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Cephalometric landmark detection 
without X‑rays combining 
coordinate regression and heatmap 
regression
Kaisei Takahashi 1*, Yui Shimamura 2, Chie Tachiki 2, Yasushi Nishii 2 & Masafumi Hagiwara 1

Fully automated techniques using convolutional neural networks for cephalometric landmark 
detection have recently advanced. However, all existing studies have adopted X‑rays. The problem 
of direct exposure of patients to X‑ray radiation remains unsolved. We propose a model for detecting 
cephalometric landmarks using only facial profile images without X‑rays. First, the model estimates 
the landmark coordinates using the features of facial profile images through high‑resolution 
representation learning. Second, considering the spatial relationship of the landmarks, the model 
refines the estimated coordinates. The estimated coordinates are input into fully connected networks 
to improve the accuracy. During the experiment, a total of 2000 facial profile images collected from 
2000 female patients were used. Experiments results suggested that the proposed method may 
perform at a level equal to or potentially better than existing methods using cephalograms. We 
obtained an MRE of 0.61 mm for the test data and a mean detection rate of 98.20% within 2 mm. Our 
proposed two‑stage learning method enables a highly accurate estimation of the landmark positions 
using only facial profile images. The results indicate that X‑rays may not be required when detecting 
cephalometric landmarks.

Quantitative maxillo-facial morphology evaluation is one of the essential steps in orthodontic treatment. In 
particular, a cephalometric  analysis1 is crucial to evaluate dentofacial proportions, clarify the anatomic basis for 
malocclusion and establish orthodontic treatment planning. Moreover, that can recognize and evaluate changes 
brought about by orthodontic treatment. Although dedicated software is usually employed for such an analysis, 
tracing the maxillo-facial structure and pointing out the landmarks on the lateral cephalograms must be con-
ducted manually by orthodontic specialists. However, these manual procedures are time-consuming and lead 
to intra- and inter-person  variations2. Furthermore, the wrong diagnosis caused by inaccurate tracing should 
induce serious treatment results.

Automated cephalometric analysis systems have recently been  developed2–20. Previous studies have adopted 
knowledge  bases5 and pattern  matching3,4 for landmark detection. However, the detection accuracies of these 
studies are not clinically  acceptable6. Recently developed algorithms can be divided into two categories: random 
forest and convolutional neural networks (CNNs). The IEEE International Symposium on Biomedical Imaging 
(ISBI) , held in 2014 and  201512,13 , posed the task of detecting 19 landmarks from lateral cephalograms. At ISBI, 
most of the  studies14,16 used classical machine learning focused on a random forest. A random forest is usually 
complex and vulnerable to an  overfitting21. In the past few years, deep learning methods for landmark detection 
have outperformed methods using a random forest. In particular, CNN-based  methods2,6–11,17–20 have achieved 
remarkable results. A CNN is a deep machine learning technique inspired by visual biological recognition, and 
has been demonstrated to be effective in cephalometric landmark  detection17. CNN-based methods are often 
implemented in several  stages2,6–9,11,18–20. In the first stage, candidate landmarks are identified by searching for 
local patterns in the cephalograms. In the next stage, the landmarks are finetuned to improve the accuracy. 
This approach suffers from a performance  gap19 between coordinate-6,7,10,17,18,20 and heatmap-2,8,9,11,19, based 
methods. Coordinate regression methods adopt a regression model to directly predict the x- and y-coordinates 
of the landmarks, and it can be expected to make predictions that incorporate the structural knowledge of 
the landmarks; however they are not as accurate as a heatmap regression method. By contrast, the heatmap 
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regression methods formulate landmark detection as a regression problem that estimates a heatmap of the 
landmark locations. Although they have achieved high accuracy, having the ability to exploit local features of 
the images, they have difficulty incorporating structural knowledge among the different landmarks. In those 
studies, several challenges remain, such as vulnerability to image distortions like occlusion and the difficulty of 
detecting certain cephalometric  landmarks7,8,13,19. Therefore, a few  studies9,10,19 have proposed training methods 
that consider the local and anatomical features simultaneously. However, a significant enhancement in accuracy 
has yet to be achieved, and efforts to solve this problem have recently commenced. Furthermore, there have been 
recent attempts to investigate the potential of cephalometric landmark detection by applying originally created 
datasets to deep learning  models11,20.

As these previous studies were based on the assumption that cephalograms would be used, X-ray exposure 
is inevitable. As the exposure dose of cephalography is 2− 3 µSv, cone beam computed tomography (CBCT) is 
20− 850 µSv for the maxillofacial  procedures22. Therefore, these doses would be below the limits. Nevertheless, 
the risk of X-ray exposure to patients, especially children and pregnant women, in dental practice still exists. 
There is a demand for research on alternative techniques requiring no or low exposure to X-rays22.

