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Computer‑aided 
diagnosis of keratoconus 
through VAE‑augmented images 
using deep learning
Zhila Agharezaei 1,2,6, Reza Firouzi 3, Samira Hassanzadeh 4, Siamak Zarei‑Ghanavati 5, 
Kambiz Bahaadinbeigy 6, Amin Golabpour 7, Reyhaneh Akbarzadeh 8, Laleh Agharezaei 9, 
Mohamad Amin Bakhshali 2, Mohammad Reza Sedaghat 5 & Saeid Eslami 1,2*

Detecting clinical keratoconus (KCN) poses a challenging and time‑consuming task. During the 
diagnostic process, ophthalmologists are required to review demographic and clinical ophthalmic 
examinations in order to make an accurate diagnosis. This study aims to develop and evaluate the 
accuracy of deep convolutional neural network (CNN) models for the detection of keratoconus (KCN) 
using corneal topographic maps. We retrospectively collected 1758 corneal images (978 normal 
and 780 keratoconus) from 1010 subjects of the KCN group with clinically evident keratoconus and 
the normal group with regular astigmatism. To expand the dataset, we developed a model using 
Variational Auto Encoder (VAE) to generate and augment images, resulting in a dataset of 4000 
samples. Four deep learning models were used to extract and identify deep corneal features of original 
and synthesized images. We demonstrated that the utilization of synthesized images during training 
process increased classification performance. The overall average accuracy of the deep learning 
models ranged from 99% for VGG16 to 95% for EfficientNet‑B0. All CNN models exhibited sensitivity 
and specificity above 0.94, with the VGG16 model achieving an AUC of 0.99. The customized CNN 
model achieved satisfactory results with an accuracy and AUC of 0.97 at a much faster processing 
speed compared to other models. In conclusion, the DL models showed high accuracy in screening for 
keratoconus based on corneal topography images. This is a development toward the potential clinical 
implementation of a more enhanced computer‑aided diagnosis (CAD) system for KCN detection, which 
would aid ophthalmologists in validating the clinical decision and carrying out prompt and precise KCN 
treatment.

Keratoconus (KCN) is a non-inflammatory disease characterized by bilateral progressive corneal thinning that 
results in an abnormally steep cornea, decreased vision, and potentially leading to vision loss if it is not detected 
and treated at an early  stage1. Although the underlying causes of KCN are unknown, Ophthalmologists, link 
it to chronic disease, eye rubbing, and genetic inheritance. KCN progression may proceed quickly or slowly, 
and it may come to an end at some  point2. Keratoconus affects 1 in 2000 people in the general population, and 
both the prevalence of the condition in adults and children has considerably increased in recent  years3. Asian 
populations have approximately four times higher prevalence of KCN compared to other ethnic  groups4, with 
the highest prevalence observed in the Mediterranean region and the Middle East, such as  Iran5. According 
to epidemiological studies released in recent years, just 0.3 cases per 100,000 persons 0.0003% are reported in 
Russia, 2.3% in India, and 2.5% in  Iran6.
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In the field of machine learning, researchers face a significant challenge in obtaining sufficient medical image 
datasets. This is due to the difficulty in capturing such data, as well as the time-consuming process of acquiring 
and labeling it, which requires considerable effort from both researchers and  specialist7. To address the issue of 
limited datasets, various studies have explored the use of data augmentation, a popular technique in computer 
 vision8. AI has advantages over human evaluation in terms of data processing, information integration, and 
diagnostic speed. To date, many methods for implementing machine learning, such as support vector machines, 
decision trees, or neural networks, have been recommended. In many scientific fields, multilayered neural net-
works, specifically convolutional neural networks (CNNs), have recently accomplished outstanding effects in a 
variety of image  classifications9. Several studies have employed machine learning to identify  keratoconus10–14, 
however the majority have either used topographic numeric indices obtained with a Placido disc-based cor-
neal topographer or tomographic numeric indices acquired using a scanning slit tomographer and a rotating 
Scheimpflug camera. The impressive capabilities of convolutional neural networks (CNNs) in pattern recognition 
and image classification tasks make them a highly suitable option for automating the analysis of color-coded 
 images15–18. Deep learning methods, in particular deep convolutional neural networks (CNNs), have been used 
to identify KCN using color-coded corneal maps of elevation, curvature, and  thickness19–23. Despite the fact that 
DL models generally need a larger number of samples, these research typically used limited subsets of images with 
fewer than 400  images20. Zeboulon et al.22 detected KCN and a history of refractive surgery using a sizable dataset 
with 3000 corneal images. They distinguished KCN from normal with a high degree of accuracy. Additionally, 
since developing and refining deep CNN models is often computationally expensive, models that execute more 
quickly, like our current model, have a better chance of being incorporated in clinical settings.

