been accomplished for deriving local explanations 
of decision tree  models25 such as random forests (RFs)26 and for the support vector machine (SVM)  algorithm27 
in combination with the Tanimoto  kernel28,29, as recently  reported30. The decision tree- and SVM-based Shapley 
value approaches were termed TreeSHAP (or TreeExplainer)21 and Shapley value-expressed Tanimoto similarity 
(SVETA)30, respectively. Both RF and SVM are for long among the most popular ML methods in pharmaceutical 
research and other scientific fields, which often rival or exceed the performance of deep neural networks on sets 
of structured data with well-defined  features15,25, for example, in molecular property  predictions2,15. Accordingly, 
rationalizing SVM black-box predictions is also of considerable interest. Notably, there was only limited cor-
relation between exact Shapley values calculated for the SVM/Tanimoto kernel combination and corresponding 
SHAP values, indicating that the local approximation might not be suitable for reliable model explanation in 
this case. Given that the Tanimoto kernel is a special kernel function mostly applied to account for chemical 
 similarity29, we devised a methodology for calculating exact Shapley values for SVM models based upon the 
more generally applied radial basis function (RBF) kernels (including the popular Gaussian kernel). Herein, we 
report the development and proof-of-concept application of the Shapley value-expressed radial basis function 
(SVERAD) approach yielding exact Shapley values for the SVM/RBF combination in a computationally efficient 
manner (requiring quadratic computational time with respect to the number of input features). Comparison 
of SVERAD and SHAP values revealed limited correlation, hence reinforcing the need for calculation of exact 
Shapley values to explain SVM predictions. As a part of our study, the SVERAD code is made freely available.

Results
Scope of the analysis
We first develop the theory and mathematical foundations of SVERAD and then demonstrate the calculation of 
exact Shapley values using SVERAD based on a model system. In addition, compound activity predictions are 
carried out using SVM and RF models, and features determining the predictions were identified with SVERAD 
(SVM),  KernelSHAP20 (SVM, RF), the general applicable SHAP approximation, and  TreeSHAP25 (RF). These 
calculations enabled a direct comparison of SVERAD and SHAP and an additional comparison of corresponding 
SVM and RF predictions and their explanations. Furthermore, features prioritized for SVM and RF predictions 
were mapped onto the structures of correctly predicted test compounds to complement numerical analysis and 
compare chemically intuitive graphical explanations. Finally, XAI analysis is complemented by computational 
complexity analysis for SVERAD.

The Shapley value concept
Shapley values represent the weighted average marginal contribution of a feature to a prediction considering all 
the possible feature  coalitions19,20. Let F  be the complete set of features and S a coalition of features (subset of 
F\{f } ). The contribution φf  is computed by considering the difference in the value v of the coalition S with and 

without the assessed feature f  , weighted by the inverse multinomial coefficient 
(

|F |
1,|S|,|F |−|S|−1

)−1

 , which is 
calculated as the number of permutations of the coalition ( |S| ) multiplied by the number of features not contained 
in the coalition ( |F | − |S| − 1 ) and divided by the number of all possible feature permutations ( |F |! ). This must 
be repeated and summed for all possible subsets S of the F\{f } features, obtaining the following equation:

Radial basis function kernel
SVM relies on kernel functions for implicitly mapping data distributions into higher-dimensional feature space 
representations if linear separation of data with different class labels is not possible in a given feature space 

φf (v) =
∑

S⊆F\{f }

|S|!(|F | − |S| − 1)!
|F |!