Facial landmark detection localizes predefined facial landmarks such as the eyes, nose, mouth, and chin 
from facial images. Previous studies have adopted the active shape model (ASM)23 or constrained local model 
(CLM)24 for detecting landmarks under certain restrictions. However, the robustness of these studies needs to 
be enhanced against various changes in appearance. A cascade regression  approach25 was studied to address 
this problem. However, a cascade regression is limited in deepening the structure for increased  accuracy26. 
Deep neural networks (DNN) have recently been adopted as a powerful  alternative27. In addition, CNN-based 
approaches have exhibited remarkable results. In particular, models with an hourglass  structure28 and heat-
map-based  regression29–31 achieve high accuracy. Sun et al.31 proposed HRNetV2, which uses a high-resolution 
network (HRNet)32 for learning high-resolution representations, with the hourglass  structure28 being the main-
stream. The structure of HRNetV2 connected high- to low-resolution convolutions in parallel, and it was possible 
to maintain a high-resolution throughout. Consequently, the performance of HRNetV2 was equal to or greater 
than that of conventional methods, while reducing the number of parameters and the computational cost. There 
is also  study33,34 focused on learning algorithms that do not depend on model structure. In fact,  ADNet29 is based 
on  LAB33 and  Awing34 and has shown high performance on many datasets.

In this paper, we present a novel cephalometric landmark detection method that incorporates a highly 
accurate facial landmark detection model. The proposed method is trained without cephalograms. We adopt 
 HRNetV231, which achieves a high accuracy in a wide range of visual tasks by generating a high-resolution 
representation with accurate spatial information. In addition, we combine the heatmap regression model with 
a coordinate regression model. This solves the problem using conventional heatmap regression models, which 
incurs difficulty in learning anatomical features between landmarks. The proposed method comprises two stages: 
cephalometric landmark localization using HRNetV2 and refinement of landmark positions using multilayer 
perceptron (MLP). MLP contributes to the estimation reflecting the spatial relationship between landmarks. The 
inputs of the model are not cephalograms, as in the past, but facial profile images. To the best of our knowledge, 
this is the first study on cephalometric landmark detection without the use of cephalograms. During the experi-
ment, we used facial profile images provided by the Tokyo Dental College. Two clinical orthodontists (with 3 
and 15 years of experience, respectively) plotted a total of 23 landmarks on each of 2000 images based on the 
cephalograms, and one clinical orthodontist (with 36 years of experience) reviewed the results. The proposed 
method achieves a mean radial error (MRE) significantly below the clinically acceptable error of 2.0  mm6. Spe-
cifically, we obtained an MRE of 0.61 mm for the test data and a mean detection rate 98.20% for the threshold. 
While a direct comparison is difficult, we have suggested the possibility of achieving performance equal to or 
potentially better than existing methods using cephalograms. The main contributions of the proposed method 
are presented as follows:

• We proposed a cephalometric landmark detection without the use of cephalograms, and demonstrated per-
formance at a level that is considered clinically acceptable.

• We achieved a significant improvement in accuracy by combining the CNN-based method with a conven-
tional MLP.

Materials and methods
The study protocol was approved by the Institutional Review Board (IRB) of our institutes (Tokyo Dental College, 
No. 1091, 2021-12-17). All methods were carried out in accordance with the Helsinki Declaration principles and 
relevant guidelines and regulations. Informed consent was obtained from all the patients, and written informed 
consent was obtained from three patients, including the facial images, allowing us to use their information/
images in an online open-access publication.

Figure 1 presents an overview of the proposed method. The proposed method comprises two stages: 
 HRNetV231 and MLP. Unlike with existing studies, we used the facial profile images as input instead of a ceph-
alogram. First, all landmark locations in the input images are estimated through heatmap regression using 
HRNetV2. In this step, the model learns the relationship between the local features of the image and landmarks. 
As described later in Ablation Study section, the accuracy of the estimation is insufficient, however. Therefore, we 
introduced a coordinate regression by MLP, which significantly improved the accuracy of landmark estimation. 
MLP was adopted to estimate the spatial location of the landmarks, i.e., their relative location. This two-stage 
approach, coarse estimation using heatmap regression and a fine estimation using MLP, enables the accurate 
detection of all landmarks.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20011  | https://doi.org/10.1038/s41598-023-46919-x

www.nature.com/scientificreports/

Dataset
A total of 2000 lateral cephalograms and profile photograph images collected from 2000 female patients aged 14 
to 69 years (mean age of 27 years) were provided by the Tokyo Dental College. These images were acquired in 
jpeg format using a CX-150S (ASAHIROENTGEN, Tokyo, Japan) and an EOS Kiss X90 (Canon, Tokyo, Japan). 
The standard for taking lateral cephalogram is set worldwide. The film should be kept parallel to the mid-sagittal 
plane of the head and set the head with ear rods so that the center line of the X-ray beam passes through the 
axes of the left and right ear rods. The distances from the X-ray tube to the mid-sagittal plane of the head and 
from the mid-sagittal plane of the head to the film is assumed to be 150 cm and 15 cm, respectively. The method 
of taking a profile photograph image is the same as that of a lateral cephalogram. That is, the distance from the 
camera to the midsagittal plane of the head is 150 cm, and the head is fixed with ear rods. The skeletal informa-
tion obtained from the lateral cephalograms was superimposed on the profile photograph images using Quick 
Ceph Studio (ver. 5.0.2, Quick Ceph Systems, San Diego, California). The 23 landmarks illustrated in Fig. 2 were 
manually plotted by two orthodontists and finally checked by an experienced orthodontist. The two of them 
are the board members of Orthodontic specialists. These 23 landmarks were selected from the measurement 

Figure 1.  Overview of the proposed model. The model is divided into HRNetV2 and MLP. After HRNetV2 
applies the heatmap regression based on the feature extraction, MLP estimates the coordinates based on the 
spatial relationship of the landmarks.

