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Genome interpretation 
in a federated learning context 
allows the multi‑center 
exome‑based risk prediction 
of Crohn’s disease patients
Daniele Raimondi 1*, Haleh Chizari 1, Nora Verplaetse 1, Britt‑Sabina Löscher 2,3, 
Andre Franke 2,3 & Yves Moreau 1

High‑throughput sequencing allowed the discovery of many disease variants, but nowadays it is 
becoming clear that the abundance of genomics data mostly just moved the bottleneck in Genetics 
and Precision Medicine from a data availability issue to a data interpretation issue. To solve this 
empasse it would be beneficial to apply the latest Deep Learning (DL) methods to the Genome 
Interpretation (GI) problem, similarly to what AlphaFold did for Structural Biology. Unfortunately 
DL requires large datasets to be viable, and aggregating genomics datasets poses several legal, 
ethical and infrastructural complications. Federated Learning (FL) is a Machine Learning (ML) 
paradigm designed to tackle these issues. It allows ML methods to be collaboratively trained and 
tested on collections of physically separate datasets, without requiring the actual centralization of 
sensitive data. FL could thus be key to enable DL applications to GI on sufficiently large genomics 
data. We propose FedCrohn, a FL GI Neural Network model for the exome‑based Crohn’s Disease risk 
prediction, providing a proof‑of‑concept that FL is a viable paradigm to build novel ML GI approaches. 
We benchmark it in several realistic scenarios, showing that FL can indeed provide performances 
similar to conventional ML on centralized data, and that collaborating in FL initiatives is likely 
beneficial for most of the medical centers participating in them.

In the last two  decades1, high-throughput sequencing technologies have flooded life sciences with large amounts 
of genomics data such as Whole Exome (WES) and Whole Genome Sequencing (WGS)2. This sudden availability 
of data initially led to rapid advancements, such as the discovery of causative variants for many Mendelian 
 disorders3 and the identification of many associated variants for complex  diseases4,5. In time, the main bottleneck 
towards understanding our genome shifted from an issue of data availability to one of data interpretation. Despite 
the growing list of known genetic  associations6,7 and the attempts at disease risk  prediction8–11, models that aim 
to truly capture all the complexity of the underlying biological molecular mechanisms, are indeed still  missing12.

To fully encompass this the complexity of biology and directly model the genotype-to-phenotype relationship, 
the idea of applying the latest Deep Learning (DL) methods to genomic data is in principle very appealing. This 
genotypes-in, phenotypes-out predictive paradigm falls under the umbrella term of Genome Interpretation (GI)13 
and it is very recent, with some of the first GI Neural Network (NN) methods for the case/control prediction of 
human  diseases14,15 and the multi-phenotypic regression of quantitative  traits16 that have been just published.

The recent successes of DL in several fields, such as object and image  recognition17–19, Natural Language 
 Processing20, and molecular  biology21–24 were all characterized by huge data sets used to train extremely deep 
architectures. To unlock similar breakthroughs in the genomics and clinical genetics context, researchers 
thus need a way to aggregate sufficiently large genomics and  phenomics25 data sets to train data-hungry DL 
architectures. In a scenario in which clinical and genomics data require large memory storage and are highly 
privacy sensitive, this aggregation poses several multifaceted issues involving biotechnological, infrastructural, 
computational, statistical, and even legal and ethical aspects. Standardized, homogeneous and high-quality 
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genomics and  phenomics25 samples for training and testing ML methods need to be collected, stored, and shared 
in a controlled and ethical way among collaborators and medical  centers26. This brings several complications, 
including statistical issues arising from batch effects and other systematic  differences14 (e.g., technologies, reagents, 
kits) used in the data acquisition phase by different centers that could make the data not independent and 
identically distributed (iid). Moreover, sharing the data to create a large centralized data set carries infrastructural 
issues related to hosting and moving possibly huge amounts of highly sensitive data, that indeed require the 
highest privacy, protection, and data access control  standards26.