In this study, an innovative approach involving variational auto encoders (VAE) was employed to generate 
and augment images. we employed a substantial dataset comprising 4000 corneal images to train and assess four 
deep convolutional neural network (CNN) models for the purpose of diagnosing keratoconus. Three of these 
methods utilized transfer learning and fine-tuning of pretrained models on a customized dataset. The fourth 
method employed a customized CNN as a proposed model developed from scratch. Each model became an 
expert at identifying KCN features from that specific corneal map and a variety of topographic patterns, instead 
of complex topographic indexes.

Results
The keratoconus group consisted of 475 patients, 275 men and 200 women, with the mean age of 33.27 ± 8.09 
years. The normal group consisted of 535 subjects who were refractive surgery candidates, had 188 men and 347 
women, with the mean age of 34.56 ± 8.76 years. The keratoconus group was younger than the normal group and 
substantially different were noted concerning sex distribution (Table 1).

Table 2 presents the descriptive statistics of topographical parameters for both groups, indicating significant 
differences in all indices between the keratoconus and normal groups.

In order to address the challenge of limited data for deep learning training and to expand our dataset, we 
conducted training using VAE generative models. Our training encompassed the entire dataset, which comprised 
a total of 1748 images. This dataset was divided into two categories: 978 images categorized as ‘Normal’, and 780 
images categorized as ‘Keratoconus’. The training process resulted in a cumulative loss of approximately 6.667. 
This loss included a reconstruction loss of 5.533 and a Kullback–Leibler loss of approximately 1.133 for the latest 
iteration of our models (Fig. 1).

We opted to train our generative models on the entire dataset, encompassing images from both classes. This 
decision was based on the efficiency demonstrated by VAE networks in clustering and discerning feature dis-
tinctions between these classes. This efficiency is particularly evident when VAE functions as an unsupervised 
model solely aimed at uncovering data patterns. Notably, our experimentation has confirmed that training a 
generative model like VAE on the Normal and Keratoconus classes separately yields no discernible advantage 
over training on both image types simultaneously, as clearly depicted in Fig. 2. This underscores the significant 
pattern recognition capabilities of these models.

For improved visualization of our network’s outcomes, we adopted a method wherein we designated a spe-
cific range of mean (μ) and standard deviation (σ) parameters within the latent space. These parameters were 
meticulously selected to generate diverse sets of latent variables (Z), which were then employed as inputs for our 
pre-trained decoder model. In our study, the decoder model’s weights, having undergone careful training on our 
dataset, were loaded and initialized with these varied latent variable inputs. This approach allowed us to generate a 
series of images across the specified parameter range. Specifically, we employed 30 different values for both mean 

Table 1.  Characteristics of population.

Attributes

Keratoconus (n = 475) Normal (n = 535)

P valueMean ± SD Mean ± SD

Age (years) 33.27 ± 8.09 34.56 ± 8.76 0.03

Frequency (%)

 Sex

  Male 275 (57.9) 188 (35.1)  < 0.001

  Female 200 (42.1) 347 (64.9)
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and standard deviation parameters, maintaining a consistent step and separation between each value. As a result, 
we created a total of 900 novel image samples, encompassing various types and patterns, as depicted in Fig. 3.

As demonstrated in Fig. 4, (A) illustrates the original images utilized as a part of test dataset. (B) demonstrates 
the initial version of outputs by training VAE model using data from only one clinic. Subsequently, through an 
increase in the number of images from multiple clinics and Optimizing VAE model, the final version of outputs 
achieved a satisfactory level of quality and confidence in learning significant discriminative cone types patterns 
(C). According to Fig. 4, the model has the ability to produce synthetic images that closely resemble the original 
images.

We developed CNN models for classifying corneal types in cases for keratoconus and normal before and 
after generative images with the VAE model. Table 3 demonstrated that the utilization of synthesized images 
during training process increased classification performance. After training, all of the CNN models showed 
reasonable accuracy, and no evidence of overfitting was noted when the test dataset was applied (Fig. 5). The 
accuracy, sensitivity, specificity, PPV, NPV, AUC are shown in Table 3. The highest accuracy level of 0.993 was 
obtained employing VGG16 model with (sensitivity 0.994, specificity 0.987), followed by ResNet152-V2 (0.959) 
with (sensitivity 0.959, specificity 0.953), EfficientNet-B0 (0.952) with (sensitivity 0.944, specificity 0.983), and 
customized CNN (0.974) with (sensitivity 0.980, specificity 0.966). The area under the receiver operator charac-
teristic curve was 0.988 for VGG, 0.964 for ResNet152-V2, 0.963 for EfficientNet-B0, and 0.973 for customized 
CNN, as illustrated in Fig. 5 (bottom). The performance of each model was deemed acceptable, with VGG16 
exhibiting the best performance.