Figure 2.  Illustration of 23 cephalometric landmarks.
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points of the Downs method, Northwestern method, and a Ricketts analysis. Coordinates of landmarks on the 
lateral image were identified by imglab, an annotation tool included with  Dlib35. Each image has 1200× 1200 
pixels and the pixel spacing for the device was 0.35. We present the averaged results of the experiment based on 
fivefold cross-validation, each containing 400 test and 1600 training profile photograph images, respectively.

Superimposition of the cephalometric tracing on the facial profile image
Figure 3 shows the procedure for plotting landmarks and superimposing the cephalometric tracing on the facial 
profile image conducted as follows: 

1. Plot 23 landmarks and trace the profile (from forehead to upper lip) on the cephalogram within the computer 
screen of Orthodontic analysis software (Quick Ceph Studio).

2. Separate the set of the landmark plots and the cephalometric tracing on the screen.
3. Superimpose the cephalometric tracing on the facial profile image by manually matching the line from nose 

to upper lip of the tracing with that of the facial profile image on another screen.

Five sets of the landmark plots and the cephalometric tracing created in step 1 were randomly selected and the 
same set was superimposed on the facial profile image by each observer according to steps 2 and 3. We measured 
the intra- and inter-observer landmark distance errors for five landmarks (Sella, Porion, Menton, Gonion, Basion) 
to confirm the accuracy and reliability of the superimposition. The reason of selecting the five landmarks, it can 
be considered that the further away from the profile tracing line the larger the error because the superimposi-
tion is conducted based on the profile tracing line as shown in step 3. Therefore, the five points farthest from the 
profile tracing line were selected. To evaluate intra-observer variability, superimpositions were conducted by one 
orthodontist three times with an interval of two weeks. To evaluate inter-observer variability, superimpositions 
were conducted by three orthodontists. The two of them are the board member of Orthodontic specialist. The 
mean and standard deviation of the intra- and inter-observer landmark distance error and the intraclass cor-
relation coefficient (ICC) for the landmark plots were calculated for each set with 95% confidence intervals. In 
calculating the ICC, the Shapiro-Wilk test was used to determine whether the data were normally distributed. 
All statistical evaluations were conducted by SPSS software (ver. 27.0, IBM, Armok, New York).

Repeatability and reproducibility test of manual landmark plotting
To compare the repeatability and reproducibility of orthodontists’ landmark prediction errors, a total of five 
cephalograms from five patients were randomly selected and 23 landmarks were plotted. To evaluate intra-
observer variability, cephalometric landmark plotting was conducted by one orthodontist three times with an 
interval of two weeks. To evaluate inter-observer variability, cephalometric landmark plotting was conducted by 

Figure 3.  Procedure for plotting landmarks and superimposing the cephalometric tracing on the facial profile 
image.
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three orthodontists. The mean and standard deviation of the intra- and inter-observer prediction error and the 
ICC for each landmark were calculated for each set with 95% confidence intervals. In calculating the ICC, the 
Shapiro-Wilk test was used to determine whether the data were normally distributed. All statistical evaluations 
were conducted by SPSS software.

Heatmap regression
To estimate the location of landmarks, we used HRNetV2 to generate heatmaps of the landmarks. Figure 4 shows 
the structure of  HRNetV231, which starts with a high-resolution subnetwork (stem) and adds high- to low-
resolution subnetworks successively to form a stage. The multi-resolution subnetworks are connected in parallel 
to form a total of four stages. The second, third, and fourth stages are set up by repeating the modularized multi-
resolution blocks. The exchange unit, as illustrated in Fig. 5, aggregates the information of each resolution from 
other  subnetworks32. Strided 3× 3 convolutions with stride 2 and a simple nearest neighbor sampling are applied 
for downsampling and upsampling, respectively. The last exchange unit outputs a feature map where the low-
resolution representation is upsampled and concatenated into a high-resolution representation. The heatmap is 
regressed from the high-resolution representation. A previous  study31 reported that the performance is enhanced 
by employing all resolution representations in comparison to solely using a high-resolution representation.

The ground truth heatmaps are defined as 2D gaussian functions with standard deviation of σ centered on 
the ground truth location of LGi :

where, x , i = {1, ...N} , and N(= 23) represent the heatmap pixel, index of the landmarks, and total number of 
landmarks, respectively. To converge the estimated landmarks as close as possible to the ground truth landmarks, 
the loss function employs the L2 loss as follows:

where hPi (x;w) represents the estimated heatmap, and w denotes the weights and biases of the network. The loss 
function allows the network to learn the relationship between the local features and landmarks. The heatmap 
comprises a 2D matrix with 23 channels corresponding to the number of landmarks. The estimated coordinates 
LPi  of each landmark are predicted by transforming from the reduced space to the original image space. We 
adjusted the offset of the largest value position from the largest value to the second largest  value36. Accordingly, 
the estimated position can be expressed as a set of 2D coordinates {xPi , y
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Figure 4.  HRNetV2  structure31. HRNetV2 comprises four stages connected in parallel by high- to low-
resolution subnetworks. The horizontal and vertical sizes of the feature maps correspond to the resolution and 
number of channels, respectively.
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Figure 5.  Illustration of how to aggregate information of multiple resolutions using an exchange  unit32. A stride 
3× 3 convolution is adopted for downsampling. Nearest neighbor sampling followed by a 1× 1 convolution is 
used for upsampling.
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Coordinate regression
MLP is a refinement of coordinates estimated using spatial relationships between landmarks. It has a simple 
three-layer structure with an input layer, a hidden layer, and an output layer. Because this is a simple regression 
task, we adopted a simple MLP to reduce the possibility of an overfitting.  In2, a linear filter was also employed to 
refine the landmark positions; however, only some landmarks were adjusted, and the inputs were the combination 
of outputs from the two models when considering spatial information. The estimated coordinates {xPi , y