Federated Learning (FL) is a recently proposed ML paradigm that tackles these issues by allowing advanced 
ML methods such as DL to be trained and tested in a collaborative and parallel way that does not require 
the actual exchange of sensitive data between  partners26–28. FL was originally introduced as a distributed ML 
 paradigm29,30 to allow the training of a centralized model with privacy-sensitive data coming from a large 
numbers of clients (i.e., millions of mobile devices). Due to the similar privacy concerns that sensitive data 
such as medical imaging, health records and sequencing data carry, recently the FL paradigm has been applied 
to several life-sciences applications, showing promising results. FL-based data analysis and ML methods have 
been proposed for the analysis of health records and medical imaging data, such as MRI and  fMRI31–34, the 
meta analysis of biomedical  data35, and the analysis of genomic  data36, such as gene  expression37 and Genome 
Wide Association Studies (GWAS)38. The democratization of the access to genomic data through FL is currently 
being  advocated39, and FL has been used for the predition of clinical outcomes during the COVID-19  outbreak40

In this paper we test the hypotheses that 1) FL is not only a viable framework to perform conventional 
genomic data analysis, but that it can also be used to train DL GI methods for disease risk prediction and that 
2) it can allow multiple centers (i.e. hospitals) with relatively small datasets to pool them together in a privacy-
preserving way, benefitting from the resulting larger training data set. To test these hypotheses, we implemented 
for the first time a “genotype-in, phenotype-out” GI Neural Network (NN) method for the in silico exome-based 
risk prediction of human disorders in the FL context. To do so, we extended and adapted CDkoma, our previously 
developed GI NN model for the discrimination of Crohn’s Disease (CD) cases from  controls14, to work within 
the popular flower FL  framework41, creating FedCrohn.

FedCrohn is a proof-of-concept that demonstrates the feasibility of combining NN GI methods with 
FL to address the data interpretation bottleneck that is hindering clinical genetics and Precision Medicine 
advancements, by allowing GI NN methods to be trained on larger data sets without actually centralizing the 
data. FL provides indeed a solution to the several infrastructural, statistical and legal issues that make large 
genomics data sets hard to gather, currently preventing the application of DL methods to GI.

For this proof-of-concept, we focus on the exome-based risk prediction of CD, which is a subtype of 
Inflammatory Bowel Disease (IBD)42. Its multi-factorial nature reduces the accuracy of sequencing-based disease 
risk prediction  approaches43, due to the susceptibility to environmental  factors44, its variable severity and age of 
 onset45. Besides our  CDkoma14 approach, few similar methods have been developed, in the context of the Critical 
Assessment of Genome Interpretation (CAGI)  challenges43,46.

In this paper we use 3 CD data sets from  CAGI43 to benchmark FedCrohn in different realistic FL scenarios, 
comparing its performance with  CDkoma14, which achieves the same goal in non-FL setting (i.e., by centralizing 
all the data and directly accessing them). We show that NN models for GI have similar performances in FL and 
non-FL settings, indicating that FL can allow researchers to overcome infrastructural and data sensitivity issues 
without reducing the model performance. We also show that the number of collaborating FL clients (medical 
centers providing the data), and thus the level of fragmentation of the data, do not influence negatively FL 
performance. The objective of this study is to provide a proof-of-concept of FL in realistic GI settings in which 
each client has non-iid data that show significant batch effects (they are produced in different years and with 
different technologies) and different case/controls ratios. Our results indicate that (1) FL can learn effective 
models even in these sub-optimal, but realistic settings, and that (2) performances are in line with the ones that 
could be obtained in non-FL settings.

Methods
Data sets
In this study we used 3 case-control Crohn’s Disease (CD) data sets. They have been respectively used in the 
2011 (CAGI2), 2013 (CAGI3), and 2016 (CAGI4) editions of the Critical Assessment of Genome Interpretation 
(CAGI)46 to benchmark the ability of bioinformatics methods to predict CD cases from controls on WES data. 
The CAGI2 dataset contains 56 exomes (42 cases and 14 controls). As described  in14,43,46, this data set is peculiar 
since cases and the controls have been sequenced in different settings, resulting in a striking batch effect between 
 them14,43. The CAGI3 dataset contains 66 WES samples (51 cases and 15 controls). Twenty-eight pedigrees and 
two discordant twin  pairs43 are recognizable with  clustering46, but this stratification is less severe than in the 
CAGI2 dataset. The CAGI4 dataset is the largest and highest quality data set among the three. It contains 111 
sequenced exomes (64 cases and 47 controls). All cases are unrelated and only two pairs of controls are  related43,46. 
All the data sets are provided as VCF files listing the observed variants. CAGI3 and 4 data sets are mapped onto 
the hg19 Human genome build, while CAGI2 is mapped onto the hg18 version. More details on these datasets 
can be found  in14,43.