(

v
(

S ∪ f
)

− v(S)
)
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(“kernel trick”)31. For this purpose, alternative kernel functions can be used, depending on the particular appli-
cations. Our methodology considers the widely used RBF kernel defined as

where d
(

x, x′
)

 is the Euclidean distance between vectors x and x′:

The parameter σ is a free parameter used to control the level of nonlinearity of the SVM model that will 
determine the decision boundary. An alternative definition of the RBF uses the parameter γ = 1

2σ 2 , obtaining 
the equivalent equation

Larger values of γ will lead to a more complex decision boundary, while smaller values will render it smoother.
Notably, the RBF function considered is the Gaussian RBF, as it is the most common function employed in 

kernelized methods and has become a standard in SVM  implementations27. RBFs are a family of functions with 
radial symmetry; the Gaussian one is expressed as

where r is the radial distance, which usually corresponds to the Euclidean distance (as in our case).
In pharmaceutical research, SVM models are mostly derived for molecular property predictions based on 

chemical structures and therefore employ structural features of compounds as input. Structural features are 
conventionally encoded in a binary vector format (often termed fingerprints)32, that is, a feature can be present 
or absent in test instance, corresponding to bit settings of 1 or 0, respectively. In the cheminformatics domain, 
SVMs are currently essentially exclusively employed with binary fingerprint descriptors. Moreover, binary input 
vectors are also common for other SVM modeling tasks. Therefore, we consider binary encoding of features as a 
basis for Shapley value calculations (for integer-based representations, adjustments are required). Furthermore, 
we define I the number of intersecting (common) features between the two feature vectors and D the number of 
features in the symmetric difference (present in either one vector or the other). Ni and Nd will be the number of 
intersecting and symmetric difference features in a given coalition, respectively. As we show below, the computa-
tion of Shapley values using SVERAD only relies on the number of intersecting and symmetric difference features.

Shapely values for the radial basis function kernel
In order to express feature contributions as Shapley values via the SVERAD formalism, we first need to assess 
the contribution of features to the Euclidean distance. We notice that features with the same value (intersecting 
or absent features) do not increase the distance, in fact 

(

xi − x′i
)

= 0 if xi = x′i . Of course, this is true also for 
non-binary features. Then, features with different values (features with symmetric difference) increase d

(

x, x′
)2 

by �d = (0− 1)2 = (1− 0)2 = 1 . This leads to having d
(

x, x′
)

=
√
Nd  and d

(

x, x′
)2 = Nd , indicating that only 

features with symmetric difference determine the distance (and kernel) value:

This allows for a fast calculation of the kernel value.
Now, we consider a coalition of features S whose value v(S) is the RBF kernel value. If S contains intersecting 

features only ( Nd = 0) we have v(S) = e
− Nd

2σ2 = e0 = 1 . This is true for any value of I (size of the intersection). 
Differently, for a coalition with features with symmetric difference only (or with a mixture of intersecting and 

symmetric difference features), the value v(S) = e
− Nd

2σ2 must be calculated given Nd and σ (or γ ) , as aforemen-
tioned. Finally, for the empty coalition S = ∅ , we set v(S) = 0 , conforming to the Shapley value formalism for 
the empty  set16,17.

To obtain the Shapley values for the RBF kernel, we need to compute the change in the kernel value when a 
feature from the intersection f+ , or a feature from the symmetric difference f− , are added to the coalition S with 
Ni intersecting features and Nd features with symmetric difference. For f+ we have

Adding a feature from the intersection does not change the distance and thus not the kernel value. This is 
always true except if f+ is added to the empty coalition ( v(∅) = 0) . In this case, the kernel value when adding 
the features becomes 1 ( Nd = 0 ) and so

Then, for a symmetric difference feature f− we have

K
(

x, x′
)

= e
− d(x,x′)

2

2σ2

d
(

x, x′
)

= �x − x′� =
√

∑

i

(

xi − x′i
)2

K
(

x, x′
)

= e−γ �x−x′�2

ϕ(r) = e−γ r2

e
− d(x,x′)2

2σ2 = e
− Nd

2σ2

�vf+(Ni ,Nd) = e
− Nd

2σ2 − e
− Nd

2σ2 = 0

�vf+(0, 0) = 1
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When adding a feature with symmetric difference, the squared Euclidean distance increases by 1 (as shown). 
The change in the kernel value must be calculated consequently. When the subtracted term represents the empty 
coalition, its value is set to 0.

