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Using deep neural networks 
as a guide for modeling human 
planning
Ionatan Kuperwajs 1*, Heiko H. Schütt 1 & Wei Ji Ma 1,2

When developing models in cognitive science, researchers typically start with their own intuitions 
about human behavior in a given task and then build in mechanisms that explain additional aspects of 
the data. This refinement step is often hindered by how difficult it is to distinguish the unpredictable 
randomness of people’s decisions from meaningful deviations between those decisions and the 
model. One solution for this problem is to compare the model against deep neural networks trained 
on behavioral data, which can detect almost any pattern given sufficient data. Here, we apply this 
method to the domain of planning with a heuristic search model for human play in 4-in-a-row, 
a combinatorial game where participants think multiple steps into the future. Using a data set 
consisting of 10,874,547 games, we train deep neural networks to predict human moves and find that 
they accurately do so while capturing meaningful patterns in the data. Thus, deviations between the 
model and the best network allow us to identify opportunities for model improvement despite starting 
with a model that has undergone substantial testing in previous work. Based on this analysis, we add 
three extensions to the model that range from a simple opening bias to specific adjustments regarding 
endgame planning. Overall, our work demonstrates the advantages of model comparison with a high-
performance deep neural network as well as the feasibility of scaling cognitive models to massive data 
sets for systematically investigating the processes underlying human sequential decision-making.

The standard approach to computational modeling in cognitive science involves handcrafting a model and speci-
fying free parameters that are adjusted to produce behaviors consistent with empirical  data1,2. Model predictions 
are then evaluated using the parameter values that achieve the best match to the data. Based on these evaluations, 
the model is iteratively amended to reduce remaining errors. Whether a specific change is accepted or not is 
usually based on model comparison techniques, balancing the tradeoff between complexity and goodness of fit. 
This methodology yields interpretable models because all innovations are implemented by the researcher, but it 
provides no guidance for when to stop searching for candidate models or what changes to try. In this pipeline, 
there is no way to distinguish whether the unexplained variance represents natural variability in human behav-
ior or could be explained by a crucial change to the model. Even if it can be determined that the model needs 
improvement, adjustments are usually based on intuition and manual engineering.

One method for addressing these limitations is to fit deep neural networks to behavioral data. Deep neural 
networks make minimal assumptions about underlying cognitive mechanisms and have sufficient capacity to 
represent virtually any computational  process3,4. Training a network to predict human behavior in a particular 
task allows the network to detect patterns in the data without requiring human understanding of these patterns. 
An important step is then validating that the network is indeed accurately capturing human decisions. After 
validation, the predictions from the network can be compared against a cognitive model’s predictions. Namely, 
deviations between the model and the network guide the model improvement process by highlighting situations 
in which the model requires novel mechanisms to explain human behavior. When there is no clear way of sum-
marizing or pooling data across many trials, this method is more effective than simply investigating the model’s 
errors, which are often caused by noise that no model can explain. One potential problem with this approach is 
that neural networks are so flexible that they run the risk of overfitting. Regularization methods are a standard 
solution to overfitting in scenarios with limited data, while having access to a large data set for training can 
ameliorate this problem.

Consequently, neural network methods for guided model improvement have established themselves as an 
emerging field in cognitive science. The approach that we described in the previous paragraph is particularly 
useful in settings where the task is complex enough to extract additional meaningful information and when 
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large-scale data exists to train relatively simple, feedforward network architectures. This method was pioneered 
to discover algorithms underlying human decision-making5,6 and  categorization7. A related line of work has 
started to develop recurrent neural networks for automated model discovery, thus far primarily in reinforce-
ment learning  environments8–11. Recurrent neural networks are notoriously more difficult to train and analyze, 
but in turn can provide results for the simpler tasks and smaller data sets that are more ubiquitous throughout 
the field. Together, these approaches share the common goal of improving the process for developing cognitive 
models across a variety of domains.

