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Accurate emulation of steady‑state 
and dynamic performances of PEM 
fuel cells using simplified models
Hossam Ashraf 1, Mahmoud M. Elkholy 2, Sameh O. Abdellatif 1* & Attia A. El‑Fergany 2

The current effort addresses a novel attempt to extract the seven ungiven parameters of PEMFCs 
stack. The sum of squared deviations (SSDs) among the measured and the relevant model-based 
calculated datasets is adopted to define the cost function. A Kepler Optimization Algorithm (KOA) is 
employed to decide the best values of these parameters within viable ranges. Initially, the KOA-based 
methodology is applied to assess the steady-state performance for four practical study cases under 
several operating conditions. The results of the KOA are appraised against four newly challenging 
algorithms and the other recently reported optimizers in the literature under fair comparisons, to 
prove its superiority. Particularly, the minimum values of the SSDs for Ballard Mark, BCS 0.5 kW, 
NedStack PS6, and Temasek 1 kW PEMFCs stacks are 0.810578 V2, 0.0116952 V2, 2.10847 V2, and 
0.590467 V2, respectively. Furthermore, the performance measures are evaluated on various metrics. 
Lastly, a simplified trial to upgrade Amphlett’s model to include the PEMFCs’ electrical dynamic 
response is introduced. The KOA appears to be viable and may be extended in real-time conditions 
according to the presented scenarios (steady-state and transient conditions).

Currently, global concerns are directed towards investing in carbon-free energy sources due to the severe eco-
logical impacts of fossil fuel-based energy sources1,2. Besides, the rise in prices of fossil fuel due to international 
conflicts and its limited existence have expedited the necessity to find sustainable and environmentally friendly 
energy sources3. Amongst such clean sources, fuel cells (FCs) are considered as a new booming application of 
renewable energy-based conversion technology4. Principally, FCs convert chemical energy into electrical and 
heat energies. Due to their higher conversion efficiencies, robustness, and almost zero emissions, FCs are com-
patible to be utilized in whatever application either in industrial, commercial, or residential sectors5. According 
to the electrolyte substance, FCs are divided into various types. Each one has unique features represented by the 
output power range, the operating temperatures, and the appropriate applications6. Particularly, proton exchange 
membrane FCs (PEMFCs)7, solid oxide FCs8, alkaline FCs9, phosphoric acid FCs10, and molten carbonate FCs11 
are examples of FC’s types.

PEMFCs have gained wide popularity because of their attractive characteristics such as low operating pres-
sures and temperatures, high power density, compact size, and no dynamic parts. However, the high cost of 
the catalyst hinders their market dominancy4–6. Moreover, the output voltage per cell varies from 0.9 to 1.23 
V depending on the temperature value and the suppliant pressures, hence, a group of PEMFCs are connected 
serially to magnify the output voltage to a desire level. This group of PEMFCs is called a stack12. Additionally, 
their output voltage exhibits a non-linear relationship with the load current caused by the polarization losses. In 
other words, the PEMFC’s output voltage starts falling rapidly due to the activation voltage drop, then it decreases 
linearly because of the ohmic voltage drop, and finally it extremely decays due to concentration losses13.

Since modelling the PEMFCs suffers from a high degree of non-linearity, robust techniques are vital to 
precisely simulate the electrical characteristics of the PEMFCs, and hence, properly assess their performance. 
Thus, numerous researchers have proposed several models to describe the PEMFC’s operation from different 
perspectives4–6. Generally, PEMFC’s models are categorized as empirical, semi-empirical, and analytical mod-
els, as reported in14–17. In this article, a semi-empirical electrochemical model, proposed by Amphlett et al.6,18, 
is utilized to properly evaluate the simulated steady-state electrical characteristics of PEMFCs. During recent 
decades, Amphlett’s model has acquired a reputed acknowledgment as a result of its powerful ability to predict 
the electrical behavior of the PEMFCs in various operating environments4–6,18.
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Nevertheless, the mathematical representation of such a model includes a set of undefined parameters that 
aren’t stated in the fabricators’ datasheets. These parameters need to be optimally estimated so that the model 
can perfectly emulate the actual behavior of the PEMFCs. Accordingly, vast attempts have been conducted to 
completely define the unspecified parameters of the PEMFC’s model. Basically, these attempts can be classified 
into conventional and artificial intelligence (AI)-based optimization ones4–7.

For instance, the techniques based on electrochemical impedance spectroscopy19, adaptive filter20, and cur-
rent switching21 are representatives of the conventional trials. However, they aren’t broadly employed as their 
construction relies on the iterative techniques derived from different numerical approaches. Thence, the model’s 
startup conditions, complexity, and iteration steps are the dominant factors affecting the accuracy of such meth-
ods. On the contrary, the AI-based methods, represented by metaheuristic optimization algorithms (MOAs), are 
dependent on the specs of the computer processor on which the optimization task is carried out, which make 
them more reliable and effective. Consequently, a huge number of researchers have applied MOAs in estimating 
the unknown parameters of the PEMFC’s model4–7,12,22.