Annotating WES data with Annovar to obtain compact ML‑ready feature vectors
The goal of this study is to compare the performance of NN GI models for disease risk prediction implemented 
in FL and non-FL (conventional) settings. To ensure this comparability, we used the same VCF annotation 
procedure and feature encoding we proposed in our previous non-FL GI method for exome-based CD risk 
 predictor14.
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As shown in Fig. 1, we started by annotating all the variants in the CAGI data sets with  Annovar47, which is a 
widely used VCF annotation tool. Annovar identified the following 9 types of variants “exonic”, “UTR3”, “UTR5”, 
“ncRNA exonic”, “ncRNA intronic”, “upstream”, “downstream”, “intronic” and “splicing”.

Given the small sample size of the data sets, we condensed these annotations into the most compact 
possible ML-ready feature encoding, with the goal of avoiding overfitting by privileging simplicity and model 
robustness. To do so, we summarized the variants mapped on each gene by counting how many times each 
type of variant occurs on it, obtaining a histogram describing the mutational damage carried by each gene 
(see Fig. 1). We then concatenated two extra dimensions to each 9-dimensional feature vector describing each 
gene. These two additional dimensions contain the (1)  RVIS48 gene-burden score and (2) the publication weight 
score extracted from  PhenoPedia49, obtaining a final vector of 11 dimensions for each gene (see Fig. 1). The 
intuition behind adding these features is that they should provide some gene-level information to the model, 
contextualizing respectively the relevance of the gene for human health  (RVIS48) and its degree of involvement 
in CD  (PhenoPedia49).

To reduce further the size of this gene-centric feature representation, we considered only 691 CD-related 
genes, selected from  PhenoPedia49, instead of the entire exome. Each sample is therefore represented by a (11, 691) 
tensor, and the final shape of a tensor representing an entire data set containing N samples is (N, 11, 691), as 
shown in Figs. 1 and 2A.

The CDkoma neural network architecture
Genomic data sets tend to have many more features m (measured values) than samples n, because while sample 
collection is a relatively slow and complex procedure, WES and WGS data encompass respectively tens of 
thousands and millions of variants. This heavily underdetermined m ≫ n scenario is definitely not ideal for 
model inference and NNs in particular. To overcome this problem, in our previous GI NN  models14,16, we 
reduced the complexity of the models as much as possible by using weight sharing and modular NN structures. 
Sparsifying the the CDkoma architecture (see Fig. 2A) in this way produces a model with a number of trainable 
parameters that is proportional to the number of genes in the input features, since the NN module G is shared 
among all the genes. The G module reads the 11 features describing each gene and summarizes them into a 
single output value. These values are then concatenated and put through the final layer, that provides a final 
binary prediction, similarly to a logistic regression (see Fig. 2A). This hierarchical sparse architecture, alongside 
a Dropout layer with p = 0.150 and a high L2 regularization ( � = 1 ), limits the ability of the model to overfit the 
relatively small CAGI data sets.

CDkoma is written in  PyTorch51. Similarly  to14, we trained it with the RMSprop optimizer, a learning rate of 
0.001, 100 epochs, a batch size of 3 and a binary cross-entropy loss. The small batch size is proportional to the 
small sample size of the datasets, allowing the network to perform a mini-batch optimization (several weights 
updates per epoch).

All the hidden neurons used the LeakyReLU  activation52. The only difference between LeakyReLU and ReLU 
is that instead of returning 0 for negative activations values ( ReLU(x) = max(0, x) ), the LeakyReLU returns a 
small negative value instead ( LeakyReLU(x) = max(0.01x, x) ). The intuition behind it is that the small slope for 
negative activation values can help avoiding the risk of ending up with neurons that are permanently inactive 
during the training (dying ReLU problem).