Recently, a growing body of literature has started to examine the algorithms underlying human sequential 
decision-making12–18. Planning involves the mental simulation of future actions and their consequences in order 
to make a decision, but evaluating every possible course of action in real-world environments is simply intrac-
table. Therefore, a fruitful approach has been to employ tasks with larger state spaces than are typically used in 
cognitive science coupled with process-level models to investigate how people  plan19. This combination of com-
plex tasks and models in addition to the fact that planning is an unobservable internal process limits traditional 
model development frameworks and makes it an ideal domain for testing more powerful methods. One such 
example is 4-in-a-row, a combinatorial game where players need to think multiple steps into the future to win 
(Fig. 1A). Additionally, human decisions have been well-described by a computational cognitive model in both 

Figure 1.  Task and cognitive model. (A) An example board position in 4-in-a-row in the laboratory version 
of the task (top) and the gamified version used on the mobile platform (bottom). Two players, black and white 
or yellow circles and green stars, alternate placing pieces on the board, and the first player to connect four 
pieces in any orientation wins the game. (B) Features used in the heuristic function of the cognitive model, 
which are intermediate patterns to winning the game. Features with identical colors are constrained to the 
same weights, and the heuristic evaluation is a sum over the counts of these features. The model also includes a 
central tendency feature and a 4-in-a-row feature. (C) Illustration of the heuristic search algorithm. In the root 
position, black is to move. After expanding the root node with two candidate moves for black and evaluating 
the resulting positions using the heuristic function, the algorithm selects the highest value node ( V = 2.3 ) on 
the second iteration and expands it with two candidate moves for white. The algorithm evaluates the resulting 
positions, and backpropagates the lowest value ( V = 0.3 ), since white is the opponent, meaning that the value in 
the red solid box replaces the one in the red dashed box and the root node is updated to the highest value among 
its children ( V = 1.8 ). On the next iteration, the algorithm will again expand the child node with the highest 
value. (D) Decision tree built by the model. The red nodes indicate the sequence of highest-value moves for both 
players. Note that different branches of the tree are evaluated to different depths.
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laboratory and online  experiments20. These conditions make 4-in-a-row particularly fitting for an approach to 
model improvement driven by neural networks: a task with many different states where the key underlying fea-
tures are hard to identify, a detailed model that is already informative about human planning but can be refined 
further, and a very large data set for training neural networks.

Here, our main contribution is to use deep neural networks to estimate the noise ceiling, or the best fit that 
can be achieved on the data, relative to a cognitive model and subsequently improve that model. We begin by 
describing the planning task and large-scale data set as well as the heuristic search model and neural network 
architecture. Specifically, we emphasize the methods used to fit the model and train the neural network such 
that they can be compared while making use of the entire data set. Then, we show that scaling up the size of the 
network approaches a satisfactory upper bound on the likelihood of predicting human moves, and that the best 
network matches human behavior well on a variety of quantitative and behavioral measures. We investigate 
the residuals between the model and the network, deriving various candidate model improvements from our 
analysis. Namely, we implement and test three distinct mechanisms that take into account early game biases, 
complex interactions between model features that result in overlooked moves, and novel features in the heuristic 
function. Taken together, our work highlights how deep neural networks and massive data sets can be leveraged 
to more systematically refine cognitive models.

Methods
Task and data set
Our task is a variant of tic-tac-toe, in which two players alternate placing tokens on a 4-by-9 board (Fig. 1A). The 
objective is to get four tokens in a row horizontally, vertically, or diagonally. This task, which we call 4-in-a-row, 
is at a level of complexity that far exceeds tasks commonly used in psychology, providing rich human behavior 
for which computational modeling is still  tractable19. The game has approximately 1.2× 10

16 non-terminal states, 
and can be leveraged to study the interplay between different reinforcement learning  systems21, the nature of 
 expertise20, or comparisons between human and machine  learning22. Importantly, a cognitive model exists for 
this task, which provides a starting point for further model development.