Specifically, artificial bee colony-differential evolution algorithm (ABCDEA)23, artificial ecosystem algorithm 
(AEA), ant lion algorithm (ALA), and multi-verse algorithm (MVA)24, and artificial rabbits algorithm (ARA)25 are 
examples of MOAs, involved in the PEMFC parameter estimation task. Besides, bi-subgroup algorithm (BSA)26, 
chaotic Harris hawks algorithm (CHHA)27, converged moth search algorithm (CMSA)28, circle search algorithm 
(CSA)29, evaporation rate water cycle algorithm (ERWCA)21, enhanced transient search algorithm (ETSA)30, and 
firefly algorithm (FFA)31 are applied for the afore purpose. Not only the previous-mentioned algorithms but also, 
gorilla troops algorithm (GTA)32, hunger games search algorithm (HGSA)33, improved chicken swarm optimizer 
(ICSO)34, improved fluid search algorithm (IFSA)35, Jellyfish search algorithm (JSA)36, lightning search algorithm 
(LSA)37, and many mor are employed for the same goal4–6.

According to the "no free lunch" (NFL) theory38, each optimization technique has advantages and disadvan-
tages for particular jobs, hence there isn’t a single algorithm that can solve all engineering optimization issues. 
Furthermore, there is still no conclusive answer, and it can be challenging to choose between optimization meth-
ods X and Y depending on factors like degree of non-linearity, non-convexity, multi-modality, separability of 
the control variables, high dimensionality, etc. The attempts will continue till such a response is received in these 
undertakings. Even though there have been many successful methods to establish these parameters, as indicated 
above, there is always potential for improvement to more precisely address the best PEMFCs stack model values.

It’s self-explanatory from the previous short review that specifying the unidentified parameters of Amphlett’s 
model became a critical research area, at which the aforementioned algorithms struggle to attain minimum 
errors, lower computational burden, and superior statistical metrics. The earlier stated has encouraged the 
authors to assess the efficacy of a new physics-based MOA, named Kepler optimization algorithm (KOA) intro-
duced in 202339, in generating the ungiven parameters of four well-reputed PEMFCs’ stacks. It’s worth declaring 
that the KOA possesses significant features like a smooth transition from exploration to exploitation to escape 
from local minima trap, rapid convergence tendency, and lower execution time. It’s worth noting that based on 
the authors’ awareness, upon an accurate investigation, it’s the first employment of the KOA in the PEMFC’s 
parameter-specifying task.

It’s time to call attention to the main contributions of this article, which include: (i) using and examining 
KOA’s performance to optimally assign the values of unknown parameters in the Amphlett’s model, (ii) carefully 
examining four real-world study cases, Ballard Mark V, BCS 0.5 kW, NedStack 6 kW, and Temasek 1 kW, and (iii) 
Numerous statistical comparisons among the KOA optimizer and other recent and benchmark optimizers are 
performed, and (iv) Amphlett’s model is modified to more accurately capture the dynamic behavior of PEMFCs 
stack before a real-world test case is evaluated for its dynamic responses.

This paper is organized as follows: Section "Introduction" introduces a summarized review and the motiva-
tion of the current endeavor. The mathematical formation of Amphlett’s model is deeply discussed in Section 
"Mathematical formulation of PEMFCs’ model". Section "Cost function allocation" announces the allocated cost 
function (CF) and its relevant boundaries. Section "Kepler optimization algorithm" illustrates the procedures of 
KOA. Various simulated test cases under different steady-state conditions, as well as executing some statistical 
tests to evaluate the KOA’s performance are revealed in Section "Numerical simulations and algorithm verifica-
tion". A simplified trial to update Amphlett’s model so that it can describe the electrical dynamic response of 
the PEMFCs is introduced in Section "Dynamic assessment of PEMFCs stack". Lastly, Section "Conclusion and 
future prospective" announces the conclusion and the future perspectives.

Mathematical formulation of PEMFCs’ model
As formerly-stated, Amphlett’s model is regarded as the most powerful method to simulate the dependency of 
the PEMFC’s terminal voltage on the load current through various steady-state cases22–24. In order to exam-
ine the PEMFCs stack in operation, Mann and Amphlett’s PEMFCs model makes a number of simplifying 
assumptions18,40. Here are a few of these presumptions: (i) The fuel and oxidant gas compositions are constant 
and precisely blended throughout the entire cell, (ii) The electrodes completely consume the fuel and oxidant, 
preventing any buildup inside the cell, (iii) There is no gas mixing between the anode and cathode compart-
ments because the fuel and oxidant gases run parallel to the electrodes, and (iv) The porosity and thickness of 
the material do not change over time, (v) The fuel and oxidant gases’ temperature, pressure, and humidity remain 
constant across the entire cell, and (vi) the electrolyte is a perfect ion conductor with no limits on electronic 
conductivity or mass transfer.

In spite of the aforementioned, the Mann’s model can be extended to describe the transient behavior as well24. 
Amphlett supposes that the PEMFC’s terminal voltage is subjected to three voltage decays which are the activa-
tion, the ohmic, and the concentration voltage drops, as described in Fig. 129. The next few statements concisely 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19532  | https://doi.org/10.1038/s41598-023-46847-w

www.nature.com/scientificreports/

illustrate the model, as thoroughly described in the state-of-the-art. The terminal voltage per single cell Vcl ( V  ), 
is given by (1)25.

where, En is the Nernst open-circuit voltage per PEMFC in ( V  ), Vac is the activation over-potential in ( V  ) as 
the startup chemical reactions are relatively slow, Voh is the ohmic voltage loss due to the total resistance of the 
membrane and external leads in ( V  ), and Vcn is the concentration over-potential due to the high water content 
in the membrane at heavy loading in ( V).