Figure 1.  Figure showing the construction of the gene-centric feature encoding used as input for our FedCrohn 
model. The VCF files from the CAGI datasets are first annotated with annovar. For each gene, its mutational 
damage is summarized by a histogram counting how many times each kind of the 9 classes of variants identified 
by Annovar are mapped on it. Two gene-level relevance scores (RVIS and the PhenoPedia publication weight) 
are added to this histogram, obtaining a 11 dimensional vector describing each gene. Each sample is then 
described by the concatenation of the vectors representing 691 CD-associated genes.
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The centralized synchronous FL workflow for GI
FL is a distributed inference paradigm in which multiple data-controlling clients (i.e., medical centers) collaborate 
in training a global consensus model without sharing the possibly sensitive data between each  other26,29. More 
formally, given K clients controlling privacy-sensitive (Xk ∈ X ) data sets and the parameters θ of a shared ML 
model, a global loss function L is minimized as follows:

FL thus optimizes the parameters θ of a consensus model produced by minimizing linear combination of the 
training losses of the K centers. In this paper, we focus on a centralized synchronous FL involving tens of centers.

As shown in Fig. 2B, in these settings the optimization shown in Eq. (1) is performed via an iterative procedure 
coordinated by a central node, called Central Server (CS) . First, the CS initializes the model parameters θ (i.e., 
random initialization for a NN) and shares them with the k clients. Second, each client trains the model θ on 
their local data for a certain number of epochs e, and then sends the parameter updates resulting from this 
training to the CS (step 3 in Fig. 2B). In step 4, the CS uses a predefined strategy to aggregate the parameter 
updates coming from the k clients. These 4 steps constitute one round of FL optimization and this is repeated 
until model convergence. To produce the results shown in this paper, we used 5 FL rounds and 100 epochs for the 
local training of the GI NN model. The python library we used to implement the federated learning component 
was flower and the code to reproduce the simulations is available in our git repository at https:// bitbu cket. org/ 
eddie wrc/ FedCr ohn/.

FL parameters aggregation strategies
One of the most crucial challenges of FL algorithms is to combine the local models trained by the k clients to 
form a robust global model through a parameters aggregation strategy.

In more conventional decentralized ML settings, such as distributed learning, the assumption is that the 
locally distributed datasets belong to the same distribution (i.i.d) and have similar size and labels balancement. 
The main issue in FL is that none of these assumptions necessarily hold, and the client-controlled datasets are 
likely to show various kinds of client-specific  biases53. The aggregation strategies used by the CS need to be robust 
to these issues and other technical aspects, such as minimizing the number of required communication rounds 
between clients and the  CS29.

Different aggregation strategies have been proposed so far, and in this study we will benchmark on five of 
them:  FedAvg29,  FedAvgM54, FedAdam, FedYogi and  FedAdagrad30. FedAvg stands for Federated  Averaging29, 

(1)min
θ

L(X , θ) where L(X , θ) =

K∑

k=1

wkLk(Xk , θ)

Figure 2.  Panel (A) shows the CDkoma  architecture14. Only 691 CD-related genes are considered from each 
sample’s exome. The mutation burden carried by each gene is read by the shared G neurons, and the final 691 
latent values are the input of a logistic regression-like final layer. Panel (B) illustrates the workflow of one round 
of centralized synchronous FL. Panel (C) and (D) illustrate the two experiments we ran to benchmark the 
performance of GI FL methods on CD data.

https://bitbucket.org/eddiewrc/FedCrohn/
https://bitbucket.org/eddiewrc/FedCrohn/
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and it is the most direct translation of conventional Stochastic Gradient Descent (SGD) to FL. In FedAvg, in 
each FL round the CS collects the model updates (parameters) from the clients and takes their weighted average 
to create a new global model, which is then shared back to the clients at the beginning of the next FL round. 
FedAvg may suffer from slow convergence in certain data and class unbalancement  scenarios30,54, and natural 
extensions such as FedAvgM (Federated Averaging with Momentum) have been proposed. FedAvgM adds a 
momentum term to the updates received from the clients, improving the convergence speed and reducing the 
impact of noisy  updates54. Extending this even further,  in30 the authors proposed three CS adaptive aggregation 
strategies (FedAdam, FedAdagrad and FedYogi) which respectively inspired by the popular  Adam55,  AdaGrad56 
and  Yogi57 optimization algorithms. These algorithms further extend the FedAvgM method by keeping track of 
both the first and second moments of the gradients (i.e. the running average of the gradients and the squared 
gradients) to adaptively change the learning rate of each individual  weight30 in function of the (1) sparsity of 
the gradients and (2) the number of iterations. These approaches are designed to be more robust when where 
the data distribution across client devices is non-i.i.d30. In this paper we benchmark these aggregation strategies 
using their implementation in the flower  library41.