P
i }

N
i=1 are 

divided into {xP1 , ..., x
P
N } and {yP1 , ..., y

P
N } . The x- and y-coordinates are input into separate models. We adopted 

the L2 loss as the loss function to get closer to the ground truth landmarks by using the positional relationship 
of the landmarks:

where xGi  and yGi  represent the ground truth coordinates, and xRi  and yRi  denote the refined coordinates. Losses 
in the MLP were not propagated to HRNetV2, and were learned independently. The number of training epochs 
for HRNetV2 and MLP differed. For each epoch used for training HRNetV2, we trained the MLP with multiple 
epochs, provided that we initialized the parameters only at the beginning of training. This procedure allowed 
us to train the entire model efficiently, while fine-tuning the MLP to match the training phase of HRNetV2.

Implementation details
We trained and carried out testing using a GeForce GTX 1080, 3.70-GHz Intel(R) Core(TM) i7-8700K CPU, 
and 16GB of memory. The training and testing were conducted in Pytorch. The input images were cropped and 
resized to 256× 256 , according to the center positions of the boxes.

The HRNetV2 network starts with a stem comprising two strided 3× 3 convolutions, which reduces the 
resolution to 1/4. As the inputs pass through the four subsequent stages, the resolution is gradually reduced 
by half, and the number of channels is accordingly doubled. The first stage contains four residual units, each 
of which was formed by a bottleneck with a width of 64. This stage is followed by a 3× 3 convolution, which 
reduces the width of the feature map to 18. Thus, the number of channels for the four resolutions is 18, 36, 72, 
and 144, respectively. The second, third, and fourth stages contain one, four, and three multi-resolution blocks, 
respectively. One multi-resolution block contains four residual units. Each unit contains two 3× 3 convolutions 
for each resolution and an exchange unit across resolutions. The four resolution representations from the fourth 
stage are concatenated and used to predict heatmaps with a width of 64, following two 1× 1 convolutions. We 
trained HRNetV2 with 60 epochs and a batch size of 16. The model was pre-trained using  WFLW37. The base 
learning rate was set as 0.0001, and then was reduced to 0.00001 and 0.000001 at 30 and 50 epochs, respectively. 
The loss function was minimized using the Adam optimizer.

The MLP network comprises three layers: input, hidden, and output layers. The number of neurons in the 
middle layer was set to 500. The number of inputs and outputs was set to 23 for splitting the coordinates trans-
formed from the heatmaps and predicted by HRNetV2 into x- and y-coordinates. We trained the MLP using 100 
epochs and a batch size of 16 every time HRNetV2 was trained for 1 epoch. The loss function was minimized 
using the Adam optimizer with a learning rate of 0.00001 and a weight decay (L2 regularization) factor of 0.0001.

Evaluation metrics
We evaluated the proposed method in terms of the mean radial error (MRE), successful detection rate (SDR), 
and successful classification rate (SCR), according to a previous benchmark  study13. The radius error was defined 
by R =

√

∆x2 +∆y2 , where ∆x and ∆y represent the Euclidean distances between the estimated landmarks 
and the ground truth landmarks of the x- and y-axes, respectively. The MRE and the standard deviation (SD) 
are defined as follows:

where Ri represents the radial error of the ith landmark, and n denotes the total number of landmarks to be 
detected. The SDR is the ratio of estimated landmarks that are within a reference threshold, and is defined as 
follows:

where nd represents the number of successfully detected landmarks, and the threshold values are 2.0, 2.5, 3.0, and 
4.0 mm, as typically used. The SCR is the classification accuracy of anatomical face types based on eight clinical 
measures (ANB, SNB, SNA, overbite depth indicator (ODI), anteroposterior dysplasia indicator (APDI), facial 
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height index (FHI), frankfurt mandibular angle (FMA), modified wits (MW)). Facial images are classified into 
three anatomical types under clinical measures. Note that geometric criteria such as the angles and distances 
between landmarks listed in Table 1 are considered.

Results
Accuracy and reliability of the superimposition of cephalometric tracing on the facial profile 
image
All distance errors were considered to follow a normal distribution by the Shapiro-Wilk test (p>0.05; not shown 
for details). The mean landmark distance error, standard deviation and the ICC values for each set are shown 
in Table 2. The mean intra- and inter-observer landmark distance error and standard deviations were 0.32 mm 
± 0.07 mm and 0.41 mm ± 0.11 mm, respectively, indicating superiority over previous  studies18. The ICC of 
the mean landmark distance error for each patient ranged from 0.993 to 0.998 (< 0.00, poor; 0.00–0.20, slight; 
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; 0.81–1.00, almost perfect)38, indicating a high degree 
of intra- and inter-observer agreement. The 95% confidence interval also supports intra- and inter-observer 
agreement. In this way, the accuracy and reliability of the superposition was confirmed.