The outcomes of DL classification were shown in Fig. 6 using VGG16 model as an example. The normal 
group consists of (A), flat topographic feature and regular astigmatism, while the keratoconus group consists 

Table 2.  Topographic parameters of the keratoconus and the normal. AveK average keratometry, D diopter, 
Cyl cylinder, SRI surface regularity index, SAI surface asymmetric index.

Attributes

Keratoconus (n = 475) Normal (n = 535)

P valueMean ± SD Mean ± SD

AveK (D)

 OD 48.66 ± 3.92 44.11 ± 1.66  < 0.001

 OS 48.7 ± 4.00 44.18 ± 1.49  < 0.001

 Total 48.68 ± 3.96 44.15 ± 1.57  < 0.001

Cyl (D)

 OD 4.77 ± 2.48 1.57 ± 1.50  < 0.001

 OS 4.52 ± 2.58 1.65 ± 1.46  < 0.001

 Total 4.64 ± 2.53 1.61 ± 1.48  < 0.001

SRI (D)

 OD 0.83 ± 0.45 0.16 ± 0.23  < 0.001

 OS 0.82 ± 0.43 0.17 ± 0.21  < 0.001

 Total 0.82 ± 0.44 0.17 ± 0.22  < 0.001

SAI (D)

 OD 1.92 ± 1.07 0.37 ± 0.21  < 0.001

 OS 1.93 ± 1.09 0.39 ± 0.20  < 0.001

 Total 1.93 ± 1.07 0.38 ± 0.20  < 0.001

Figure 1.  VAE model training loss metrics.
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of (B), steep topographic feature. According to the algorithm, (A) are both normal and predicted as 86% (top) 
and 89% (bottom) of cases, respectively; (B) are both keratoconus feature and predicted as 98% (top) and 92% 
(bottom) of cases, respectively. As a result, the present algorithm effectively and correctly distinguished between 
keratoconus and normal.

Figure 2.  Visualization of clustering by VAE.

Figure 3.  900 outputs of reconstruction process varying among discriminative cone types.
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We additionally calculated the confusion matrix to assess the performance and quality of the learning process. 
The confusion matrix of VGG16 is presented in Fig. 7. Out of the 800 images, there were only thirteen misclas-
sifications, including five cases of KCN eyes were incorrectly classified as normal. Figure 8 illustrates examples 
of eyes misclassified by the DL model for VGG16.

We also included Grad-Cam outputs, a widely accepted approach for visualizing feature maps and pinpointing 
the most salient regions of interest within the final layer of deep CNN models. The quality of these visualizations 
was further enhanced through the application of a heat map mixture technique. This refinement contributes to 
the production of higher-quality figures, which, in turn, serves as a robust means of validating the models and 
their associated trained parameters (Fig. 9).

Discussion
We developed multiple DL models to classify keratoconus from non-invasive corneal topography images. In order 
to solve some of the problems and limitations in previous models, we employed a novel design approach. Large 
representative datasets are often necessary for DL models to effectively learn various features associated with 
the underlying condition. In this study, we utilized a relatively large dataset consisting of 4000 corneal images. 
We employed the VAE model to generate and augment the images. VAEs can be great for feature extraction. The 
utilization of VAE assists the network in acquiring the ability to generate outputs from a continuous distribution, 
enabling it to process diverse inputs and produce the desired  outcomes24,25. It is worth mentioning that one of 
the capabilities of auto-encoders, as unsupervised learning models, is to cluster data and assign relevant classes 
as labels. In this study, despite the predetermined labels for the reconstructed data, this aspect was applied as an 
effective representation of the customized VAE. The VAE model was used to synthesize images from original 
images, and the resulting images are displayed in Fig. 4. The high quality of these images is evident, and it is 

Figure 4.  An overview of progression in our VAE outputs through developing various versions. Original 
images (A). Initial model outputs (B). Final generated images (C).

Table 3.  Results of CNN models before and after generating images with the VAE model. *In prevalence of 
44%.