Once we have computed the value change, we need to calculate the number of occurrences for each possible 
coalition with Ni intersecting features and Nd features with symmetric difference. For f+ we thus consider all 
possible combinations of Ni elements in a set of I − 1 elements (the assessed feature is not a part of the coalition) 
and Nd elements in a set of D elements:

Likely, for f− we consider all possible combinations of Ni elements in a set of I elements and Nd elements in 
a set of D − 1:

Once we have all the elements, we can compute the Shapley values as the sum of the products of �vf  , Cf  and 
the inverse multinomial coefficient.

For an intersecting feature, the Shapley value ( φf  ) for the RBF kernel will be computed as

As previously shown, �vf+(Ni ,Nd) is always 0, except if f+ is added to the empty coalition ( Ni = 0 and 
Nd = 0 ). In this case, the kernel value changes from 0 to 1, thus �vf+(0, 0) = 1 . So, we can easily compute the 
Shapley value considering only the addition to the empty coalition:

Analogously, for a symmetric difference feature, we obtain

The computation can be further simplified by aggregating common factors. The possible coalitions to which 
f− can be added include the empty coalition ( Ni = Nd = 0 ), coalitions with intersecting features only ( Nd = 0 
and v(S) = 1 ), and coalitions with intersecting and symmetric difference features, or with symmetric difference 
features only ( Ni ∈ [0, I] and Nd ∈ [1,D − 1] ). We thus obtain

Proof-of-concept
To establish initial proof-of-concept for the approach, we calculate Shapley values for the RBF kernel and two 
exemplary small model vectors x and y using SVERAD:

�vf−(Ni ,Nd) = e
− Nd+1

2σ2 − e
− Nd

2σ2

Cf+(Ni ,Nd) =
(

I − 1

Ni

)(

D

Nd

)

Cf−(Ni ,Nd) =
(

I

Ni

)(

D − 1

Nd

)

φf+ =
I−1
∑

Ni=0

D
∑

Nd=0

�vf+(Ni ,Nd) · Cf+(Ni ,Nd) ·
(

I + D

1,Ni + Nd,, I + D − Ni − Nd − 1

)−1

φf+ = �vf+(0, 0) · Cf+(0, 0) ·
(

I + D
1,Ni + Nd , I + D − Ni − Nd − 1

)−1

= 1 · 1 ·
(Ni + Nd)!(I + D − Ni − Nd − 1)!

(I + D)!

=
(I + D − 1)!
(I + D)!

φf− =
I

∑

Ni=0

D−1
∑

Nd=0

�vf−(Ni ,Nd) · Cf−(Ni ,Nd) ·
(

I + D
1,Ni + Nd,, I + D − Ni − Nd − 1

)−1

=
I

∑

Ni=0

D−1
∑

Nd=0

(

e
− Nd+1

2σ2 − e
− Nd

2σ2

)

·
(

I
Ni

)(

D − 1

Nd

)

·
(Ni + Nd)!(I + D − Ni − Nd − 1)!

(I + D)!

=
I

∑

Ni=0

D−1
∑

Nd=0

(

e
− Nd+1

2σ2 − e
− Nd

2σ2

)

·
I!

(I − Ni)!Ni!
·

(D − 1)!
(D − Nd − 1)!Nd !

·
(Ni + Nd)!(I + D − Ni − Nd − 1)!

(I + D)!

φf− = e
− 1

2σ2 ·
(I + D − 1)!
(I + D)!

+
(

e
− 1

2σ2 − 1

)

·
I

∑

Ni=1

(

I
Ni

)

·
Ni!(I + D − Ni − 1)!

(I + D)!