We partnered with Peak, a mobile app company, to implement a visually enriched version of 4-in-a-row on 
their platform (https://www.peak.net), which users play at their leisure in their daily environment. We 
are currently collecting data at a rate of approximately 1.5 million games per month, and here we used a subset 
consisting of 82,761,594 moves from 10,874,547 games and 1,234,844 unique users collected between September 
2018 and April 2019. In this version of the task, users always move first against an AI agent implementing the 
model of human planning that we describe in the next section, with parameters adapted from fits on previously 
collected human-versus-human  games20. We partitioned the data into three sets: 90% for training (9,787,093 
games), 5% for validation (543,727 games), and 5% for testing (543,727 games). The training and testing sets 
were used for both the neural networks and the cognitive models, and the validation set was used to monitor 
learning and experiment with hyperparameters for the neural networks.

Cognitive model of human planning
One of the main goals of this work is to iteratively improve an interpretable cognitive model of human planning 
by comparing its predictions with our best neural network and subsequently testing various mechanisms inspired 
by this analysis. To avoid confusion, the word model always signifies this cognitive model, while the deep neural 
network will be referenced as the network. When we implement extensions of this cognitive model later on in 
the paper, we will further delineate by labeling each model. The model of interest combines a heuristic evaluation 
function (Fig. 1B), which is a weighted linear combination of board  features23–25, with the construction of a deci-
sion tree via best-first search (Fig. 3C,D). Best-first search iteratively expands nodes on the principal variation, 
or the sequence of actions that lead to the best outcome for both players given the current decision  tree26. To 
allow the model to capture variability in human play and make human-like mistakes, we added Gaussian noise 
to the heuristic function and included feature dropout. For each move the model makes, it randomly omits some 
features from the heuristic function before it performs search. Such feature omissions can be interpreted as lapses 
of selective  attention27. During search, the model also prunes the decision tree by removing branches with low 
heuristic  value13. In previous work, we used this model to fit behavioral data across a wide array of experiments 
and find robust evidence for increased planning depth with  expertise20. As such, the model has already been 
subject to extensive tuning and model comparison.

While fitting the model, we estimated the log probability of a move in a given board position with inverse 
binomial  sampling28, and optimized the log-likelihood function with Bayesian adaptive direct  search29. A major 
technical challenge involves scaling up the fitting procedure for the cognitive model such that it makes use of 
the large-scale data set and is directly comparable to the neural network. To achieve this, we fit parameters for 
the entire training set. On each model evaluation, we evaluate the log-likelihood on 100,000 trials. We found 
that this yields an unbiased and sufficiently precise estimate of overall performance. We then optimized this 
approximate likelihood for 20 different training runs and selected the best-performing parameter set for testing. 
On the test data set, we ran 100 repetitions per move to estimate a log-likelihood, followed by 200 simulations 
in each board position to get a probability distribution over move predictions.

Neural network training
To achieve sufficiently high performance on our data set, we constructed a deep neural network architecture 
that can be systematically scaled up. All of our networks take a tensor representation of the current board state 
and return a probability distribution for the next move over all board positions. The predictions for different 
board positions are independent of each other in order to match the cognitive model. We encode each board as 
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two 4× 9 binary matrices. The first matrix has ones indicating the location of the user’s pieces, while the second 
4× 9 matrix has ones marking where the AI agent’s pieces are located. Unoccupied locations contain a zero in 
both matrices. Thus, the input to each network is 2× 4× 9 , and the output of the network is a 36-dimensional 
vector, with each element representing a corresponding index of the board.

The architecture for our networks consists of an input layer that feeds into several hidden layers followed by 
an output layer (Fig. 2). The input layer flattens the 2× 4× 9 board into a 72-dimensional vector and projects it 
to the number of dimensions used by the hidden layers with a fully connected layer. Each hidden layer consists 
of two fully connected layers with a rectified linear function between them and skip connections. These skip 
connections add the input of the hidden layer to its output without transformation, and aid in avoiding the van-
ishing gradient  problem30. The output layer is a fully connected layer that projects from the dimensionality of 
the hidden layer to 36 units corresponding to the log probabilities for each board position. During training, we 
scaled the network architecture by varying the number of hidden layers as well as the number of units in each 
fully connected layer. In Figure S1A, we show an example loss curve for the largest network that we trained. We 
observed nearly identical performance on validation and test data that we did not use for training, indicating 
that overfitting is not an issue for our data set.