Models Data Accuracy Sensitivity Specificity PPV* NPV* AUC 

VGG16
Original 0.962 0.959 0.974 0.980 0.949 0.966

Synthesized 0.993 0.994 0.981 0.994 0.993 0.988

ResNet152-V2
Original 0.939 0.945 0.923 0.928 0.965 0.939

Synthesized 0.959 0.959 0.953 0.956 0.954 0.964

EfficientNet-B0
Original 0.943 0.953 0.900 0.934 0.948 0.926

Synthesized 0.952 0.944 0.983 0.971 0.949 0.963

Customized CNN
Original 0.950 0.954 0.960 0.950 0.972 0.957

Synthesized 0.974 0.980 0.966 0.967 0.970 0.973
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also apparent that the structures and morphologies of the images are stable. The study found that the diagnostic 
accuracy of VGG16, ResNet152-V2, EfficientNet-B0, and customized CNN classifiers improved significantly 
after using synthetic data samples. Specifically, the diagnostic outcomes for these classifiers increased from 
0.962 to 0.993, 0.939 to 0.959, 0.943 to 0.952, and 0.950 to 0.974, respectively. The results from Table 3 indicate 
that the use of synthetic data samples can enhance the variability of the input dataset, leading to more precise 
clinical decisions.

Figure 5.  The training results and AUC of the all CNN models. The AUC was 0.99 in VGG16 (top left), 0.96 in 
ResNet152 (top middle), 0.96 in EfficientNet-B0 (top right), and 0.97 in customized CNN (bottom).
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Figure 6.  The example of the trained VGG16 model.

Figure 7.  Confusion matrix of VGG 16 model for KCN diagnosis was obtained during evaluation step on test 
dataset.

Figure 8.  Four sample images that were misclassified by the DL model for VGG16. Two normal eyes that were 
misclassified as KCN (A). Two KCN eyes that were misclassified as normal (B).
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Some researchers also have utilized approaches to data augmentation to enhance the training process. These 
methods involve generating high-quality sample images through the use of a generative model called generative 
adversarial networks (GANs)26,27During a corneal diseases diagnosis task, Hwang et al.28 demonstrated that 
synthetic data augmentation using CGANs improves accuracy by approximately 13% compared to traditional 
data augmentation methods. The Xception classifier achieved the highest level of performance with 90.5% when 
using synthesized data. The utilization of conditional GAN for data augmentation has been found to enhance 
the segmentation accuracy of retinal OCT images, as reported in a previous  study29. In several studies, GAN has 
been utilized to increase the amount of data available for analysis in various eye conditions. For instance, it has 
been used to augment anterior OCT images for angle-closure glaucoma, ocular surface images for conjunctival 
 disease30, and corneal topography images for keratoconus detection. They evaluated the performance of the VGG-
16 DCNNs to classify a test set using six distinct combinations of both original and synthesized images during 
the training process. Similar to our study, the VGG16 model obtained the highest accuracy of 99.78%31. These 
findings suggest that incorporating synthetic data samples into the training process of medical image classifiers 
can improve their diagnostic accuracy and ultimately benefit patients.

Several studies have exclusively employed corneal topography  parameters20,32. Kmax, I-S and KISA have 
been utilized as parameters, however there are still challenges with their utilization, including high false-positive 
rates, complexity, overlap between parameters of normal and KCN eyes, and the number of accessible param-
eters, which can make interpretation  complicated33. These studies highly depend on manually created features 
or machine-extracted indices such as  SVM34, logistic  regression35, random  forest36, decision  trees37, and neural 
 networks38. DL models can offer a complete solution that learns to extract features without supervision, without 
the need for manually created features or produced  parameters16,19–21.Since color-coded maps can provide more 
visual information than topographic and tomographic numeric indices for this learning, we employed the entire 
images of color-coded maps for deep learning.

In this study, we developed multiple DL models, each trained to extract pertinent deep features from the 
corneal topographic maps to detect KCN. Our results demonstrated that the utilization of deep learning offered 
the highest accuracy of 0.99 and AUC 0.99 using the VGG16 model in distinguishing between KCN and normal 
groups (Table 3). These findings suggest that deep learning can potentially improve the diagnostic precision of 
keratoconus. All models exhibited a sensitivity and specificity exceeding 0.94. The VGG16 model achieved the 
highest sensitivity of 0.99, closely followed by the customized CNN with a sensitivity of 0.98. Both the VGG16 
and EfficientNet-B0 models demonstrated the highest specificity of 0.98. High sensitivity indicates a low rate 
of false-negative predictions, which implied that the trained CNN models were appropriate for keratoconus 

Figure 9.  The visualization of the trained CNN models. The left column shows original topographic images. 
The right column is the heat map visualization as a result of Grad-Cam method which demonstrates the most 
significant area in the topographic images.
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screening. Furthermore, the models exhibit high specificity, indicating strong predictive capability for the normal 
group. The central cone and the asymmetric bowtie with a skewed radial axis (AB/SRAX) (Fig. 6B (bottom)) are 
two typical topographic patterns of keratoconus that our algorithms were able to recognize in addition to the 
inferior steep pattern. Figure 8 presents sample images of eyes that were misclassified by the VGG16 model. Out 
of 800 samples, there were thirteen misclassifications, including five KCN-positive eyes that were incorrectly 
labeled as normal. The reason for this issue can be due to the similarity of regular astigmatism pattern in normal 
cornea with bowtie’s in keratoconus.