+
I

∑

Ni=0

D−1
∑

Nd=1

(

e
− Nd+1

2σ2 − e
− Nd

2σ2

)

·
(

I
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x = [10010], y = [10111]
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Notably, these vectors are only used to illustrate the SVERAD calculations and do not represent (high-dimen-
sional) molecular fingerprints. The model vectors share two features (set to 1, intersecting features), so I = 2 , 
have a unique feature each (set to 0 and 1, respectively, symmetric difference), so D = 2 , and lack a feature (set 
to 0). For the exemplary calculation, we set σ = 1 . Tables 1 and 2 show the steps needed to compute the Shapley 
values for intersecting and symmetric difference features, respectively.

As discussed, calculation of the kernel value only depends on the number of features with symmetric differ-
ence, resulting in equation

The sum of the Shapley values for all features yields the kernel value. To compute the Shapley value for a 
feature in the intersection and a feature with symmetric difference, �vf  is multiplied by the number of coalitions 
and the inverse multinomial coefficient and the sum over all possible coalitions is calculated. Given that any 
feature from the same set (intersection or symmetric difference) makes the same contribution to the kernel value, 
we need to multiply the Shapley value obtained for one representative feature of each set by I and D to obtain 
the total contribution of the intersecting and symmetric difference features, respectively. In our example, the 
Shapley value for an intersecting feature is 0.25 and for a feature with symmetric difference it is -0.066. The set 
of intersecting features ( I = 2 ) yields a sum of Shapley values of 0.5 while symmetric difference features ( D = 2 ) 
contribute to the kernel value for -0.132. The sum of these values is 0.368, which is exactly the kernel value.

As an additional proof-of-concept calculation, we consider 20 random binary vectors with a small number 
of features ( |F| = 15 ), so that Shapley values can be computed explicitly by enumerating all possible  coalitions19. 
SVERAD yields the same Shapley values as produced by the exhaustive computation, thus demonstrating the 
validity of the method. This is also evident in Table 3, which shows a comparison of SVERAD Shapley values 
with the SHAP approximation (for the calculations, we set γ = 1

2σ 2 = 1).
The correlation coefficient of 1 for SVERAD Shapley values and exact Shapley values confirms that both 

calculations return the same values (the associated error resulting from the imprecision in the representation of 
very small numbers is smaller than 10−10 ). This differs from exact Shapley values vs. SHAP, for which a Fisher-
transformed correlation coefficient of 0.72 ± 0.43 is obtained, reflecting the underlying local approximation of 
SHAP values.

K
(

x, y
)

= e−
Nd
2 = e−1 = 0.368

Table 1.  Calculation of the Shapley value for an intersecting feature.

Ni Nd v(S) v
(

S ∪ f+
)

�vf # coalitions Inverse multinomial coefficient
�vf  ⋅ # coalitions ⋅ inv. mult. 
coeff

0 0 0 1 1 1 ⋅ 1 = 1 ¼ = 0.25 0.25

0 1 e−1/2 e−1/2 0 1 ⋅ 2 = 2 1/12 = 0.083 0

0 2 e−1 e−1 0 1 ⋅ 1 = 1 1/12 = 0.083 0

1 0 1 1 0 1 ⋅ 1 = 1 1/12 = 0.083 0

1 1 e−1/2 e−1/2 0 1 ⋅ 2 = 2 1/12 = 0.083 0

1 2 e−1 e−1 0 1 ⋅ 1 = 1 ¼ = 0.25 0

Table 2.  Calculation of the Shapley value for a symmetric difference feature.

Ni Nd v(S) v
(

S ∪ f−
)

�vf # coalitions Inverse multinomial coefficient �vf  ⋅ # coalitions ⋅ inv. mult. coeff

0 0 0 e−1/2 e−1/2 1 ⋅ 1 = 1 ¼ = 0.25 0.1516

0 1 e−1/2 e−1 e−1 − e−1/2 1 ⋅ 1 = 1 1/12 = 0.083  − 0.0199

1 0 1 e−1/2 e−1/2 − 1 2 ⋅ 1 = 2 1/12 = 0.083  − 0.0656

1 1 e−1/2 e−1 e−1−e−1/2 2 ⋅ 1 = 2 1/12 = 0.083  − 0.0398

2 0 1 e−1/2 e−1/2 − 1 1 ⋅ 1 = 1 1/12 = 0.083  − 0.0328

2 1 e−1/2 e−1 e−1−e−1/2 1 ⋅ 1 = 1 ¼ = 0.25  − 0.0597

Table 3.  Comparison of exact Shapley values, SVERAD, and SHAP values using Pearson’s r correlation 
coefficient with standard deviations.