To eliminate potential predictions at squares occupied by pieces already on the board, we subtracted a large 
value from the output at these locations. The final softmax operator always sets the corresponding outputs to 
exactly 0 and normalizes the probability distribution over all open positions. This also nulls all gradients for the 
occupied positions such that their values are ignored for gradient backpropagation and learning during train-
ing. Prior work used convolutional networks to predict human moves in  Go31,32, and we initially tested similar 
architectures in our task. However, we consistently found that the convolutional networks performed worse 
than the fully connected layers in preliminary training runs. Therefore, we decided to move forward using only 
fully connected networks.

Results
Neural network evaluation
In order to predict human behavior, we trained a total of 25 networks that varied along two dimensions: the 
number of hidden layers and the number of units per layer, spanning a range from 5 to 80 layers and 200 to 4000 
units. We continued scaling up the networks until the log-likelihood on the test data reached a plateau, meaning 
that additional increases in either dimension would not lead to significant increases in performance (Fig. 3A). 
The largest network achieved a negative log-likelihood of 1.87 per move and a prediction accuracy of 41.71% on 
the test data. Additionally, this network’s log-likelihoods per move were highly correlated with the networks that 
are one step smaller in either direction, further supporting our conclusion that our results would not radically 
change with larger networks (Fig. S1B,C). Therefore, we continue to analyze the largest network in the remainder 
of the paper. A full specification of the networks that we trained and their performance is available in Table S1.

We then assessed whether the network convincingly captures behavioral patterns. We first considered the 
accuracy of the network’s predictions (Fig. 3B) and the entropy of the network’s output distributions (Fig. 3C), 
both broken down by move number. Intuitively, positions in the early game are harder to predict because they 
consist of fairly empty boards where no player can immediately win the game, and therefore result in lower 
accuracy and higher entropy for the network’s output. Conversely, positions in the middle and late game are 
much easier to predict as there are fewer alternatives and more pieces to inform decision-making, leading to 
higher accuracy and lower entropy for the network’s output. These positions are also more likely to contain win-
ning moves, which lead to more stereotyped decisions. We then investigated the negative log-likelihood for the 
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Figure 2.  Neural network architecture. The board is represented as a 2× 4× 9 tensor filled with zeros where 
there are no pieces and ones where there are pieces. One matrix encodes the user’s pieces, and the second 
encodes the AI agent’s pieces. The board representation is flattened to a 72-dimensional vector, and then 
passed into a series of hidden layers. Each hidden layer contains a fully connected layer, a ReLU nonlinearity, 
another fully connected layer, and then adds the input from skip connections (red dashed box). Finally, the fully 
connected output layer has 36 units and is passed through a softmax function, which yields the probability that 
the model assigns to the human player selecting each position of the board. In addition to varying the number 
of hidden layers in the network, the number of units per fully connected layer is also varied when testing 
different networks.
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network’s predictions as a function of playing strength, computed using Elo  ratings33, which are a standard metric 
for relative skill level in zero-sum games such as chess. Our network is able to more successfully capture the 
moves of stronger players compared to weaker ones (Fig. 3D), since unpredictable errors in gameplay are more 
common in the latter group. In Figs. S2–4, we show example board positions for each of the previous analyses, 
and in Fig. S5A,B we further analyze network accuracy as a function of number of guesses and log-likelihoods 
for players with varying levels of gameplay experience.