Our study demonstrated that the customized CNN model is a promising approach for achieving accurate 
predictions while minimizing network complexity. Although the VGG16 model outperformed other models in 
this study, the customized CNN model achieved satisfactory results with an accuracy and AUC of 0.97 at a much 
faster processing speed compared to other models, which is a strength of our study. This may be due to the ease 
of training the network to extract suitable features from the data with fewer convolutional layers and relevant 
filters. Therefore, while deep CNNs are strong in feature learning and obtaining suitable weights, it is possible to 
achieve similar prediction quality with the customized CNN model with much less network complexity in a more 
optimal time. Furthermore, the GradCam results, depicted in Fig. 9, demonstrate that the model concentrates 
its attention on the central area, which is considered the region of clinical significance.

In the study by Abdülhüssein et al.39, VGG-16, a pre-trained CNN model, was employed to identify distinct 
topographic maps. The classification accuracy achieved for SAG, EF, EB, and CT maps was 88.8%, 98.9%, 94.8% 
and 94.5%, respectively. It is important to mention that the evaluation was conducted on separate training and 
testing sets, without a validation set. A comparison of previous research into KCN  detection19–23,40 is provided 
in Table 4, which also contains information on the device used, the number of eyes, the DL models used, and 
the evaluation methods.

Although we utilized a substantial dataset and a reliable platform, our study has some potential limitations. 
First, since the data were gathered from two different clinical settings in Mashhad, it is essential to collect data 
from populations of other races in order to independently evaluate the models and assure generalizability. Second, 
this study used front topographic corneal maps, which may produce comparable results to other topographic 
maps from different platforms. However, future research should investigate the impact of fusing different corneal 
maps and their combinations on the accuracy and generalizability of the results. Third, other corneal disorders, 
such as subclinical keratoconus was not included in this study due to insufficient availability of relevant images. 
Further research is recommended to explore the potential of using the GAN model for corneal image synthesis 
in order to achieve better results and evaluate the differences between corneal maps of normal eyes and eyes 
with suspected KCN.

Methods
Study population
This retrospective study received approval from two crowded tertiary eye clinics, namely Noorafarin and Didar in 
Mashhad, and was conducted in accordance with the principles outlined in the Declaration of Helsinki. Informed 
consent was provided by all patients. Initially, we collected 1900 corneal images from overall 1127 subjects were 
included from September 2015 to June 2021. Most of the patients were candidates for refractive surgery. Subjects 
with the previous ocular surgery, trauma, corneal degenerations, and contact lens discontinuation less than three 
weeks had been excluded. Ultimately, a total of 1010 subjects with 1758 images were included in this study. The 
sample sizes were as follows: 978 images of normal corneas from 535 subjects and 780 images of KCN from 475 
patients. The medical records of each patient had been reviewed and retrieved to confirm the diagnosis of KCN. 

Table 4.  The detection of KCN from corneal topographic images in the previous literature.

Study
Groups labeling 
technique

Corneal imaging 
modality Dataset Evaluation method

Machine learning 
method/s used Accuracy

Kamiya et al.19 Normal and 4 grades 
of KCN Tomey CASIA 543 cases Fivefold CV ResNet-18 99%

Kuo et al.20 Normal, KCN Tomey TMS-4 Corneal 
Topographer 354 cases Training, testing, and 

subclinical testing

VGG16 93.1%

InceptionV3 93.1%

ResNet152 95.8

Lavric and  Valentin21 Normal, KCN Synthetic maps SyntEyes and SyntEyes 
KTC  models41/1 map

Training, validation, and 
testing KeratoDetect 99.3%

Zeboulon et al.22 Normal/KCN and his-
tory of refractive surgery Bausch + Lomb Orbscan 3000 cases Tenfold CV CNN 99.3%

Al-Timemy et al.23 Normal, KCN OCULUS Pentacam 534 cases Training, validation, and 
testing