Result of repeatability and reproducibility test of manual landmark plotting
All distance errors were considered to follow a normal distribution by the Shapiro-Wilk test (p>0.05; not shown 
for details). The mean prediction error, standard deviation and the ICC values for each landmark are shown 
in Table 3. The mean intra- and inter-observer prediction error and standard deviations were 0.38 mm ± 0.11 
mm and 0.37 mm ± 0.11 mm, respectively, indicating superiority over previous  studies18. The ICC of the pre-
diction error for each landmark ranged from 0.992 to 0.999 (< 0.00, poor; 0.00–0.20, slight; 0.21–0.40, fair; 
0.41–0.60, moderate; 0.61–0.80, substantial; 0.81–1.00, almost perfect)38, indicating a high degree of intra- and 
inter-observer agreement. The 95% confidence interval also supports intra- and inter-observer agreement. In 
this way, intra- and inter-observer agreement was confirmed.

Performance of cephalometric landmark detection for the proposed model and comparison 
with existing methods
Table 4 presents a comparison between the results of the proposed and existing methods. The proposed method 
achieves the best performance under all metrics. Because no existing studies have solely adopted facial profile 
images for training, we provide comparisons with a study adopting X-rays. The comparison methods were 
selected based on their recency and proximity to the proposed method. The performance of the proposed 

Table 1.  Criteria for eight clinical measures of anatomical face-type classification in SCR. ANB is the angle 
between L5, L2, and L6. SNB is the angle between L1, L2, and L6. SNA is the angle between L1, L2, and L5. 
ODI is the arithmetic sum of the angle between the lines from L5 to L6 and from L8 to L10, and the angle 
between the lines from L3 to L4 and from L17 to L18. APDI is the arithmetic sum of the angle between the 
lines from L3 to L4 and from L2 to L7, the angle between the lines from L2 to L7 and from L5 to L6, and the 
angle between the lines from L3 to L4 and from L17 to L18. FHI is the ratio of the distance from L1 to L10 
(PFH) to the distance from L2 to L8 (AFH). FMA is the angle between the line from L1 to L2 and the line from 
L10 to L9. MW is the distance between L12 and L11.

Method type1 type2 type3

ANB Class 1 (normal): 3.2◦ – 5.7◦ Class 2: > 5.7
◦ Class 3: < 3.2

◦

SNB Normal mandible: 74.6◦ – 78.7◦ Retrognathic mandible: > 74.6
◦ Prognathic mandible: < 78.7

◦

SNA Normal mandible: 79.4◦ – 83.2◦ Prognathic maxilla: > 83.2
◦ Retrognathic maxilla: < 79.4

◦

ODI Normal: 78.4◦ – 80.5◦ Deep bite tendency: > 80.5
◦ Open tendency: < 68.4

◦

APDI Normal: 77.6◦ – 85.2◦ Class 2 tendency: < 77.6
◦ Class 3 tendency: > 85.2

◦

FHI Normal: 0.65 – 0.75 Short face tendency: > 0.75 Long face tendency: < 0.65

FMA Normal: 26.8◦ – 31.4◦ Mandible high angle tendency: > 31.4
◦ Mandible lower angle tendency: < 26.8

◦

MW Normal: 2 – 4.5mm Edge to edge: 0 mm Large over jet: > 4.5 mm

Table 2.  Intra- and inter-observer mean landmark distance error, standard deviation and the ICC values with 
95% confidence intervals for five sets.

Set
The intra-observer landmark distance 
error (mm)

The inter-observer landmark distance 
error (mm) ICC(1, 3) with 95% confidence intervals ICC(2, 3) with 95% confidence intervals

1 0.37 ± 0.06 0.27 ± 0.04 0.996 (0.984–1.000) 0.993 (0.968–0.999)

2 0.32 ± 0.06 0.41 ± 0.10 0.996 (0.983–1.000) 0.998 (0.992–1.000)

3 0.32 ± 0.07 0.41 ± 0.09 0.996 (0.982–1.000) 0.998 (0.987–1.000)

4 0.32 ± 0.07 0.46 ± 0.10 0.996 (0.983–1.000) 0.998 (0.991–1.000)

5 0.29 ± 0.07 0.49 ± 0.07 0.997 (0.973–0.999) 0.996 (0.980–0.999)
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model trained on facial profile images is presented in Table 7. Table 5 presents the MRE, SD, and SDR for each 
of the 23 landmarks. The MRE for all landmarks is less than 2 mm, which is clinically  acceptable6. Among the 
landmarks, Basion exhibited the best MRE. However, the MRE of Sella and Mo are large, and the SDR at 2 mm is 
low. The results of the proposed method indicates that Orbitale, Subspinale, Pogonion, Gonion, and Articulare, 
which have been known to handle landmarks that are difficult to accurately estimate in previous  studies7,8,13,19, 
can be estimated within 1 mm. In addition, it can be seen that the error in the y-coordinate is larger than that 
in the x-coordinate. Table 6 presents the SCR of the proposed method and the existing approachs. In terms 
of classification, the proposed method outperforms the existing methods under all metrics. The classification 
accuracy exceeds 90% in six out of eight metrics. Fig. 6 shows the MRE and loss of training and test according 
to the number of cycles. We defined one cycle as the process of training one epoch of HRNetV2 followed by 100 
epochs of MLP.