Evaluation of the predictions
We evaluated the performance of FedCrohn using the Sensitivity (SEN), Specificity (SPE), Precision (PRE), 
Matthews Correlation Coefficient (MCC), Area Under the ROC curve (AUC), and the Area Under the Precision-
Recall curve (AUPRC) metrics. In the cross-validations, we computed them for each folds and we averaged them 
to obtain the final score.

Results
FedCrohn: federated learning genome interpretation for the in silico diagnosis of Crohn’s 
disease
Genome Interpretation (GI) is the umbrella term describing computational methods aiming at modeling the 
genotype-phenotype  relationship16. Recently, thanks to the development of flexible Neural Networks (NN) 
libraries, such as PyTorch, it became possible to develop ad hoc NN architectures for different types of 
problems, adapting the model itself to the structure of the data. This paradigm has shown a lot of potential in 
several life science fields, with the most prominent example being  Alphafold21 and structural  biology22–24 in 
general.

To apply the same approach to genomics, clinical genetics, and precision medicine, hoping to achieve similar 
breakthroughs, researchers have to face some specific challenges because of the unique privacy-sensitive nature 
of clinical data. Currently, infrastructural and legal issues impede the creation of sufficiently large data sets for 
DL. To overcome this issue, Federated Learning (FL), which is a novel distributed ML paradigm that avoids the 
necessity of sharing the actual data while training ML models, has been introduced.

We extended our previous  CDkoma14 NN GI model (see Fig. 2A) for the exome-based discrimination between 
CD cases and controls in the FL setting, building FedCrohn, which is, to the best of our knowledge, the first 
attempt at building a “genotype in, phenotype out” GI model in the FL context. We used the 3 CAGI CD 
datasets (see Methods) and the flower41 python library to train and test FedCrohn to simulate different FL 
scenarios, benchmarking the ability of GI NN methods to be applied in the FL context. We considered two main 
experimental settings which are described below and illustrated in Fig. 2C,D).

Exp1: FedCrohn applied on real‑case FL for the CD diagnosis
In a real-life situation, medical centers might have relatively small cohorts of sequenced patients. Because of the 
frequent heavy underdetermination of genomics data, that generally have many more variables than samples, 
small cohorts are usually not suitable as training data for complex NN models. However, if different centers could 
pool together their cohorts without centralizing (i.e., sharing the actual data), larger data sets could be available 
as training sets for data scientists and bioinformaticians.

In Exp1, we simulate exactly this scenario. We use 3 CD case/control cohorts from the 2011 (CAGI2), 2013 
(CAGI3), and 2016 (CAGI4) editions of the Critical Assessment of Genome Interpretation (see Methods). They 
respectively contain 56 exomes (42 cases and 14 controls), 66 exomes (51 cases and 15 controls), and 111 exomes 
(64 cases and 47 controls). This simulates the situation in which small data sets are scattered among different 
centers, since the data have been obtained with different data acquisition procedures in different years (see 
Methods).

In the first FL GI experiment, we thus imagined 2 client nodes (i.e., medical centers, see Fig. 2C) and a 
Central Server (CS) node. Each of these nodes controls one of the 3 CAGI data sets. The 2 clients use their data 
to locally train and transmit the parameter updates to the CS, which aggregates them to build a consensus model 
without seeing the actual data controlled by the centers. The CS then validates the performance on the data set it 
controls. We repeated this experiment 3 times, to evaluate the performance on each CAGI data set and compare 
the possible differences.