EDTL with AlexNet and 
product fusion 98.3%

Al-Timemy et al.40 Normal, KCN, suspected 
KCN OCULUS Pentacam 692 eyes Training, validation, and 

independent testing
EfficientNet-B0 DL with 
SVM

Two-class, 98%
Three-class, 81.6%

This study Normal, KCN Tomey TMS-4 Corneal 
Topographer 1758 eyes Training, validation, and 

testing

VGG16 99.3%

ResNet152-V2 95.9%

EfficientNet-B0 95.2%

Customized CNN 97.4%
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Each patient’s records consisted of the results of optometry and ophthalmology examinations including slit lamp 
biomicroscopy, dry and cycloplegic refraction, and uncorrected and best-corrected visual acuity. To diagnose at-
risk corneas, Corneal topography, tomography, and biomechanical corneal characteristics were evaluated using 
Tomey (TMS-4N, Tomey Corp.), Pentacam HR (Oculus, Wetzlar, Germany), and Corvis ST (Oculus, Wetzlar, 
Germany) devices respectively. There are three corneal specialists were involved in the assessment, diagnosis 
and labeling of the keratoconus. The initial corneal topographic maps were collected with the use of (TMS-4N; 
Tomey Corporation, Nagoya, Japan).

Data preprocessing and algorithms
At first, data preprocessing was applied to eliminate irrelevant elements from the images, such as words and 
numbers. To achieve this, we utilized computer vision algorithms to crop and extract the cornea pattern in the 
images. Then a HSV mask was applied to filter out the segment of the cornea and the extra margins were removed, 
so the cornea was obtained. In the next step of the preprocessing, it was observed that a significant number of 
images acquired from high-resolution medical imaging devices, such as the TMS-4, were contaminated with 
regular noise. As a solution, a noise removal function was designed to denoise the images. This process was 
applied individually to all images. Eventually, a collection of high-quality images with normalized sizes were 
obtained for training deep learning models. Figure 10 shows a raw sample data with regular noise and its result 
after preprocessing.

Variational autoencoder (VAE) to augment images
One of the major challenges faced in the medical field is the scarcity of large-scale datasets. In this study, we 
proposed an innovative approach to address this issue by utilizing Variational Auto-Encoders (VAEs) to gener-
ate and augment images. Auto encoders are a combination of statistics and information theory, combined with 
the power of deep neural networks. They are efficient at solving generative problems for high dimensional data.

Variational auto encoders, in particular, focus on understanding the latent representation of data and provide 
a way to generate new samples using a probabilistic  approach42. The VAEs is a deep neural network that utilizes 
unsupervised learning. It is composed of two main components: an encoder and a decoder network, which are 
separated by a layer known as the latent variable layer or latent space. VAEs are often employed as generative 
models because they are able to extract useful features and learn a suitable representation of the data through the 
encoder, and then generate output that is in the same format as the original data by using the decoder which takes 
the latent representation as  input24,43. The encoder component of a VAE, when presented with an image input, 
produces a two-parameter latent vector representation through a sequence of down-sampling operations, such 
as convolutions. Similarly, the decoder component, when given a one-parameter latent vector representation, 
reconstructs the original input data via a series of up-sampling operations, such as transposed  convolutions25.

In our research, we employed a VAE model that comprises of both encoder and decoder networks, which are 
deep convolutional neural networks with 3 Convolutional layers and 1 fully connected layer in each. In addition 
to the input layer with a shape of 104 × 104 × 1 in dimensions, respectively, the architecture of the encoder net-
work is 64-32-16-128, where 64, 32 and 16 represents the number of filters in the convolutional layers while 128 
is the number of hidden neurons in the fully connected dense layer. The architecture of the decoder network is 

Figure 10.  A raw sample data with regular noise.
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2704-16-32-64, where 2704 is the number of hidden neurons in the deep net. After applying convolutional layers 
and performing down-sampling in the encoding process, a feature vector of size (13 × 13 × 16) was obtained by 
the flatten layer and passed to a dense layer with 128 input neurons and 2 output parameters which are mean and 
standard deviation of the data distribution. These two parameters are delivered to the latent space and a single 
sampling variable is provided by the latent layer and passed to the decoder model as an input sample.

Having order of the mentioned encoding procedure reversed, the decoder model takes a single sampling vari-
able vector as its input which is passed to a dense layer with the same number of neurons equal to the number 
of extracted features by the encoder, followed by a reshape layer. The resulting feature vector is then subjected 
to a series of up-sampling steps using three consecutive transposed convolutional layers, resulting in a final 
output vector of the original size of the input sample. Figure 11 shows the VAE architecture that was developed 
to generate images from corneal topographics.

The loss function of our VAE model like most of variational auto-encoders is based on 2 loss functions namely 
reconstruction loss and Kullback–Leibler (KL) divergence. The reconstruction error is an indication of the quality 
of the generated samples. The lower the error, the more optimized the generative performance. KL loss, however, 
aims to measure the divergence distance and dissimilarity of two distributions based on information theory and 
is used as a regularization technique for the latent  space44.