Exact Shapley values SVERAD SHAP

Exact Shapley values 1.0 ± 0.0 1.0 ± 0.0 0.72 ± 0.43

SVERAD 1.0 ± 0.0 1.0 ± 0.0 0.72 ± 0.43

SHAP 0.72 ± 0.43 0.72 ± 0.43 1.0 ± 0.0
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It also follows that the predictive performance of original SVM models is not affected through the Shapley 
value modification because it exactly accounts for the RBF kernel value, as demonstrated above, and the SVM 
computational classification criteria do not change.

Shapley values for support vector machine predictions
In an SVM model, the distance of a vector x from the separating hyperplane is defined by the support vectors 
Vn and is given by

where Nv is the number of support vectors, yn (-1 or 1) is the class label of the support vector Vn , wn is the 
weight by which the class label is scaled and K(x,Vn) is the kernel value comparing the support vector and the 
predicted instance x . Finally, b is a bias value.

To compute the Shapley value for the distance for each feature f  , we first substitute the kernel value with 
the sum of Shapley values of the features for the RBF kernel between vector x and support vector Vn ( φf ,n ) and 
scale the sum by the label and the weight. Then, we consider the bias as an additional feature whose value b is 
its Shapley value:

Finally, given the additivity property of Shapley values, the Shapley value for a feature f  is obtained by sum-
ming up the Shapley values of f  for the RBF kernel values comparing vector x with all the support vectors:

which gives the contribution of feature f  with respect to the distance from the separating hyperplane.

Expressing feature contributions as log odds values
The distance from the hyperplane can be transformed into probability estimates using Platt  scaling33:

Given that Shapley values for probabilities cannot be calculated from Shapley values for the distance from 
the hyperplane, we need to compute the logits (log odds):

We can express dist(x) as the sum of the Shapley values for the distance:

Logits are a linear transformation of the distance. Hence, the Shapley values for the logits are obtained as a 
linear transformation of the Shapley values for the distance (scaling by −A ). Moreover, by scaling φb by −A and 
offsetting it by −B the Shapley value for the additional feature is obtained, analogously to the Shapley value for 
the distance bias b , previously calculated. The term −(A · φb + B) is regarded as an expected value since it does 
not depend on other features. The sum of the Shapley values −

∑|F|−1

f=0 A · φf  represents the difference between 
the actual value and the expected value, conforming to the Shapley value  formalism19,20.

Feature contributions to the radial basis function kernel
For a direct comparison, SVERAD and SHAP values were calculated for 50 randomly selected adenosine receptor 
A3 ligands (A3 ligands) that we also used for compound activity predictions (see Methods). Compounds were 
represented using topological structural features, that is, systematically calculated pathways originating from 
atoms with a constant bond radius (see Methods). The RBF kernel was computed for all possible compound 
pairs and for each pair, exact Shapley values calculated using SVERAD were compared to corresponding SHAP 
values from KernelSHAP. For a value γ = 1

2σ 2 = 0.005 , a mean Pearson’s r correlation coefficient after Fisher 
transformation of 0.36 ± 0.18 was obtained. The low correlation indicated that the SHAP approximation was 
limited in its ability to explain RBF-based similarities and that calculation of exact Shapley values was preferred.

dist(x) = b+
∑Nv−1

n=0
ynwnK(x,Vn)

dist(x) = b+
Nv−1
∑

n=0

ynwnK(x,Vn) = b+
Nv−1
∑

n=0

ynwn

|F|−1
∑

f=0

φf ,n

= b+
|F|−1
∑

f=0

Nv−1
∑

n=0

ynwnφf ,n = φb +
|F|−1
∑

f=0

φf

φf =
∑Nv−1

n=0
ynwnφf ,n,

p(x) =
1

1+ eA·dist(x)+B

logit
(

p(x)
)