As earlier-mentioned, to attain a high terminal voltage, N PEMFCs are connected in series creating a PEMFCs’ 
stack whose terminal voltage is Vst ( V  ) and calculated by (2)26.

Generally, (2) supposed that all the PEMFCs are identical and behaves the same6.
The En can be calculated by (3) for T ≤ 373.15K27.

where, the partial pressures of hydrogen and oxygen are represented by PH and PO in ( atm ) and determined by 
(4) and (5), respectively25. T is the PEMFCs’ stack operating temperature in ( K).

where, the load current and membrane useful area are denoted by I and Am in ( A ) and ( cm2 ), respectively.
RHa and RHc express the relative humidities of the water steam at the anode and cathode regions, respectively. 

The anode and the cathode inlet pressures are indicated by Pa and Pc in ( atm ), respectively. The saturated vapor 
pressure is symbolized by Pw in ( atm ), which can be given by (6)29.

Moreover, Vac can be computed by (7)30.

where, ζz(z = 1 : 4 ) refer to semi-empirical factors in ( V ,VK−1,VK−1,VK−1 ). CO symbolizes the oxygen con-
centration at the catalytic region in ( molcm−3 ), which is formulated by (8)31.

Furthermore, Voh can be expressed by (9)32.

where, the resistances of the membrane and leads are denoted by Rm and Rl in ( �) , respectively. l  points out the 
membrane thickness in ( cm ). The membrane specific resistivity is represented by ρm in ( �cm ) and determined 
by (10)33.

(1)Vcl = En − Vac − Voh − Vcn

(2)Vst = N · Vcl
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Figure 1.   Equivalent circuit per cell.
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It’s worth affirming that � refers to the water content in the membrane and its determination is a challenging 
issue because of its reliance on the cell-drawn current. However, a certain water content, at all possible operating 
conditions, is assumed unchangeable in this work.

Additionally, Vcn is given by (11)34.

where, δ is an empirical factor in ( V  ) and Jmx is the peak current density in ( Acm−2).
Lastly, the stack output power (Pst) can be determined by (12)36,41.

At this moment, the reader can easily notice the seven unknown parameters are namely ( ζ1, ζ2, ζ3, ζ4, �,Rlandδ ) 
that are ungiven in the manufacturers’ datasheets31–37,39. These parameters are optimally generated using the 
KOA-based methodology to achieve an accurate simulation of the PEMFCs under various operating scenarios.

Cost function allocation
Herein, the summation of square deviations (SSDs) between the actually measured voltages Vms and the model-
based calculated ones Vcal is adopted to optimally pick the values of the seven parameters. Since the SSDs, given 
by (13), is vastly employed in the literature22–37,39, and also to make a just comparison to the already-published 
algorithms, the CF is assigned to minify the SSDs, as depicted in (14).

where, n defines the number of the measured voltage-current dataset points.
Furthermore, the SSDs is susceptible to inequality bounds where each unknown parameter has its own lower 

and higher limits. It’s noteworthy to indicate that the KOA preserves these limits while searching for optimal 
values. Utilizing the SSDs values, the main goal is to significantly fit the recorded terminal voltages to the relevant 
computed ones by the KOA-based methodology.

Kepler optimization algorithm
Basically, KOA is a physics-based optimizer that imitates the planets’ motion according to Kepler’s laws. Particu-
larly, the sun and its planets (objects) moving around it in (fictitious) oval paths (orbits) are utilized to simulate 
the search space, which represents Kepler’s first statement. Specifically, the planets in KOA (nominated solutions) 
exist at various positions from the sun (optimal solution) and at different times, hence, the exploration and 
exploitation concepts are effectively performed, as shown in Fig. 2. There are many factors affecting the planet’s 
position from the optimal solution (the sun) such as the actual planet’s position, the attraction force between 
the sun and the planet, and its revolving speed around the sun39.

Principally, KOA starts with stochastic initialization of the objects’ numbers and positions, as represented 
by (15).

where Yj
i  denotes the ith object (nominated solution) in the search area. The population of the solution nominees 

in the search area is represented by Np and the number of variables to be optimized is defined by d . lbji and hbji 
are the lower and higher boundaries of the jth decision parameter, respectively.

The initialization of the orbital deviation Od for each ith object is given by (16).
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Figure 2.   KOA’s exploration and exploitation regions.
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Lastly, the orbital interval Ot for each ith object is initialized by (17).

where s is a stochastically normal generated number.
The gravitational force Gf i

 that attracts any plant Yi to the sun Ys is defined by the universal gravitational law 
which is function of the sun and the planet mass ms and mi , respectively, and length between the star and the 
planet Ri , as given by (18).

where the global gravitational constant is symbolized by α and formulated by (19), and ǫ is a trivial number to 
avoid dividing by zero error. Ri  defines the normalized value of Ri which is calculated by (20). The normalized 
values of ms and mi are represented by ms  and mi  and computed by (21)–(24), respectively.

where, t  and tm are the actual iteration and the highest number of iterations. The initial value and a constant are 
denoted by αo and γ , respectively.

where s4 is a stochastic number generated from 0 to 1. fk(t) refers to the fitness function of the kth object.
According to Kepler’s law, the velocity of a planet is dependent on its position from the sun. In detail, if the 

planet is close to the sun, it will experience a strong gravitational force, and hence, it will accelerate its motion 
to avoid pulling into the sun and vice versa. So, the planet’s velocity is described by (25).
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where ai(t) symbolizes a semi-main axis of the oval path of the ith planet and is given by (36).