Next, we computed a set of summary statistics that characterize human play in 4-in-a-row. For each move 
made by each user, we calculated the distance from the chosen square to the center of the board, the distance to 
pieces owned by that user, the distance to pieces owned by the opponent, the distance to the center of mass of 
that user’s pieces, the distance to the center of mass of the opponent’s pieces, the number of that user’s pieces on 
the 8 squares neighboring the chosen square, and the number of opposing pieces on neighboring squares. We 
also indicated whether with their chosen move, the user created a threat to win on the next move or parried a 
threat from their opponent. We computed these statistics for moves made by the network in the same positions 
encountered by human players and for random moves. Figure 4 shows the average of these summary statistics 
aggregated across all users in the test set as a function of move number. This analysis probes systematic pat-
terns in people’s gameplay, for example a tendency to start playing near the center of the board and gradually 
expand outwards. For all summary statistics, people deviated considerably from random, and the neural network 
matched the data almost exactly. In sum, these results establish that the neural network accurately captures 
human decision-making in 4-in-a-row.

Comparing the cognitive model and neural network
In terms of overall performance, the cognitive model that we have discussed so far, which we subsequently refer 
to as the baseline model, performed worse than the network on all measures that we tested. Specifically, the 
baseline model achieved a negative log-likelihood of 2.17 (0.30 more than the network) and prediction accuracy 
of 34.88% (6.83% less than the network) on the test data. Additionally, the network’s predicted log-likelihood per 

Figure 3.  Scaling up the neural network achieves a satisfactory upper bound on goodness of fit. (A) Negative 
log-likelihood on the test data set as a function of the number of hidden layers and number of units per hidden 
layer in each network. (B) Accuracy as a function of move number for the best neural network, averaged across 
the test set. (C) Entropy of the best neural network’s output distribution as a function of move number, averaged 
across the test set. (D) Negative log-likelihood on the test data set as a function of playing strength, computed as 
an Elo rating (binned into quantiles).

Figure 4.  Summary statistics as validation that the neural network exhibits human-like behavior. Each statistic 
is averaged by move number for moves made by users (black circles), the neural network (blue lines), or a 
random model (green dashed lines).
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move was typically higher than that of the model ( t = 322.86 , p < 2× 10
−308 , Fig. 5A). The baseline model’s 

average accuracy per move was lower than the network’s throughout the course of gameplay (Fig. S5C), and on 
the summary statistics, the model deviated further from human data than the network (Fig. S6). Thus, there is 
room for improving the baseline model.

Having established that there exist mechanisms that describe aspects of human behavior but were overlooked 
in the construction of the baseline model, our goal is to identify and implement such mechanisms. An initial 
attempt at this might involve the traditional model development approach, namely directly comparing the 
baseline model to the data. However, even with the size of our data set, most board positions beyond the early 
game were only encountered once by human players. Therefore, many of the 2,698,483 board positions where 
the baseline model predicted that a different move was more likely than the one that humans actually made 
represent unpredictable random human behavior rather than a failure of the model. In fact, board positions that 
resulted in a low log-likelihood for the baseline model were often not predicted well by the network either, and 
largely seemed to be human errors in gameplay such as overlooking an immediate win or making a random move 
(Fig. 6, first column). In short, direct comparisons between the model and data are not particularly informative.

The neural network, however, provides a viable alternate to compare the baseline model against. To do so, 
we used the Kullback-Leibler (KL) divergence as a measure of the difference between the output distributions 
of the network and model on any given board position. By pooling information across board positions, the 
neural network can produce a better estimate of the difference between the model and the true human policy 
and can thus give better guidance for model improvements. Indeed, the largest differences between the baseline 
model and the neural network were more interpretable than the largest differences between the baseline model 
and the data (Fig. 6, second column). After sorting the deviations, we manually inspected the board positions 