Each FL round (see Fig. 2B) starts with the CS sharing the model parameters (random initializations in the 
first round) with the clients. Each client then trains the model received from the CS on its local data, and sends 
the trained parameters back to the CS. In the last step of a FL round, the CS aggregates the parameter updates 
received from the clients following a specific strategy, obtaining a consensus model, that will be shared again with 
the clients at the beginning of the next FL round. Several aggregation strategies have been proposed in literature, 
and while running these experiments, we benchmarked five of them  (FedAvg29,  FedAvgM54, FedAdam, FedYogi 
and  FedAdagrad30). See Methods for more details.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19449  | https://doi.org/10.1038/s41598-023-46887-2

www.nature.com/scientificreports/

Evaluation on CAGI2
In Table 1, we show the results obtained when the CS evaluated the FedCrohn model on the CAGI2 data and the 
2 clients performed the local training respectively on CAGI3 and CAGI4 data sets. We see that FedAvg produces 
the highest AUC, but all the aggregation strategies are very similar (within 2 AUC points). The last two rows 
of Table 1 show the performance of our previously developed non-FL GI model (CDkoma) when it is trained 
respectively on CAGI3 and 4 and tested on CAGI2. This gives an indication of what performance each center 
could have obtained by building a GI model on its own data alone, without collaborating towards building a 
consensus FL model. When predicting CAGI2, both of the clients controlling the CAGI3 and 4 data set would 
have obtained lower AUCs with respect to the FL consensus model. In particular, the center controlling CAGI3 
data would have suffered from 24% lower performance in terms of AUC (Hanley–McNeil  test58 p-value = 0.048), 
while the minimal difference in AUC with the center controlling CAGI4 data is not significant ( p = 0.41).

Evaluation on CAGI3
Table 2 shows the same experiment, but evaluated on the CAGI3 data. In this case, the adaptive aggregation 
methods FedYogi and FedAdam outperform slightly FedAvg. Again, when comparing the FL GI model 
performance with the non-FL CDkoma version trained on the single data sets alone, we see that the center 
controlling the CAGI4 data would have obtained similar performance (Hanley–McNeil  test58 p = 0.48 ) to the 
best FedCrohn model (FedYogi), while the center controlling CAGI2 data would have obtained 21% poorer 
performance ( p = 0.022 ). Overall the collaboration within the FL framework would have been beneficial for 
the center controlling the lowest quality data (CAGI2), and indifferent to the one controlling the best quality 
data (CAGI4)43.

Evaluation on CAGI4
Table 3 shows the results for the last experiment ran in these settings. In this case, CAGI4 data was used by the 
CS for evaluating the FL model. Performances are generally lower, because CAGI4 is the highest quality data set 
among the  343. The best aggregation method is again FedAvg and its variant with momentum FedAvgM. When 
comparing the AUCs of FedCrohn with respect to the non-FL CDkoma trained on the individual data sets (last 
two rows of Table 3), we see that the center controlling the CAGI3 data set would have obtained 3.6% higher AUC 
with a locally trained  model58 (p-value = 0.35), while the center controlling CAGI2 data would have performed 
similarly to FedCrohn with FedAdagrad, the lowest performing FL method (17% lower AUC with respect to the 
best FL model). Similarly to the previous experiments, the center with the lowest quality data (CAGI2) would 
have thus benefited from the FL approach ( p = 0.044 ). Table 3 is the only setting where an individual center 
outperforms the best FL approach. As pointed out  in43, this could be due by the low data quality of CAGI2. The 
spurious correlations due to batch effects between cases and controls could indeed inject misleading information 
in the consensus FL model, masking the real genetic patterns associated with CD, thereby decreasing overall 
performance when this data set is added.

Overall, the three runs of Exp1 thus show that, depending on the quality of the data sets controlled by the 
centers, the gain obtained by collaborating to build a FL model can vary. Nevertheless, the performance obtained 

Table 1.  Evaluation on CAGI2 data set.

Aggr. method Sen Spe Pre MCC AUC AUPRC

FedAvg 95.32 62.86 88.74 64.04 76.52 88.08

FedAvgM 96.10 61.90 88.57 64.90 76.20 88.23

FedAdam 93.03 61.90 88.23 59.10 75.33 86.90

FedYogi 96.10 61.90 88.57 64.90 74.37 86.00

FedAdagrad 93.80 64.30 88.97 62.60 75.80 86.47

NoFed (CAGI3) 94.60 38.10 82.50 41.80 58.57 75.70

NoFed (CAGI4) 92.23 64.30 88.80 59.13 74.30 86.93

Table 2.  Evaluation on CAGI3 data set.