Generally, most objects move around the sun in an anti-clockwise direction, nevertheless, some of them may 
revolve in a clockwise motion. KOA emulates this phenomenon by employing a flag F  to avoid trapping in the 
local minima zones. More specifically, KOA use F  to adjust the search flow so that the objects enhance their 
scanning ability in the search space.

The exploration phase is attained when the objects are away from the sun, referring that KOA efficiently 
explores the whole search space. Thence, the updated position of each planet away from the sun is described 
by (37).

On the other hand, if the objects are close to the star, KOA will concentrate on optimizing the exploitation 
phase. The switching between the two phases is done using an adaptive controlling factor h , which gradually 
alters as a function of the time, as revealed in (38). Thus, the new position of the planets based on this control-
ling strategy is formulated by (39).

where a2 is a periodical regulating factor gradually decays from -1 to -2 for M cycles throughout the overall 
optimization task, as indicated in (40).

Finally, the optimum position of the objects and the sun is determined by (41).

where sx(x = 1 : 8 ) are stochastically generated numbers from 0 to 1.
It’s clearly noticed that the KOA has only to parameters need to be manually set, which are Np and tm . As a 

result, lower computational burden and less independents runs are required to obtain the best performance of 
KOA. The overall steps of the KOA are presented, in detail, in Fig. 339.

Numerical simulations and algorithm verification
To appraise the robustness and the efficacy of the proposed KOA, the performance of four commercial stacks, 
commonly studied in the state-of-art, are assessed under different steady-state circumstances. In addition, the 
unknown parameters’ limits have been extracted from the literature and maintained unchanged over all the test 
cases, to guarantee fair judgment to all the competitive algorithms. Moreover, all of the numerical simulations 
are carried out on a computer with an Intel Core i7 CPU and 8 GB of RAM using the MATLAB platform, version 
R2022a. The operating system is Windows 10 Enterprise.

It’s worth asserting that the values of the KOA controlling parameters Np and tm are 10 and 10,000, respectively. 
Furthermore, the best values of unspecified parameters are picked after executing KOA over 20 independent 
runs due to the high randomness of MOAs. At the end, the statistical performance of KOA is checked to prove 
its robustness.
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Test cases’ datasheets and the parameters’ boundaries
The reader is invited to browse Table 1 for the technical specifications of the four earlier-announced test cases, 
which are extracted from25,27–30. The relative humidity’s of the vapor at anode and cathode RHa and RHc are 
maintained at 1.00 in all cases. Also, Table 1 (last three columns) reveals the minimum and maximum operating 
boundaries of the undefined parameters, as obtained from34,36,37,42.
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Figure 3.   KOA’s flowchart.
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KOA‑based parameters’ estimation outcomes
At this moment, KOA besides, two recent and two well-matured optimizers, are employed to efficiently determine 
the seven ungiven parameters of Amphlett’s model. Actually, the driving training-based algorithm (DTBA)43 
and the election-based optimization algorithm (EBOA)44 are the two new algorithms, while grey wolf algorithm 
(GWA) and particle swarm algorithm (PSA) represent the two benchmark algorithms. Practically, Tables 2, 3, 4 
and 5 elucidate the KOA-based minimum SSD’s values, for the four aforementioned test cases after 20 autono-
mous runs, compared to the four executed algorithms and the other recently-reported optimizers. Examples are 
improved artificial hummingbird algorithm (IAHA)45, honey badger algorithm (HBA)46, manta rays foraging 
algorithm (MRFA)47, pathfinder algorithm (PFA)48, neural network algorithm (NNA)49, and moth-flame algo-
rithm (MFA)50. Besides, sparrow search algorithm (SSA)51, vortex search algorithm (VSA)52, modified monarch 
butterfly algorithm (MMBA)53, quasi oppositional bonobo algorithm (QOBA)54, modified farmland fertility 
algorithm (MFFA)55, marine predator algorithm (MPA)56, modified AEA (MAEA)57, satin bowerbird algorithm 
(SBA)58, and shark smell optimizer (SSO)59 are also brought to comparison with the proposed KOA-based 
results. Over and above, the optimal values of the unknown parameters for each algorithm are also captured in 
the above-stated tables. Furthermore, the convergence trends of the applied optimizers for the four PEMFCs’ 
stacks are revealed in Fig. 4a–d.

The observation we may mention about KOA achieving excellent results for the studied applications but being 
hampered by a slight delay in convergence (required high iteration) is indeed an important limitation compared 
to those published in the literature. Convergence refers to the point at which an algorithm’s performance stabi-
lizes, indicating that it has learned the underlying patterns in the data.

Table 1.   Technical specs of the test cases and practical limits of the undefined parameters.

PMEFCs’ type

Manufacture’s datasheets Typical limits

Ballard Mark 5 kW BCS 0.5 kW NedStack 6 kW Temasek 1 kW Parameter Low High

N 35 32 65 20 ζ1(V) − 1.1997 − 0.8532

l(µm) 178 178 178 51 ζ2.10
−3(V/K) 1 5

Am(cm
2) 50.6 64 240 150 ζ3.10

−5(V/K) 3.6 9.8

Jm(A/cm
2) 1.500 0.469 1.125 1.500 ζ4.10

−5(V/K) − 26.0 − 9.5

T(K) 343 333 343 323 � 13 23

PH (atm) 1.0 1.0 1.0 0.5 Rl(m�) 0.1 0.8

PO(atm) 1.0000 0.2095 1.0000 0.5000 δ(V) 0.0136 0.5000

Table 2.   KOA outcomes compared to other competitive optimizers for Ballard Mark V. Cpt computed. 
Significant values are in bold. *The published values violate the earlier-mentioned boundaries (see Table 1). So, 
an unapplicable solution.