VAEs are interpreted as Bayesian inference model, where the prior distribution of the latent variable z is 
represented by p(z). The generative model for an observation x is defined as p(z|x) and the inference model for 
the latent representation of the data is defined as q(z|x). The objective of the VAE loss function is to minimize 
the KL divergence distance between the prior distribution p(z|x) and the inferred distribution q(z|x).

Instead of trying to minimize the KL divergence of the above term, we can simplify the loss function by re-
arranging it as a maximization objective using the decoder output y for the input data x as follow:

The first term in the above equation describes the log-likelihood of the reconstruction, while the second term 
represents an attempt to make the learned distribution q and the true prior distribution p as similar as possible by 
minimizing their  distance45. Hence, the total loss function of the VAE model for N input data of encoder {xi}Ni=1

  
and N output samples of decoder {yi}Ni=1

 with latent variable z can be shown below:

Before training our VAE model, it is necessary to prepare the raw dataset by converting all images to grayscale 
and adjusting their resolution. This is because unsupervised generative models tend to perform better when 
working with single channel images that are preprocessed in this way. A custom preprocessing method was 
designed to convert all images to grayscale while preserving the significance of color spectrum, borders and other 
features in the images. This is because, later in the classification task, one of the key features that distinguishes 
keratoconus patients from normal ones is the organization of the cornea color in the clinical images. Therefore, 
standard predefined methods such as the OpenCV grayscale conversion method could not be used, as they 
would not maintain the important features of the images. Figure 12 illustrates the difference of both conversions.

loss = minKL
(

q(z|x) || p(z|x)
)

.

loss = Eq(z|y)logp
(

y|z
)

− KL
(

q(z|x) || p(z)
)

.

loss =

N
∑

i=1

{

Eq(z|yi)logp
(

yi|z
)

− KL
[

q(z|xi) || p(z)
]

}

.

Figure 11.  Architecture of the VAE in the case study. As shown in the figure, a preprocessed sample is first 
converted to grayscale and then fed to the network. Final result is decoded back to the original shape and color 
space.
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For the purpose of training, we used random horizontal flip and rotation of 10% or less to augment the train-
ing dataset. With a learning rate of 0.0001 and RMSprop optimizer, the training task was performed for 50 epochs 
across 9 distinct versions of our VAE models beginning with the initial model characterized by relatively lower 
implementation complexity and extending to the latest versions distinguished by enhanced code efficiency and 
optimized model parameters. As we trained our most accurate VAE model on the raw dataset and constructed 
new appropriate images, the topographic pictures were divided into the subsequent of two datasets: (a) training 
and (b) test datasets. We used 3200 images [%80] (1600 keratoconus and 1600 normal) in the training dataset, 
and 800 images [%20] (400 keratoconus and 400 normal) in the test dataset. We allocated 10% of the training 
dataset to validation dataset. Unlike the training dataset, which comprised a combination of both generated and 
original images, the test dataset exclusively consisted of original images. This approach was adopted to ensure 
the accuracy and reliability of model metric measurements. The test dataset did not involve the training process.

Deep learning architectures and visualization
In this study, we presented four methods for classifying patients with keratoconus from normal samples, using 
convolutional neural network (CNN) architecture. Three of these methods are based on transfer learning and 
fine-tuning of pretrained models including  VGG1646, EfficientNet-B047, and  ResNet15248 models on a custom 
dataset. The fourth method is a bespoke CNN model implemented from  scratch49,50.

The VGG16 model is a 13-layer convolutional neural network (CNN) composed of 5 max-pooling layers and 
3 fully connected layers. It is characterized by the use of max-pooling layers every 2 or 3 convolutions, with an 
increase in the number of 3 × 3 filters from 64 in the first convolutional layer to 512 in the last. The final predic-
tion of the model is made by the SoftMax classifying layer stacked on top of the flattened and fully connected 
dense  layers51,52.

The EfficientNet-B0 model is the foundation of the EfficientNet family and utilizes a CNN architecture with 
the aim of uniformly scaling all dimensions of depth, width, and resolution. The compound scaling method bal-
ances the need for additional layers to increase the receptive field and channels to capture more detailed patterns 
on larger images. The base model is constructed from Mobile Inverted Bottleneck conv (MBConv) blocks from 
MobileNetV2, along with squeeze-and-excitation  blocks53.

Deep residual network, similarly, utilizes a combination of convolutional, pooling, activation and fully-
connected layers. It differs from other networks due to its identity connections between residual blocks, which 
helps prevent the vanishing gradient problem in the backpropagation process. This model comprises of bottleneck 
design, with each block consisting of 1 × 1, 3 × 3 and 1 × 1 convolutional layers. The network concludes with an 
average pooling layer and a fully-connected layer with a single neuron, producing a binary classification  output54.