= log

(

p(x)

1− p(x)

)

= · · · = log

(

1

eA·dist(x)+B

)

= −A · dist(x)− B

logit
(

p(x)
)

= −A ·
(

φb +
∑|F|−1

f=0
φf

)

− B = −(A · φb + B)−
∑|F|−1

f=0
A · φf
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Rationalizing compound activity predictions
To apply the SVERAD approach to pharmaceutically relevant predictions and compare model explanations for 
different Shapley value/SHAP calculation variants, we derived SVM and RF classification models based to distin-
guish A3 ligands from other randomly selected compounds (see Methods). The SVM and RF classifiers achieved 
comparably high prediction accuracy of 93% and 92%, respectively. We then analyzed these predictions in detail.

Feature contributions to classification models
For SVM predictions, Shapley values and SHAP values were calculated with SVERAD and KernelSHAP and 
for RF predictions with TreeExplainer and KernelSHAP, respectively. In Table 4, median Pearson’s r correlation 
coefficients are reported for feature contributions and all combinations of classification models and correspond-
ing Shapley value/SHAP calculation methods. In addition, Fig. 1 shows the corresponding distributions of 
correlation coefficients. 

There was only very low correlation between SVERAD Shapley values and SHAP values (0.120), which 
reflected the apparent limited ability of SHAP calculations to approximate Shapley values for SVM. Notably, 
the correlation for the SVM/RBF combination was much lower than previously determined for the SVM/Tani-
moto kernel combination (0.682)30, which reinforced the need for calculating exact Shapley values if the widely 
applied RBF kernel is used. By contrast, for RF, there was nearly perfect correlation between KernelSHAP and 
TreeExplainer (0.994), which uses exact Shapley/SHAP values for deriving local explanations. When compar-
ing exact Shapley/SHAP values from SVERAD and TreeExplainer for corresponding predictions, essentially no 
correlation was observed (-0.040), indicating that different features were determining SVM and RF predictions 
in the presence of comparably high prediction accuracy. However, in this case, potential correlation was also 
principally limited because the calculations were based on different metrics (log odds scores for SVM vs. class 
probabilities for RF). Furthermore, SHAP values for SVM and RF displayed relatively high correlation (0.758). 
Taken together, the results indicated that SVERAD values were more accurate for SVM using the RBF kernel 
than the SHAP approximation, whereas TreeExplainer and KernelSHAP values were strongly correlated for RF.

Model explanations and feature mapping
For the SVM and RF predictions, SVERAD and TreeExplainer values were calculated, respectively, and separately 
analyzed for features that there were present or absent in correctly predicted test compounds. Figure 2 shows the 
distribution of cumulative Shapley values for these features in test compounds for log odds scores from SVERAD 
and probabilities from TreeExplainer.

The analysis explained model decisions and revealed different prediction characteristics for SVM and RF. For 
SVM, features present in active compounds made strong positive contributions to correct predictions, whereas 

Table 4.  Median Pearson’s r correlation coefficient between feature contributions from different models and 
explanation strategies.

SVM – SVERAD SVM – KernelSHAP RF – TreeSHAP RF – KernelSHAP

SVM – SVERAD 1.000 0.120  − 0.040  − 0.010

SVM – KernelSHAP 0.120 1.000 0.758 0.750

RF – TreeSHAP  − 0.040 0.758 1.000 0.994

RF – KernelSHAP  − 0.010 0.750 0.994 1.000

Figure 1.  Distributions of Pearson’s r correlation coefficient. Box plots represent the distributions of correlation 
coefficients for feature contributions from different models and explanation strategies.
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absent features made only minor contributions to incorrect predictions. For random compounds, present fea-
tures made small contributions to incorrect predictions (of activity) while absent features made essentially no 
contributions (with cumulative Shapley values close to zero). Hence, correct predictions of inactive compounds 
can only be rationalized taking the expected values into account, as discussed below. For RF, features present in 
active compounds determined their correct predictions, while the absence of these features in random/inactive 
compounds was decisive for their correct predictions. By contrast, features absent in active and present in inac-
tive compounds made only very little or no contributions.