Algorithms

Parameters

ζ1(V) ζ2·10
−3(V/K) ζ3 · 10

−5(V/K) ζ4 · 10
−5(V/K) � Rl(m�) δ(V) SSD(V2)

KOA − 0.8814 3.1030 7.0050 − 16.3984 23.0000 0.1000 0.0136 0.810578

GWA​ − 1.0102 3.2456 5.3612 − 16.3075 23.0000 0.1047 0.0136 0.855938

PSA − 1.0635 3.3482 4.9959 − 16.2830 22.9999 0.1000 0.0136 0.853608

DTBA − 0.8952 2.9699 5.8812 − 15.6956 23.0000 0.0175 0.0136 0.889342

EBOA − 1.1897 3.6653 4.7175 −  15.7171 23.0000 0.0141 0.0146 0.883334

ARA​25 − 1.1589 3.5208 4.0526 − 16.7251 23.9900* 0.1000 0.0159 0.813912

IAHA45 − 1.0130 4.0000 8.9800 − 16.3000 23.0000 0.1000 0.0136 0.853608

ERWCA​22 − 0.8548 3.3043 8.8427 − 16.7251 24.0000* 0.1000 0.0159 0.813912

HBA46 − 1.1997 4.3345 9.2069 − 16.2830 23.0000 0.1000 0.0136 0.853610

ETSA30 − 0.8534 2.5591 3.6100 − 16.2868 23.0000 0.1000 0.0136 0.85360

CSA29 − 1.18134 3.5691 3.9929 − 16.2830 23.0000 0.1000 0.0136 0.853608

ICSO34 − 0.9600 Cpt 4.2500 − 17.3000 23.0000 0.1000 0.0140 0.853000

ABCDEA23 − 1.1956 4.2189 8.3404 − 16.2830 23.0000 0.1000 0.0136 0.853608

LSA37 − 1.0624 3.5970 6.6538 − 16.4925 23.0000 0.1030 0.0188 0.814000

MRFA47 − 1.0898 3.8249 7.7306 − 16.2830 23.0000 0.1000 0.0136 0.853300

PFA48 − 1.1997 3.9579 6.3901 − 16.2830 23.0000 0.1000 0.0136 0.853610

HGSA33 − 0.9910 3.7000 9.1000 − 16.3500 22.8700 0.1000 0.0135 0.853600

NNA49 − 0.9800 3.6946 9.0871 − 16.2820 23.0000 0.1000 0.0136 0.853610
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A delay in convergence can impact the efficiency and effectiveness of an algorithm, particularly in real-time 
or time-sensitive applications where prompt decision-making is crucial. However, it’s worth noting that con-
vergence speed can vary depending on the complexity of the problem, the size of the dataset, and the specific 
algorithm being used.

It may be affirmed from the convergence patterns that KOA outperforms the other candidates in terms of 
escaping from getting trapped in local minima while maintaining the fastest rate to reach the best SSD throughout 
10,000 iterations. Accordingly, the polarization (V–I) curves of the actually recorded and the KOA, GWA, PSA, 
DTBA, and EBOA-based simulated datasets for the four commercial PEMFCs’ stacks are captured in Fig. 5a–d. 
A closer look at Fig. 5a–d, it can be caught that the computed V–I curves, generated after injecting the optimal 

Table 3.   KOA outcomes compared to other competitive optimizers for BCS 0.5 kW. Significant values are in 
bold.

Algorithms

Parameters

ζ1(V) ζ2·10
−3(V/K) ζ3 · 10

−5(V/K) ζ4 · 10
−5(V/K) � Rl(m�) δ(V) SSD(V2)