The three CNNs were implemented with the pre-trained weights from the ImageNet dataset. The shapes of 
their input layer were in the order of 224 × 224 × 3, 160 × 160 × 3 and 224 × 224 × 3. To augment the performance 
of the networks, a data augmentation layer was added, consisting of a random horizontal flip and 20% random 
rotation. This was followed by a preprocessing layer, which rescaled the pixels between 0 and 255 to the range of 
[− 1, 1]. The CNNs were then linked to the previous layers and a classification head was added on top, including 
a global average pooling layer followed by a dense layer with 512 neurons and a dropout rate of 0.2. Finally, a 
single neuron prediction layer was added to make the final predictions. Figure 13 demonstrates the mentioned 
structures.

The study also utilized a customized CNN architecture that was designed to process 3-channeled images with 
a size of 50 × 50. This network comprised of three convolutional layers with 64, 32, and 16 3 × 3 filters respectively 

Figure 12.  Comparison of grayscale conversion results between OpenCV and the manually implemented 
methods.
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and a stride of 2. The convolutional layers were connected to two fully connected layers, with a dropout layer of 
0.25 rate placed in between. The final prediction was made by a single neuron layer with a sigmoid activation 
function.

In the training of pretrained networks, the common approach is to utilize the features learned by a model that 
trained on a larger dataset in the same domain when dealing with a small dataset. This is achieved by instantiating 
the pre-trained models and appending a fully-connected classifier. The pre-trained models are fixed, and only 
the weights of the classifier are updated during training. In this scenario, the convolutional base extracted all of 
the features related to each image and a classifier was trained to determine the image class based on the extracted 
features. Consequently, the models were trained and validated for 15 epochs using a learning rate of 0.0001, 
the Adam optimizer, and the binary cross-entropy loss function, with all layers of the base CNN model being 
kept in a frozen state. In the feature extraction experiment, only the top layers of the pre-trained networks were 
trained while keeping the base model’s weights unchanged. To further improve performance, the top layers of 
the pre-trained models were fine-tuned by making the same number of convolutional layers trainable in all CNN 
models. The fine-tuning process was carried out by retraining the whole networks for an additional 10 epochs, 
forcing the weights to be tuned from generic feature maps to features associated specifically with the  dataset55.

The customized CNN model was trained using a fivefold cross-validation approach with random shuffling 
of the dataset, and each fold was trained for 15 epochs. The learning rate and loss function were consistent with 
those used for the pre-trained CNN models, but the RMSprop optimization algorithm was utilized in place of 
the Adam optimizer.

Computer hardware and software
The deep learning computations described in this study were executed on a personal computer equipped with 
an AMD Ryzen core 5 3600 processor at 3.59 GHz and an NVIDIA GeForce GTX 1650 GPU. The deep neural 
network was developed using the Python programming language, utilizing the TensorFlow 2.3.0 and Keras 2.4.3 
libraries.

Statistical analysis
For demographic data, a chi-square test was employed to compare gender distribution between keratoconus and 
normal groups, while a t-test was used to assess differences in age. The performance of our DL algorithm were 
evaluated based on measures such as area under the receiver operating characteristic curve (AUC), confusion 
matrix, accuracy, sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV). 
The ROC curves were utilized to specify the overall predictive accuracy of the examined parameters, indicated 
by AUC, and to calculate the specificity and sensitivity in distinguishing KCN from normal eyes. The Optimal 

Figure 13.  Architecture of the present CNNs for keratoconus.
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cutoff points for each index were received from the ROC curves, selecting the points closest to the maximum 
value of sensitivity equals  specificity19. All statistical analyses were achieved using SPSS software (SPSS 24.0; SPSS 
Inc., Chicago, IL, USA) and a P-value less than 0.05 was considered statistically significant. Additional metrics 
were obtained using the Scikit-learn and TensorFlow platforms.

Conclusions
The study utilized a relatively large dataset consisting of 4000 images with the VAE approach to construct various 
CNN models for extracting deep features from corneal topographic maps. The results demonstrate the effective-
ness of transfer learning in generating efficient deep classifiers, leading to highly accurate models in distinguish-
ing between KCN and normal eyes. We demonstrated that the utilization of synthesized images during training 
process increased classification performance. The implementation of the automated keratoconus model shows 
great potential for enhancing clinical practices, aiding corneal specialists in the identification and management 
of KCN patients, and contributing to a reduction in the number of corneal transplant cases.

Data availability
Data will be made available on reasonable request from the corresponding author.
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