Aggr. method Sen Spe Pre MCC AUC AUPRC

FedAvg 81.92 70.66 90.94 50.30 79.10 91.42

FedAvgM 81.40 66.67 89.50 44.00 78.13 90.53

FedAdam 87.17 66.67 90.13 52.87 80.00 88.73

FedYogi 80.77 77.77 92.67 52.53 81.77 88.80

FedAdagrad 80.13 71.13 90.70 47.30 74.83 85.40

NoFed (CAGI2) 92.33 35.57 83.30 33.87 62.67 83.03

NoFed (CAGI4) 95.53 60.00 89.23 61.80 81.30 92.40
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in FL settings are beneficial for all the centers with data set quality below or equal to the average among the 
collaborating centers, while the performance obtained by the center with the best quality data set are similar to 
the best FL model, with the highest drop in Table 3 ( −3.6% of AUC).

Exp2: benchmarking FedCrohn with respect to the number of clients and the data split strategy
In Exp2, we investigate FedCrohn performance in function of the number of clients (from 2 to 30) and the 
way in which the data are divided among them. To do so, we merged the 3 CAGI data sets and we split them in 
n = {3, 5, 7, 9, 11, 13, 15, 17, 21, 31} folds using scikit-learn to obtain (1) random splits and (2) stratified 
splits that preserve the cases/controls ratio. To run the experiment, we then iteratively held out one fold to be 
used as validation by the CS and we assigned the remaining to the n− 1 clients, effectively computing an n-fold 
FL cross-validation (CV).

Figure 3 shows the AUC (left panel) and AUPRC (right panel) performances obtained in function of the 
number of FL clients/CV splits. To put the FedCrohn scores (light and dark green) in the proper context, we also 
computed the performance of the non-FL CDkoma model, cross-validated on the same data set splits (light and 
dark magenta). The colored lines represent the mean AUC and AUPRC scores, while the shaded area represent 
the standard deviations. From Fig. 3, we can see that the performance of FedCrohn is very similar to the ones 
obtained by CDkoma, when no FL is involved. In both cases, both AUC and AUPRC is generally high (resp. 
85–80 of AUC and 93–89 of AUPRC).

The difference between the random and the stratified splits is that in the latter, the same proportion of positive 
versus negative cases is guaranteed. When the number of splits gets high, and thus the samples assigned to 
each fold/center gets lower, stratified splits ensure more stable results, since the random splits might, by sheer 
chance, assign very few ( ≤ 1 ) samples of a certain class to some folds, thus skewing the predictions from certain 
folds/clients. The standard deviation of the mean AUC and AUPRC indeed tends to increase with the number 

Table 3.  Evaluation on CAGI4 data set.

Aggr. method Sen Spe Pre MCC AUC AUPRC

FedAvg 72.62 67.66 75.70 40.08 71.82 75.26

FedAvgM 72.27 67.40 75.43 39.47 71.57 74.97

FedAdam 47.70 82.97 81.40 32.93 65.17 73.63

FedYogi 39.00 85.10 88.03 30.47 61.70 72.87

FedAdagrad 52.30 70.93 76.40 26.27 59.67 68.07

NoFed (CAGI2) 53.83 66.67 70.17 21.00 59.57 68.43

NoFed (CAGI3) 68.70 77.30 80.93 45.53 74.43 78.80

Figure 3.  Plot showing FedCrohn performance in function of the number of FL partners involved, compared 
with non FL models. The shaded areas represent the standard deviations of the measurements..
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of folds, and in particular FedCrohn with 31 randomly split folds produces the lowest performances. The fact 
that FedCrohn with 31 stratified splits assigned to 31 centers performs similarly to CDkoma suggests that the 
main driver of this effect is just the positive/negative unbalance in the data sets and not the FL methodology.

Exp2 thus shows that FL GI methods can work on par with respect to non-FL GI approaches regardless of 
the number of splits, even if many centers providing very small data sets (e.g., 11 samples with 21 folds, 7 with 
31 folds) are involved, provided that the negative/positive ratio is more or less preserved.