KOA − 1.1654 3.9388 8.9029 − 19.2956 20.9077 0.1000 0.0161 0.0116952

GWA​ − 0.8534 2.5074 5.7116 − 19.3734 21.9914 0.1293 0.0166 0.0121445

PSA − 0.9006 2.5922 5.3451 − 19.2701 21.0882 0.0136 0.0161 0.0117504

DTBA − 0.8581 2.3739 4.7597 − 19.2863 21.9631 0.0203 0.0162 0.0117808

EBOA − 0.9966 2.8534 5.1700 − 19.3518 22.8929 0.0216 0.0166 0.0120948

ARA​25 − 1.1762 3.7344 7.3729 − 19.3017 20.8772 0.1000 0.0161 0.0116978

IAHA45 − 0.8774 3.500 9.5600 − 19.3000 20.8772 0.1000 0.0161 0.0116980

ERWCA​22 − 1.1742 3.1597 3.7063 − 19.3017 20.8772 0.1000 0.0161 0.0116978

CSA29 − 1.1766 3.4965 5.8319 − 19.2897 21.3242 0.1464 0.0161 0.0117362

ABCDEA23 − 1.1706 4.0932 9.7961 − 19.3017 20.8772 0.1000 0.0161 0.0116978

BSA26 − 0.9063 2.5100 5.5000 − 15.2000 24.0000 0.1000 0.0136 4.1957000

LSA37 − 1.0134 2.9662 5.5693 − 19.2904 20.9300 0.1050 0.0161 0.0116900

JSA36 − 0.9689 2.6930 4.6700 − 19.0000 20.8389 0.1000 0.0161 0.0116990

CMSA28 − 0.7850 4.5000 8.8600 − 19.3000 23.0000 0.3210 0.0170 0.0120000

MFA50 − 1.0773 2.5000 1.4356* − 19.2670 4.0000* 1.7447* 0.0171 0.0118110

AEA24 − 0.8794 2.3360 4.1100 − 19.0000 20.8755 0.1000 0.0161 0.0117000

FFA31 − 0.9928 2.6210 3.7464 − 19.3000 21.1011 0.1000 0.0163 0.0118190

GTA​32 − 0.9082 3.2000 7.8620 − 19.1000 22.9584 0.4245 0.0155 0.0117000

Table 4.   KOA outcomes compared to other competitive optimizers for NedStack PS6. Significant values are in 
bold.

Algorithms

Parameters

ζ1(V) ζ2 · 10
−3(V/K) ζ3 · 10

−5(V/K) ζ4 · 10
−5(V/K) � Rl(m�) δ(V) SSD(V2)

KOA − 1.0259 3.3982 7.1661 − 9.5000 13.4430 0.1000 0.0136 2.10847

GWA​ − 1.0982 3.2438 4.5509 − 9.5008 13.5258 0. 1060 0.0140 2.12085

PSA − 1.0826 3.5902 7.3410 − 9.5003 13.6172 0.0116 0.0139 2.13859

DTBA − 0.9525 3.0469 6.1806 − 9.5000 17.5028 0.0184 0.0373 2.41624

EBOA − 0.8532 2.3989 3.6177 − 9.5000 14.0995 0.01226 0.01795 2.16936

ARA​25 − 1.0085 3.0434 4.9796 − 9.5400 13.4457 0.1000 0.0136 2.11125

IAHA45 − 0.8831 2.6000 3.6000 − 9.5000 13.4650 0.0100 0.0136 2.14570

ICSO34 − 0.8500 Cpt 9.7800 − 9.5600 13.3300 0.1000 0.0130 2.13900

SSA51 − 0.9894 3.3286 7.4100 − 9.5400 20.5477 0.2560 0.4260 2.57110

MFA50 − 0.8532 3.1364 8.8900 − 9.5400 13.4656 0.1000 0.0136 2.14590

MVA24 − 1.0394 3.2439 5.7700 − 9.5400 16.1317 0.1710 0.0290 2.36320

ALA24 − 0.9836 2.7815 3.6200 − 9.5400 13.9723 0.1370 0.0141 2.20340

AEA24 − 1.1993 4.2726 9.8000 − 9.5400 15.0028 0.1170 0.0273 2.30690

VSA52 − 0.8946 3.3480 9.7500 − 9.5400 13.0000 0.1030 0.0429 2.34260

MRFA47 − 0.9381 3.4861 9.5120 − 9.5436 13.0960 0.1000 0.0145 2.13600

MMBA53 − 1.0300 3.5300 8.2400 − 9.4800 15.1100 0.0164 0.0100 2.12000

FFA31 − 1.0357 2.9502 3.7669 − 9.5400 15.0297 0.1622 0.0136 2.16710

IFSA42 − 0.9200 3.4600 7.5900 − 9.6200 13.1500 0.1000 0.0400 2.15000
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values of the parameters to the model, are consistent and well-fitted to the relevant experimental values. Fur-
thermore, the minor SSD’s values support the afore-said statements (see Tables 2, 3, 4, 5).

Another form of KOA verification is the percentage terminal voltage error V%TE , which is determined to 
appraise how reliable and accurate the KOA is to fit the model-based calculated terminal voltages to the experi-
mental ones, as described by (42)36,46. Figure 6a–d elucidates the changeability of V%TE along with the relevant 

Table 5.   KOA outcomes compared to other competitive optimizers for Temasek 1 kW. Significant values are in 
bold.

Algorithms

Parameters

ζ1(V) ζ2 · 10
−3(V/K) ζ3 · 10

−5(V/K) ζ4 · 10
−5(V/K) � Rl(m�) δ(V) SSD(V2)

KOA − 0.8731 2.7642 6.1346 − 9.5000 13.0000 0.1000 0.1619 0.590467

GWA​ − 1.1996 3.9605 7.4015 − 9.5000 14.5255 0.0103 0.1729 0.594670

PSA − 1.0615 3.5641 7.6177 − 9.5000 13.0000 0.0100 0.1619 0.590471

DTBA − 0.8873 2.9047 6.7887 − 9.5000 20.6002 0.0175 0.1828 0.610125

EBOA − 0.9197 2.5498 3.6751 − 9.5000 13.0000 0.0134 0.1557 0.596999

QOBA54 − 1.1997 3.8220 3.6000 − 22.9500 13.0000 0.1000 0.0680 0.783040

MFFA55 − 0.9035 3.8267 8.4751 − 22.9347 13.3251 0.1001 0.0705 0.791000

MPA56 − 0.9777 3.4240 4.9692 − 23.6873 10.0000 0.1000 0.0225 0.755900

CHHA27 − 1.0944 4.4280 8.7600 − 21.4650 18.6392 0.1891 0.1016 0.802340

MAEA57 − 0.8544 3.5766 7.8888 − 22.9258 13.0017 0.1000 0.0683 0.790960

SBA58 − 1.0312 2.4095 3.9500 − 9.5368 9.9852 0.1124 0.1269 1.632200

SSO59 − 1.0299 2.4105 4.0000 − 9.5400 10.0005 0.1087 0.1274 1.648100

Figure 4.   SSD convergence patterns for the test cases.
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stack drawn current for the four benchmark test cases. It’s worth spotlighting that the highest values of V%TD 
for Ballard Mark, BCS 0.5 kW, NedStack PS6, and Temasek 1 kW are 2.7017%, 0.4853%, − 1.3292%, − 3.9871%, 
respectively.