Overall, for active compounds, the average sum of the SVERAD Shapley values for SVM of present features 
was 11.65, indicating strong positive contributions to predictions far beyond the expected value (− 4.61). On 
the contrary, absent features, with an average sum of Shapley values of − 1.79, made small negative contribu-
tions. RF displayed a similar behavior for active, but not for inactive compounds. Here, the average sum of the 
Shapley values for present and absent features was 0.51 and − 0.07, respectively, and the expected value was 0.49. 
Accordingly, for inactive compounds, SVM predictions were largely determined by the expected value, given that 
features present in these compounds slightly opposed correct predictions (with average positive contributions of 
1.46) while the effect of absent features was negligible (− 0.008). By contrast, for RF, absent features made strong 
contributions (− 0.40 with respect to the expected value), while the average contribution of present features was 
only modest (0.018).

Features with largest contributions to predictions were visualized by mapping them on the corresponding 
atoms in correctly predicted test compounds, as shown in Fig. 3.

Figure 2.  Distribution of feature contributions. Box plots show the distributions of cumulative Shapley values 
of features present or absent in correctly predicted test instances for SVERAD/SVM (a) and TreeExplainer/RF 
(b).

Figure 3.  Feature mapping. Features present in exemplary active and random compounds correctly predicted 
by SVM and RF models are mapped on corresponding atoms. Red and blue coloring indicates positive and 
negative contributions towards prediction of activity and randomness, respectively.
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For SVM and RF, features present in active compounds mostly had large positive Shapley values (red) and 
hence supported correct predictions (despite different value distributions, as discussed above). By contrast, for 
random compounds, different contributions of present features were observed. While some features supported 
correct predictions (blue), others opposed them (red). In active test compounds, present features supporting 
correct predictions with SVM and RF delineated very similar substructures.

Computational complexity
For SVERAD, the computation of the Shapley values for a given instance has at most O

(

|F|2
)

 complexity, with 
|F| being the total number of features.

We consider U  the number features present in the union of the explained sample with a support vector 
( U = I + D ). No computation is needed for features not present in either the intersection nor the difference 
( φf = 0 ). However, in the worst case, all features are present in the union, so U = |F| for all the support vectors.

For each support vector, we need to compute the Shapley value for one feature from the intersection and one 
feature from the symmetric difference. This computation requires O(1) for the intersection (hence, one only 
needs to calculate the inverse multinomial coefficient, as shown above), and O(D · (I + 1)) = O(D · I) for the 
symmetric difference. Here, D · (I + 1) represents the size of the Cartesian product describing unique combina-
tions of intersecting and symmetric difference features, also considering the empty coalition. Highest complexity 
would result from D = |F|

2
 and I = |F|

2
 , leading to O

(

|F|
2
· |F|

2

)

= O
(

|F|2
4

)

= O(|F|2).
The step above must be repeated and summed up for each support vector, hence the complexity becomes 

O
(

|F|2
)

· Nv . Assuming the number of support vectors Nv to be a constant and given that the rest of the opera-
tions are products and sums with constant values, the final complexity will be O(|F|2).

Notably, for sparse input vectors such as for the calculations reported herein, the number of features in the 
union U  was on average two orders of magnitude smaller than the total number of features |F| . Accordingly, in 
such cases, highest possible complexity is unlikely to occur. In this case, considering U  as the average number 
of features in the union between the input sample and the support vectors, the computations require on average 
O
(

U2
)

.
It follows that SVERAD has at most quadratic time requirements with respect to the number of features |F| 

instead of exponential computation typically required for systematic Shapley value calculations.