Benchmarking FedCrohn against predictors from the past CAGI challenges
In Table 4 we show the comparison of the best FedCrohn performances obtained in Tables 1, 2 and 3 with 
the models that participated in the previous CAGI 2,3 and 4 challenges. The CAGI official results have been 
taken  from43. We also reported the AUC scores of the best performing model in the 2016 edition (CAGI4)42. 
This method, mentioned as “GWAS markers +ML” in Table 4, used ML methods along with CD marker SNPs 
information from third-party GWAS studies to distinguish between CD cases and controls. We report CDkoma 
results from the original  paper14 They are produced by training our model on CAGI4 data to predict CAGI2,3 
and by training on CAGI3 data when predicting CAGI4.

We briefly summarize the methods listed in Table 4 to provide some context, but they are explained in more 
details  in43. The “Key variants weighting” approach consists in ranking the samples in function of the number 
of known CD-causing SNVs present in the exomes. The “Biclustering” method is a simple K-means clustering 
of the data with k = 2 . The “Ensemble” approach is a consensus score combining all the methods described 
 in43. “Manual prediction” refers to the manual assessment of each sample, performed by a human expert. The 
“Count of SNVs in CD genes” produces a score proportional to the variants found on CD-related genes. The 
“Transductive SVM” approach uses transductive  learning59 on a set of variants statistically significantly associated 
with  CD43.

In Table 4 we show the predictors sorted in function of their AUC scores, which is the metric used by CAGI 
assessors to benchmark different  methods46. In all the cases, FedCrohn performs similarly to CDkoma, in line 
with the results we showed so far, and outperforms most of the approaches benchmarked by CAGI. Nevertheless, 
we must note that CAGI performances were obtained in true blind test settings. For example, CAGI4 and CAGI3 
data was not respectively available to CAGI2,3 and CAGI2 participants. On the other hand, CAGI4 scores are 
more directly comparable, since CAGI2,3 data were available also to CAGI4 participants.

Conclusion
The recent astonishing achievements of Deep Learning (DL) methods have been achieved both thanks to the 
latest developments of Neural Networks (NNs) and to the use of very large training sets. To bring the DL 
revolution to the Precision Medicine and clinical genetics fields, similarly large genomics and phenomics data 
collections should be gathered. Thanks to high-throughtput sequencing technologies, data scarcity is not the main 
factor hindering the creation of such large collections. Instead, due to the high privacy sensitiviy of genomics 
and phenomics data, several infrastructura, ethical and legal aspects need to be sorted out in order to aggregate 
smaller datasets into larger studies. Federated Learning (FL) is a distributed Machine Learning paradigm allowing 
multiple clients controlling different data sets to cooperate towards training a consensus model on the entirety 

Table 4.  Comparison of FedCrohn AUC scores with the best prediction methods from previous CAGI 
assessments. aResult reported  from42. c Results reported  from14. The remaining scores have been taken  from43.

Test set set Method AUC 

CAGI4

CDkomac 74

FedCrohn 72

GWAS markers + ML a 72

Ensemble 66

Manual prediction 63

Transductive SVM 60

Key variants weighting 59

CAGI3

Biclustering 87

Mixed pedigree 1 84

CDkomac 83

FedCrohn 82

Count of SNVs in CD genes 74

CAGI2

FedCrohn 77

CDkomac 74

Manual prediction 68

SNV co-occurrence 68

Biclustering 67

Count SNVs in CD genes 66
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of the data, without actually sharing or moving the data, and thus overcoming many of the above mentioned 
issues. Here we provide a proof-of-concept (PoC) that FL can be successfully applied to train NNs Genome 
Interpretation (GI) for the exome-based Crohn’s Disease risk prediction. We test different realistic scenarios, 
showing that in most cases, the medical centers collaborating towards training a consensus FL GI model, would 
benefit in terms of quality of the predictions, with respect to the accuracy they could get from a model trained 
solely on the locally controlled data set. We also show that FL can work even among tens of centers each sharing 
a very small data set (tens of samples). Our PoC shows that FL could be suitable to kick-start a novel GI paradigm 
trying to directly model the genotype-phenotype relationship using the latest DL developments.

Data availability
The feature vectors the code described in this paper are available at https:// bitbu cket. org/ eddie wrc/ FedCr ohn/.
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