Now, after validating the proposed KOA-based methodology, it’s time to utilize its outcomes to study the 
impact of the polarization losses on the PEMFCs’ voltage profile. As previously discussed, the terminal voltage of 
the PEMFCs’ stack is influenced by three voltage drops; activation, ohmic, and concentration losses54,57. In this 
regard, Fig. 7a–d reveal the alternation of every single polarization loss besides, the total losses VTL as functions 
of the stack drawn current, for all test cases. It can be concluded from Fig. 7a–d that when starting the PEMFCs 
at light load, the activation losses rapidly increase, then at intermediate loading values, it almost gets saturated, 
while the ohmic losses start a linear rise. At heavy drawn currents, the concentration losses considerably arise.

KOA‑based outcomes under various operating conditions
In this subsection, after accrediting the KOA-based results, the effect of varying the PEMFCs’ operating factors, 
PO/PH and T , on the polarization characteristics (V–I and P–I curves) can be adequately evaluated. Particularly, 
only two test cases are addressed for this purpose to avoid a lengthy article. More specifically, The P–I and V–I 
curves of BCS 0.5 kW and NedStack 6 kW under changing the temperature (40, 60, and 80 °C), while maintain-
ing the other factors constant, are caught in Figs. 8a,b and 9a,b, respectively. Moreover, Fig. 8c,d illustrates the 
impact of adjusting the suppliant partial pressures ( PO/PH = 0.2095/1, 1/1.5, 1.5/2.5 bar) on the aforementioned 
curves of BCS 0.5 kW, while unchanging the other datasheet’ factors. The same is done for NedStack 6 kW, the 
V–I and P–I curves are generated while varying the input partial pressures ( PO/PH = 1/1, 1.5/2, 2/3 bar), as 
revealed in Fig. 9c,d25,36.

It goes without saying that according to Figs. 8 and 9, increasing the operating factors of the PEMFCs, 
whether PO/PH or T , positively affects the stack output voltage and power at the same drawn current. However, 
any increase over the nominal limits stated by the manufacturer will lead to severe degeneration of PEMFC’s 
performance.

(42)V%TE =
Vms − Vcal

Vms
× 100

Figure 5.   V–I curves for the four test cases.
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KOA’s statistical performance evaluation
Here, several statistical indices are generated to examine the computational performance of the proposed KOA. 
Mainly, the min, the max, the mean, and the standard deviation (StD) of the SSD are calculated after 20 inde-
pendent runs for all the implemented algorithms. Hence, Table 6 depicts the values of those statistical parameters 
of KOA, GWA, PSA, DTBA, and EBOA for the four illustrated test cases. Since the parameters’ estimation of 
PEMFC is an offline task, which means that the parameters shall be determined before operating the PEMFC, it’s 
insignificant to consider the algorithms’ computational time. Nevertheless, according to Table 6 (last column), 
KOA extremely outperforms the other competitors in terms of the computational burden.

Table 6 indicates that KOA outperforms the other implemented optimizers in terms of statistical performance. 
All the afore-announced results appraise how efficient, robust, and fast the KOA-based methodology is to tackle 
the parameters’ determination problem of Amphlett’s well-known steady-state model. This motivates the authors 
to examine these outcomes on the dynamic response of the PEMFCs, as illustrated in the next section.

In addition, a further analysis to indicate the time complexity of the implemented algorithms using Big O(…) 
is performed. In which, the time complexities of the KOA, GWA, PSA, DTBO and EBOA algorithms can be 
expressed as O(N.Tmax), O(N.Tmax.f), O(N.Tmax.f), O(N.m.(1 + 3Tmax)), and O(N.m.(1 + 2Tmax)), respectively. N is 
the population size, Tmax is the number of iterations, m is the number of problem variables, and f represents the 
time complexity of evaluating the objective function for a single particle. The above mentioned justified that why 
the elapsed time for processing of KOA is lesser than others as indicated in Table 6.

Regarding the computational cost, it’s true that some metaheuristic algorithms can be computationally expen-
sive, the actual computational cost depends on various factors such as problem size, convergence criteria, and 
implementation efficiency. It is important to evaluate the trade-off between computational cost and the quality 
of the obtained solution as indicated above. Bear in mind that the task of PEMFC’s parameters estimation is 
off-line in nature.

Dynamic assessment of PEMFCs stack
In this context, the simplified dynamic performance of the PEMFCs stack is evaluated from the electrical perspec-
tive. Since the time constant of the PEMFC chemical reactions is almost 10–19 s, the electrochemical response can 
be neglected. Besides, the polarization losses are assumed uninfluenced by the PEMFC’s load dynamics, except 

Figure 6.   Percentage voltage error curves.
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for the activation losses. Thence, the mathematical representation of the dynamic activation voltage drop Vac(t) 
is given by (43)23,57.

where, the time constant of the activation over-potential reaction is symbolized by td.
It’s worth stating that this simplified version of Amphlett’s model doesn’t consider the time constants of the 

balance-of-plant devices, like the hydrogen and oxygen compressors24,60–62. Based on the above hypotheses, a 
simplified dynamic model is constructed via SIMULINK environment to simulate the PEMFC’s electrical per-
formance due to load variations, as shown in Fig. 10.