Ablation study
We evaluated the  contribution of MLP to the proposed method. We compared the performance of  HRNetV231 
with the performance of HRNetV2 combined with MLP. Table 7 presents the MRE, SD, and SDR for each 
model. Accordingly, it was deduced that the application of MLP significantly improves the performance. This 

Table 3.  Intra- and inter-observer mean prediction error, standard deviation and the ICC values with 95% 
confidence intervals for 23 landmarks.

Landmark
The intra-observer prediction error 
(mm)

The inter-observer prediction error 
(mm)

ICC(1, 3) with 95% confidence 
intervals

ICC(2, 3) with 95% confidence 
intervals

L1 0.32 ± 0.06 0.39 ± 0.08 0.994 (0.971–0.999) 0.993 (0.970–0.999)

L2 0.34 ± 0.06 0.40 ± 0.07 0.996 (0.981–1.000) 0.995 (0.979–0.999)

L3 0.36 ± 0.08 0.40 ± 0.11 0.997 (0.985–1.000) 0.993 (0.968–0.999)

L4 0.38 ± 0.06 0.39 ± 0.09 0.993 (0.968–0.999) 0.994 (0.975–0.999)

L5 0.36 ± 0.10 0.43 ± 0.10 0.996 (0.982–1.000) 0.992 (0.964–0.999)

L6 0.35 ± 0.10 0.46 ± 0.09 0.998 (0.991–1.000) 0.993 (0.966–0.999)

L7 0.41 ± 0.09 0.48 ± 0.05 0.997 (0.987–1.000) 0.994 (0.975–0.999)

L8 0.44 ± 0.07 0.44 ± 0.10 0.994 (0.972–0.999) 0.993 (0.965–0.999)

L9 0.42 ± 0.08 0.45 ± 0.06 0.995 (0.979–0.999) 0.996 (0.979–1.000)

L10 0.39 ± 0.10 0.33 ± 0.07 0.993 (0.971–0.999) 0.993 (0.969–0.999)

L11 0.25 ± 0.05 0.22 ± 0.05 0.992 (0.965–0.999) 0.994 (0.967–0.999)

L12 0.25 ± 0.06 0.24 ± 0.04 0.994 (0.971–0.999) 0.993 (0.969–0.999)

L13 0.46 ± 0.08 0.30 ± 0.04 0.993 (0.967–0.999) 0.993 (0.967–0.999)

L14 0.52 ± 0.06 0.35 ± 0.06 0.993 (0.967–0.999) 0.998 (0.992–1.000)

L15 0.51 ± 0.06 0.33 ± 0.08 0.995 (0.975–0.999) 0.998 (0.981–1.000)

L16 0.55 ± 0.06 0.39 ± 0.10 0.994 (0.974–0.999) 0.997 (0.984–1.000)

L17 0.34 ± 0.05 0.29 ± 0.07 0.994 (0.972–0.999) 0.996 (0.981–1.000)

L18 0.37 ± 0.07 0.29 ± 0.07 0.993 (0.968–0.999) 0.997 (0.986–1.000)

L19 0.28 ± 0.06 0.33 ± 0.09 0.993 (0.968–0.999) 0.998 (0.991–1.000)

L20 0.46 ± 0.06 0.43 ± 0.11 0.994 (0.973–0.999) 0.999 (0.994–1.000)

L21 0.47 ± 0.06 0.46 ± 0.08 0.995 (0.977–0.999) 0.998 (0.989–1.000)

L22 0.23 ± 0.05 0.46 ± 0.07 0.992 (0.966–0.999) 0.997 (0.985–1.000)

L23 0.22 ± 0.06 0.35 ± 0.08 0.996 (0.981–1.000) 0.996 (0.990–1.000)

Table 4.  Comparison of MRE and SDR for the automated cephalometric analysis systems. All methods were 
trained by the ISBI2015  dataset13. The averages using test1 and test2 are reported. Significant values are in bold.

Method

MRE (mm) SDR (%)

2.0 mm 2.5 mm 3.0 mm 4.0 mm

Ibragimov et al.14 1.96 68.13 74.63 79.77 86.87

Lindner et al.15 1.77 71.65 76.93 82.17 89.85

Arik et al.18 - 72.30 78.21 82.24 86.81

Gilmour et al.9 1.14 83.81 89.14 93.22 97.13

Li et al.10 1.20 83.72 89.34 92.72 96.78

Kwon et al.2 1.24 83.01 88.78 92.21 96.59

Oh et al.19 1.29 82.08 88.06 92.34 96.92

Proposed 0.85 96.35 98.80 99.64 99.99
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indicates that heatmap regression, followed by coordinate regression using MLP, works effectively. The MRE for 
each landmark is presented in Fig. 7. The accuracies for Sella, Porion, Gonion, Basion, and Articulare, where 
HRNetV2 exhibits a poor accuracy, were also significantly improved. Table 8 presents the SCR for each. From 
this Table, it is evident that the accuracy is significantly improved, except for MW, which is consistently high. 
Figure 8 presents a visualization of the estimations by HRNetV2 and HRNetV2 + MLP, including the ground 
truth locations of the landmarks.