Figure 5.  Iterating over cognitive model extensions using the neural network. (A) Density plot of the difference 
in log-likelihood per move in the test set for the neural network and baseline model. Inset is the histogram 
version of the same log-likelihood difference (mean of baseline minus neural network: 0.29993± 0.00039 ). (B) 
Model extensions derived from comparing the board positions that the neural network correctly predicted and 
the baseline model did not. (C) Negative log-likelihood for each model extension for the best set of parameters 
across 20 different fitting runs on the training data (light orange) as well as averaged across each move in the test 
set for the same parameters (dark orange). Error bars indicate the standard error of the mean for the test set. (D) 
Density plot of the difference in log-likelihood per move in the test set for the defensive weighting model and 
baseline model (mean of baseline minus defensive weighting: 0.03097± 0.00022).
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with the highest KL divergence and grouped positions together that shared identifiable features. Then, for each 
deviation, we implemented a change to the model to address the differences between the model and the network 
based on our understanding of the task and the model. We then validated that the change indeed altered the 
model’s predictions for the specific board positions that prompted the change. For example, when we added a 
new component to the model’s heuristic value function, we passed a number of board positions from the subset 
of deviations as input, and compared across simulations that the model now predicts the correct move where 
the previous iteration did not. Only after this testing procedure did we fit the amended model to the data. More 
specifically, we identified three mechanisms that appeared to be shared across subsets of the largest deviations 
between the model and the network, each leading to a new iteration of the baseline model. We implemented these 
cumulatively: each model contains all features of the baseline model, any prior extensions, and a new extension.

Testing candidate model improvements
The first model extension consists of a corner bias for the opening move. The neural network comparison high-
lighted that users are quite likely to play in the corners in the opening, in particular in the upper left corner. There 
is no strategic reason for making these moves, but the network detects these preferences nonetheless. Since this 
pattern is especially prevalent on the first move (Fig. S5D), we added a set of parameters that can give higher 
value to moves being considered in each of the corners of the board (Fig. 5B, left). In terms of implementation, 
this mirrors the central tendency feature that is already present in the baseline model. While this was a fairly 
incremental model improvement in terms of negative log-likelihood on the test data as compared to the baseline 
model ( t = 4.24, p = 2.28× 10

−5 , Fig. 5C), it serves as an initial proof of concept for our methodology.
The second model extension targets defending against opponent threats. In our analysis, we noticed that the 

model often overlooks immediate losses in favor of promising offensive moves elsewhere on the board, while 
both users and the network do not systematically make these errors. An example of this is shown in rightmost 
board in the second column of Fig. 6. This is particularly prevalent when the defensive move creates no new 
features for the player and the player can create multiple features for themselves closer to the center of the board. 
The explanation for the model’s behavior is that it assigns relatively high value to the offensive moves, causing 
the defensive moves to be pruned from the search tree. Thus, the defensive moves are never explored, even 
after the moves that the model expands preferentially are evaluated during tree search. To fix this deviation, 
we specify a weight in the heuristic function that explicitly recognizes immediate opponent threats (Fig. 5B, 
middle). With this change, the defensive moves are now no longer overlooked, as they are almost always valued 
highly enough to avoid pruning. As such, the defensive weighting model significantly improved in terms of nega-
tive log-likelihood on the test data from the baseline ( t = 33.48, p = 8.85× 10

−246 ) and opening bias models 
( t = 28.93, p = 5.25× 10

−184 , Fig. 5C). This further validates our proposed approach, as we were able to account 
for an important, more complicated mechanism that we had no prior knowledge about beforehand. Without the 
neural network comparison, it would have been nearly impossible to detect this detrimental interaction between 
pruning and the heuristic evaluation in the end game.

The final model extension adds phantom features. These were inspired by positions in which users pref-
erentially play to create or defend against features that are already part of the heuristic function but do not 
have empty squares contained within the feature to eventually win the game. An example of this is shown 
in leftmost and center boards in the second column of Fig. 6. We define these in the 3-in-a-row case on the 
edges of the board, and include them in the model’s heuristic evaluation (Fig. 5B, right). When looking at 
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Figure 6.  Representative residuals between the baseline model and the data (first column) and the baseline 
model and the neural network (second column). For each board position, we report the KL divergence between 
the output distributions of the model and the network, as well as the negative log-likelihood of the human 
move for the model and the network. The user is playing black while the computer opponent is playing white. 
Additionally, the red shading indicates the probability distribution of the network’s move prediction, the open 
circle indicates the user’s selected move, and the dashed circle indicates the baseline model’s predicted move.
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the log-likelihoods across training runs for the phantom features model, they are fairly similar overall to the 
defensive weighting model, with the best parameter set that we use for testing only resulting in a difference 
of 0.001. This final extension did not exceed the defensive weighting model’s performance on the test set 
( t = −9.87, p = 5.54× 10