As a representative of the other test cases, NedStack 6 kW stack is employed to check the validity of the pro-
posed dynamic model, where td equals 1.2 s and the other datasheet’s parameters are kept at their nominal values 
(see Table 1 (fourth column)). Specifically, a step variation of the stack drawn current, whose values are equal to 
9 A, 171 A, 45 A at 0 s, 40 s, and 70 s, respectively, is applied to the proposed model, as cropped in Fig. 11a. The 
dynamic model simultaneously responds to this variation, as revealed in Fig. 11b,c.

More specifically, the stack terminal voltage values due to these changes are captured in Fig. 11b, which totally 
fit to the simulated steady-state values indicated in Fig. 5c. Furthermore, the behaviors of the internal polarization 
losses due to the afore variation are depicted in Fig. 11c. It’s noteworthy to recall what is stated before, as the load 
current increases, the stack polarization losses also increase, and accordingly its terminal voltage reduces until 

(43)Vac(t) = Vac(see(7))×
1

td .e
−t
td + 1

Figure 7.   Plots of polarization losses for the test cases.
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reaches a steady-state value as plotted in Fig. 5c. Now, it comes without any doubt that the simplified model based 
on the KOA’s results can effectively and acceptably simulate the electrical dynamic response of the PEMFCs.

Conclusion and future prospective
A viable and effective methodology based on KOA has been introduced for optimally specifying the undefined 
parameters of the commonly investigated PEMFC’s model, called Amphlett’s model. Four practical study cases 
of well-known commercial PEMFCs’ types have been comprehensively discussed through a set of simulated 
electrical characteristics such as the calculated V–I and P–I curves and the polarization losses alternation with 
the drawn currents. In addition to that it’s worth mentioning that the percentage terminal voltage error between 
the KOA-based computed voltages and the experimentally recorded ones are 2.7%, 0.49%, − 1.33%, − 3.99% for 
Ballard Mark V, BCS 0.5 kW, NedStack PS6, and Temasek 1 kW PEMFCs, respectively. Furthermore, the effect 
of varying the input operating factors of the PEMFCs, like the temperature and the suppliant pressures, is deeply 
assessed for the whole test cases. Statistically, KOA robustness and preciseness have been validated through 
multiple indices like StD, min, max, mean, and computational CPU time, where it extremely outperforms the 
other challenging competitors. Moreover, the electrical dynamic performance of the PEMFCs is brought under 
study using an upgraded version of Amphlett’s model. This work still needs to be expanded in order to accurately 
analyze the performance of PEMFCs stack due to actual disturbances and other operating parameters like the 
hydrogen and oxygen flow rates. Additionally, the electrical behavior of the PEMFCs stacks when operating 
in parallel is taken into account in the anticipated future work. Once again, the promising results of the KOA 
encourage the research community to extend this current to study the performance of such PEMFCs stacks with 
maximum power tracker in real conditions and to study their behaviors’ when they are connected to microgrid.

Figure 8.    V–I and P–I curves of BCS 0.5 kW under various operating conditions.
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Figure 9.    V–I and P–I curves of NedStack 6 kW under various operating conditions.

Table 6.   Statistical indices of KOA and others. Significant values are in bold.

Type Algorithm

Indices

Elapsed time (s)Min Mean Max StD

Ballard Mark

KOA 0.810578 0.810579 0.810588 3.155338e−06 16.672351

GWA​ 0.855938 0.895411 1.004077 4.390642e−02 86.378611

PSA 0.853608 0.930678 1.542673 2.165230e−01 176.996924

DTBA 0.889342 0.910242 0.939791 1.445920e−02 243.268816

EBOA 0.883334 0.914861 0.971580 2.927553e−02 66.193528

BCS 0.5 kW

KOA 0.011695 0.011727 0.011796 3.645488e−05 23.667014

GWA​ 0.012144 0.015062 0.021112 2.734507e−03 111.760233

PSA 0.011750 0.016711 0.022699 4.304852e−03 237.138144

DTBA 0.011781 0.012891 0.015595 1.486775e−03 338.538775

EBOA 0.012095 0.012820 0.014914 9.297347e−04 95.803224

Nedstack PS6

KOA 2.108470 2.135662 2.329817 6.956982e−02 35.459936

GWA​ 2.120850 2.341838 2.924057 2.549744e−01 179.916095

PSA 2.138593 2.382487 2.677051 1.755165e−01 293.776877

DTBA 2.416243 2.460612 2.495732 3.004563e−02 523.256794

EBOA 2.169365 2.351896 2.682705 1.752544e−01 159.706073

Temasek 1 kW

KOA 0.590467 0.590467 0.590467 2.309102e−09 24.871057

GWA​ 0.594670 0.655523 0.729511 5.770937e−02 126.789319

PSA 0.590471 0.604481 0.642790 1.751757e−02 185.479748

DTBA 0.610125 0.652513 0.731426 4.939069e−02 359.479300

EBOA 0.596999 0.616389 0.642364 1.442578e−02 97.767673
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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