Conclusions
In this work, we have introduced SVERAD, a novel methodology for the computationally efficient calculation 
of exact Shapley values for SVM predictions with RBF kernels. The study follows and further extends a previous 
investigation determining exact Shapley values for the SVM/Tanimoto kernel combination, which is preferen-
tially used for applications focusing on the assessment of chemical similarity. The SVM/RBF kernel combination 
(including the Gaussian kernel) is more widely applied. In the XAI field, the Shapley value concept experiences 
increasing interest for rationalizing predictions of ML models. Due to the complexity of explicit Shapley value 
calculations, approximations are typically required, for which the SHAP approach has been a pioneering develop-
ment. However, low correlation between exact Shapley values calculated with SVERAD for the RBF kernel and 
SHAP values clearly indicated the need to use exact Shapley values for explaining SVM predictions, in marked 
contrast to RF. Comparative Shapley value/SHAP analysis also revealed that highly accurate SVM and RF com-
pound predictions were determined by different relative contributions of features present or absent in active 
and random test compounds. However, features present in active test compounds that consistently contributed 
to correct predictions with both algorithms delineated corresponding substructures. Taken together, the results 
reported herein indicate that SVERAD substantially aids in rationalizing SVM predictions in pharmaceutical 
research and other scientific fields. Therefore, SVERAD is made freely available as a part of our study.

Methods
Compounds
For compound-based Shapley value calculations and activity predictions, we used a set of 287 A3 ligands from 
 ChEMBL34 with curated high-confidence activity annotations, as reported previously.30 As negative data, an 
equally sized set of other ChEMBL compounds was randomly selected.

Molecular representation
Compounds were represented as a keyed Morgan fingerprint with bond radius 2 (that is, a binary feature vector 
in which each bit position represents a unique feature)32,35 calculated using  RDKit36. The fingerprint comprises 
compound-specific numbers of layered atom environments, which represent topological structural  features35. 
Each compound is described using 5487 possible binary features.

Machine learning models
Compounds activity predictions were carried out using SVM and RF models derived using the Scikit-learn library 
for  Python37. The data set comprising active and random compounds was divided into training (50%) and test 
(50%) sets. The training set was then used for grid search hyperparameter optimization via cross-validation by 
randomly partitioning the compounds 10 times into training (50%) and validation (50%) subsets.
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Support vector machine
Hyperparameters gamma (values were searched in [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] ) and C (values search in 
[0.1, 1, 10, 50, 100, 200, 400, 500, 750, 1000] ) were optimized. Parameter gamma corresponds to the γ value in the 
RBF kernel, as discussed above, and C controls the applied regularization. Smaller values of C favor generalization 
but increase the risk of training errors. Large values lead to a harder margin and strict misclassification penalties 
instead, thereby improving classification accuracy of training samples but potentially limiting the generalization 
ability. After grid search optimization, the best model with gamma = 0.01 and C = 10 produced an accuracy of 
93% on the test set.

Random forest
The hyperparameters n_estimators (10, 100, 250, 500), min_samples_split (2, 3, 5, 7, 10), and min_samples_leaf 
(1, 2, 5, 10) were optimized. These parameters account for the number of decision trees, the minimum number 
of samples required to split an internal node, and minimum number of samples required to reach a leaf node, 
respectively. The last parameters control overfitting and model complexity. Best hyperparameter values selected 
via grid search were 500, 2, and 1, respectively. The final model reached an accuracy of 92% on the test set.

Shapley additive explanations
The Python  SHAP20 package was used for KernelSHAP and TreeExplainer calculations. For both SVM and RF, 
the KernelSHAP background sample was composed of 100 randomly selected training instances. For TreeEx-
plainer, the entire training set was used as background sample and interventional feature perturbation was used 
to control input feature  correlation38.

Data availability
The code and data generated in this study are freely available on GitHub at: https:// github. com/ AndMa stro/ 
SVERAD.
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