−23 ), but still improved from the baseline ( t = 24.13, p = 1.32× 10
−128 ) and open-

ing bias models ( t = 19.59, p = 1.92× 10
−85 , Fig. 5C). Thus, we have no evidence that people use phantom 

features in 4-in-a-row.
Treating the defensive weighting model as our best model variant, we show that the model’s predicted log-

likelihood per move is typically higher than that of the baseline model, and that this is particularly true in moves 
that had a high difference in terms of log-likelihood between the models (Fig. 5D). This suggests that our added 
mechanisms are correctly accounting for the moves that the baseline model was initially worst at predicting. 
Finally, we repeated our analysis of the largest differences between the two best model extensions and the neural 
network (Fig. 7). As expected, this revealed that the residuals for the defensive weighting model still contain 
the board positions that inspired our phantom features model, whereas the residuals for the phantom features 
model no longer contain these and instead highlight new deviations. This suggests that the lack of improvement 
shown by the phantom features model is due to a tradeoff between moves in which the phantom feature weights 
are helping and those in which they are not. In other words, despite accounting for the desired errors that the 
network is able to correctly predict, the phantom features model might require an alternate implementation. It 
is also possible that an entirely new mechanism altogether could account for these residual board positions. A 
full specification of the cognitive models that we tested and their performance is available in Table S2.

Discussion
In this paper, we trained deep neural networks to predict human moves in 4-in-a-row using a large-scale data 
set. We ensured that these networks estimate a reasonable upper bound on how well any model can explain 
human behavior by incrementally scaling up the networks and validating that any further scaling would result 
in marginal increases in performance. We then analyzed the best network, finding that the network captures 
general trends in human play. This provided us with a model that was able to predict human decisions more 
accurately than an interpretable cognitive model of human planning without requiring manual engineering. We 
then explored the positions in which the neural network was more accurate than the baseline model, leading 
to several candidate mechanisms for model improvement. Finally, we investigated the results from three new 
models that added an opening bias, defensive weighting, and phantom features, analyzing both overall good-
ness of fit and relative predictability compared to the neural network. Taken together, these results highlight the 
advantages of using deep neural networks as a guide for modeling human planning.

In comparing the neural network with our baseline model, our results suggested mechanisms that had not 
been previously considered and improved the model’s performance in 4-in-a-row. The defensive weighting 
discovery in particular is a combination of the model’s value function, forward search algorithm, and pruning 
mechanism that greatly affected its predictions in certain crucial positions, but would’ve been very difficult to 
detect without the neural network. Our findings also imply that further refinements for the model variants that 
we present here exist. For example, the opening bias that people display surely extends beyond just the first move 
and is more indicative of a faster, model-free process in the early game. Similarly, the phantom features could 
require a more sophisticated weighting of parameters or implementation altogether outside of the heuristic 
function to avoid any tradeoffs with other moves. Additionally, our approach can facilitate the generation of 
completely new hypotheses to explain the remaining residuals. An example in this category is reconsidering the 
underlying mechanism for the moves that inspired the phantom features model. Another unaddressed but con-
sistent residual appeared for situations when the players did not start playing in the center of the board. In these 
games, people and the network tended to continue to play away from the center of the board in close proximity 
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Figure 7.  Representative residuals between the defensive weighting model and the neural network (first 
column) and the phantom features model and the neural network (second column). The format for the board 
positions is the same as for Fig. 6.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20269  | https://doi.org/10.1038/s41598-023-46850-1

www.nature.com/scientificreports/

to existing pieces, while the model preferred building new central features. In sum, our approach allows for 
continued discovery and testing of novel mechanisms in the cognitive model. However, for the purpose of this 
paper, the existing set of extensions serve to primarily demonstrate the viability of guided model improvement 
via deep learning for complex models of human planning.