Discussion
The proposed method is novel because it estimates the location of cephalometric landmarks without lateral 
cephalograms. Table 7 shows that the MRE of the proposed method is 0.61 mm. While a direct comparison is 
difficult due to differences in datasets, the proposed method demonstrates higher performance compared to the 
previously reported  error18 between expert clinicians and existing methods. The experimental results suggest 
that the proposed method may perform at a level equal to or potentially better than existing methods using 
cephalograms. Although a manual analysis is limited by inter- and intra-person errors, the proposed model 
achieves an SD of 1 mm for all landmarks except for Sella. This implies that the proposed model can provide a 
stable estimation with small deviations. Furthermore, the proposed method achieves a significant SDR and is free 

Table 5.  MRE, SD, and SDR for each landmark.

Landmark

MRE (mm) SD (mm) x-direction y-direction SDR (%)

∆x (mm) SD (mm) ∆y (mm) SD (mm) 2.0 mm 2.5 mm 3.0 mm 4.0 mm

L1 1.13 1.39 0.44 0.31 0.91 1.37 89.95 95.35 97.50 99.25

L2 0.67 0.33 0.28 0.19 0.56 0.35 99.70 99.90 99.95 100

L3 0.53 0.30 0.26 0.19 0.40 0.30 99.80 99.90 100 100

L4 0.39 0.16 0.30 0.16 0.20 0.13 100 100 100 100

L5 0.63 0.36 0.43 0.35 0.37 0.29 99.40 99.80 99.95 99.95

L6 0.64 0.35 0.32 0.25 0.48 0.34 99.50 99.95 99.95 99.95

L7 0.72 0.41 0.38 0.29 0.53 0.42 99.00 99.70 99.95 100

L8 0.61 0.37 0.36 0.27 0.41 0.35 99.45 99.85 99.90 99.95

L9 0.70 0.40 0.41 0.31 0.48 0.31 98.90 99.80 99.90 100

L10 0.63 0.69 0.19 0.14 0.56 0.71 98.85 99.65 99.80 99.90

L11 0.66 0.37 0.43 0.34 0.41 0.31 99.45 99.70 99.90 99.95

L12 0.59 0.36 0.37 0.31 0.38 0.31 99.80 99.95 99.95 99.95

L13 0.30 0.15 0.17 0.13 0.21 0.14 100 100 100 100

L14 0.68 0.54 0.45 0.35 0.41 0.51 99.50 99.85 99.90 99.90

L15 0.42 0.14 0.23 0.14 0.31 0.14 100 100 100 100

L16 0.46 0.28 0.36 0.28 0.22 0.18 99.90 99.90 99.90 99.95

L17 0.47 0.20 0.33 0.18 0.27 0.18 100 100 100 100

L18 0.71 0.39 0.52 0.39 0.38 0.30 98.60 99.75 99.90 99.95

L19 0.51 0.29 0.37 0.29 0.28 0.20 99.90 99.95 99.95 100

L20 0.60 0.29 0.39 0.26 0.37 0.26 99.85 100 100 100

L21 0.95 0.62 0.45 0.36 0.75 0.63 92.45 96.95 99.00 99.85

L22 0.45 0.25 0.28 0.22 0.30 0.23 99.80 99.95 100 100

L23 0.50 0.29 0.37 0.25 0.27 0.24 99.35 99.75 99.80 99.95

Average 0.61 0.53 0.35 0.30 0.41 0.51 98.83 99.55 99.79 99.93

Table 6.  Comparison of SCR for the automated cephalometric analysis systems. Numbers are given in 
percentages (%).  Significant values are in bold. 

Method ANB SNB SNA ODI APDI FHI FMA MW

Ibragimov et al.14 66.31 72.75 63.50 72.31 80.07 70.08 77.78 81.38

Lindner et al.15 69.33 83.48 72.26 79.29 84.18 77.11 77.59 82.16

Arik et al.18 67.81 69.99 64.83 73.94 84.30 67.22 75.54 79.77

Kwon et al.2 81.78 84.14 72.91 85.26 87.47 86.40 85.75 87.50

Oh et al.19 80.90 85.23 68.98 79.01 86.15 82.48 80.98 87.73

Proposed 90.45 87.30 83.50 93.75 91.50 93.55 93.55 98.65
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from the effects of extreme  outliers18,19 which have limited several previous studies. Therefore, a cephalometric 
analysis using AI may replace a human analysis in the future.

The accuracy is also high for landmarks that have been considered difficult to estimate accurately in exist-
ing studies. Figure 7 indicates that the estimations of Gonion and Articulare by HRNetV2 are still inaccurate. 
This may be due to the influence of the ear rod used to fix the head position, which is commonly included in 
both lateral cephalograms and facial profile images. This supports the idea that CNN-based heatmap regression 
methods learn each landmark independently. In particular, HRNetV2 strictly learns the positional relationship 
of each landmark with the surrounding features owing to the parallel distributed processing with many convo-
lutional layers applied. Following the estimation with HRNetV2, the refinement of the landmark locations using 
MLP contributes to an improvement of the estimation accuracy of all landmarks. It is difficult to learn intricate 
positional relationships using only MLP. Note that the estimation in HRnetV2 described in the previous section 
may include the potential structural relationships among landmarks. Because MLP is fully connected from the 
input layer to the output layer and the input location information is processed comprehensively, it is possible 
to explicitly learn this potential positional relationship. This should allow MLP to incorporate the structural 
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Figure 6.  Performances of deep convolutional neural network-based AI model. (a) MRE of training and test 
according to the number of cycles. (b) HRNetV2 Loss of training and test according to the number of cycles. (c) 
MLP Loss of training and test according to the number of cycles. Cycle means the process of training one epoch 
of HRNetV2 followed by 100 epochs of MLP.