While our method provides a framework for guided model improvement with neural networks, it has several 
limitations. The first is that the effort of implementing, testing, and analyzing such networks might not be worth 
the effort if the task is simple enough. Many of the tasks that are utilized in psychology studies have a small 
enough state space that all substantially different situations can be investigated by hand and/or enough data is 
available for individual situations to make deviations between the raw data and model predictions meaningful. 
In such tasks, the utility of our approach is greatly reduced. Another limitation is that training neural networks 
requires large amounts of data. If less data is available, overfitting becomes a major concern for flexible archi-
tectures and the alternative of using less flexible network architectures implies biases in the network predictions 
that need to be justified. Additionally, such networks are inherently more challenging to train. Standardized tools 
for streamlining the neural network fitting process might alleviate these problems by reducing the burden on 
researchers to construct and analyze the networks. Collectively, such tool development might be worthwhile for 
cognitive science given the recent prominence of neural network-driven model improvement methods, but we 
do not provide such tools here. In terms of the method itself, a potential limitation is that we currently sort the 
trial-by-trial deviations and identify shared patterns manually. To automate the pattern extraction process, we 
could apply clustering or other machine learning methods to the board positions showing deviations between 
the network and the model. This would result in groups of board positions that we then inspect more closely 
for shared features. Another alternative might be to have 4-in-a-row “experts” who have played many games 
and have high estimated Elo ratings interpret the deviations between the model and neural network to reduce 
investigator bias. This mirrors studies in the chess  literature34–36, and could generate new ideas for potential 
model improvements.

What do the mechanisms that we identify from the deviations between the model and neural network tell 
us about planning and human cognition? One takeaway is that people have inherent biases, meaning that they 
consistently prefer one out of many equivalent solutions to problems when there is no rational reason to do so. 
Humans display such systematic biases in many  tasks37, and the literature on these biases and how to model 
them may be informative to structure the biases players show in 4-in-a-row and while planning more generally. 
Our model extensions also suggest that people’s heuristic functions may be more sophisticated than a simple 
sum of features, accounting for complex tradeoffs between pieces on the board depending on the context of the 
board position. Further, we observed in earlier studies that individuals seem to evaluate positions differently, 
as feature weights vary when the cognitive model is fit to each participant. Adjusting the heuristic function to 
be more human-like and account for nuanced individual differences is a challenge, but the size of the data set 
paired with the neural network’s predictions can guide this process. While these specific features of gameplay 
are tied to 4-in-a-row, they point to the interaction between heuristic evaluations and forward search, and how 
either of these mechanisms may change depending on the individual and context they are placed in. These are 
fundamental aspects of human planning, and uncovering more nuanced intuitions for how the mind navigates 
this process may provide principles that generalize across planning tasks.

More broadly, our work provides a framework for model construction that makes use of both deep neural 
networks and large-scale experiments. Cognitive science as a discipline has trended towards massive data sets col-
lected via online studies, in part to obtain rich data in participants’ real-world environments and clarify whether 
results derived from constrained laboratory tasks generalize. To this end, leveraging methods from machine 
learning to aid in model development is a particularly important undertaking for the field. Our approach is most 
useful in complex tasks where comparing a model directly with human decisions is noisy due to few repetitions 
of any particular state. In our case, both of the previous criteria were satisfied, albeit with a cognitive model that 
has already undergone rigorous testing against alternatives in previous work. It is reasonable to assume that the 
model refinement process would be greatly expedited in situations where tedious manual adjustments derived 
from intuition for the task can be avoided altogether. Therefore, we argue that this method will be valuable in 
the development of future cognitive models of planning as well as other complex human behavior.

Data availability
The data set used throughout the current study is not publicly available per the agreement between NYU and 
Peak. The trained neural networks and cognitive model fits and parameters are however available upon request 
from the corresponding author.

Code availability
Source code for the project is available at two separate repositories: one for for the deep neural networks and 
subsequent analysis (https:// github. com/ ionat ankup erwajs/ 4IAR- nns) and another for the implementation of 
the baseline model and the model improvements (https:// github. com/ ionat ankup erwajs/ 4IAR- impro vemen ts).
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