Table 7.  Performance of the proposed method and comparison of MRE, SD, and SDR, with and without MLP.

Method

MRE (mm) SD (mm) SDR (%)

2.0 mm 2.5 mm 3.0 mm 4.0 mm

HRNetV231 4.11 3.21 22.42 32.23 40.74 58.20

HRNetV231+MLP 0.61 0.53 98.20 99.55 99.79 99.93
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features among landmarks into the estimation, which should lead to a significant improvement in accuracy. The 
effectiveness of incorporating structural relationships among landmarks in an estimation was also shown by 
Oh et al.19. Although Fig. 6a, b show that HRNetV2, which provides the intermediate output, tends to overfit, 
Fig. 6a, c show that the loss of training and test data is very similar in the MLP that provides the final output, 
indicating almost no over-fitting issue. This suggests that MLP is effective in reducing the effects of over-fitting 
by HRNetV2. Increasing the number of data may reduce over-fitting in HRNetV2 and further improve overall 
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Figure 7.  MRE for each landmark, with and without MLP.

Table 8.  SCR comparison, with and without MLP.

Method ANB SNB SNA ODI APDI FHI FMA MW

HRNetV231 66.30 56.75 44.60 65.70 64.00 76.70 79.35 97.65

HRNetV231+MLP 90.45 87.30 83.50 93.75 91.50 93.55 93.55 98.65

Figure 8.  Visualization of landmarks, with and without MLP. (a,b) The best and worst result of the model with 
MLP, respectively. Blue and green dots show the estimations by HRNetV2 and HRNetV2+MLP, respectively, and 
the red dots indicate the ground truth.
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accuracy. In addition, enhancing the heatmap regression procedure can further enhance the overall performance. 
We can introduce adaptive wing  loss34 or face boundary  prediction33, which achieves a high accuracy in facial 
landmark detection.

As demonstrated in Table 5, Sella, and Mo have a larger MRE and lower SDR at 2 mm than the other land-
marks. In particular, Sella has a larger error in the y-direction. Two reasons can be given for the estimation dif-
ficulty: First, Sella is the highest position among the landmarks to be estimated in most cases, and its location is 
far from the jaw area where the landmarks are densely located. Second, Mo has large errors in both the x- and 
y-directions. It appears that the variation of the position among patients biased the model. The error tends to be 
larger in the y-direction than in the x-direction. The shape of the face may influence the estimation. Most of the 
patients in this study have long faces, and landmarks are scattered in the y-direction. This may explain why the 
estimation error in the y-direction is larger than that in the x-direction.

Table 6 implies that the proposed method achieves a significant SCR. Because the SCR is calculated using 
linear and angular measurements, it is not influenced by the pixel spacing. Therefore, we can make reliable 
comparisons, even with different datasets. Note that the dataset used in this study did not include patients with 
a malocclusion. However, a clinical evaluation requires the inclusion of such data.

The performance of the proposed method tends to depend on the size and diversity of the training data. Previ-
ous  studies39 have reported that the accuracy of the proposed method increases with an increase in the number 
of data. Hence, adding more data is the easiest way to improve the system. However, this study also includes 
the risk of bias regarding the validation discussed in Schwendicke et al.40. Because the MLP approach is model-
agnostic, there is no restriction on the heatmap regression model used for the initial estimation. The proposed 
method can reconcile the local features of images with the spatial relationship between landmarks. Hence, it 
may be widely used for landmark detection tasks such as facial landmark detection and pose estimation. In the 
future, it will be necessary to address 3D landmark detection.

Conclusion
In this paper, we proposed a novel cephalometric landmark detection method without the use of X-rays. The pro-
posed framework combines the CNN-based heatmap regression model (HRNetV2) with a coordinate regression 
model (MLP). HRNetV2 estimates the location of landmarks by learning the relationship between local features 
and landmarks. However, it is limited by the same problem as conventional heatmap regression methods, and its 
accuracy is insufficient. The MLP following HRNetV2 can learn the spatial positional relationship between land-
marks, which significantly improves the accuracy of the estimation. In experiments conducted with the created 
dataset, the proposed method performed remarkably with an MRE of 0.61 mm and a detection rate within 2.0 
mm of 98.20%. The proposed method also achieved a high accuracy in terms of anatomical face-type classifica-
tion, where a reliable comparison between different datasets is possible. In the future, in addition to replacing 
existing methods using X-rays, the proposed method may also replace measurements by humans. Because the 
proposed landmark refinement using MLP is model-agnostic, it can be combined with conventional methods. 
Furthermore, it has the potential to be a prominent approach applicable to various landmark detection tasks and 
provide significant improvements in performance.

Data availability
 The datasets generated and analyzed during the study are not publicly available because sensitive information 
in them may violate patient privacy and our institution’s ethics policy. However, the datasets are available from 
the corresponding author on reasonable request. Data usage agreements may be required.
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