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Deep learning approach 
for denoising low‑SNR correlation 
plenoptic images
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Correlation Plenoptic Imaging (CPI) is a novel volumetric imaging technique that uses two sensors 
and the spatio‑temporal correlations of light to detect both the spatial distribution and the 
direction of light. This novel approach to plenoptic imaging enables refocusing and 3D imaging with 
significant enhancement of both resolution and depth of field. However, CPI is generally slower than 
conventional approaches due to the need to acquire sufficient statistics for measuring correlations 
with an acceptable signal‑to‑noise ratio (SNR). We address this issue by implementing a Deep 
Learning application to improve image quality with undersampled frame statistics. We employ a set of 
experimental images reconstructed by a standard CPI architecture, at three different sampling ratios, 
and use it to feed a CNN model pre‑trained through the transfer learning paradigm U‑Net architecture 
with VGG‑19 net for the encoding part. We find that our model reaches a Structural Similarity (SSIM) 
index value close to 1 both for the test sample (SSIM = 0.87± 0.02 ) and in 5‑fold cross validation (SSIM 
= 0.92± 0.07 ); the results are also shown to outperform classic denoising methods, in particular for 
images with lower SNR. The proposed work represents the first application of Artificial Intelligence in 
the field of CPI and demonstrates its high potential: speeding‑up the acquisition by a factor 20 over 
the fastest CPI so far demonstrated, enabling recording potentially 200 volumetric images per second. 
The presented results open the way to scanning‑free real‑time volumetric imaging at video rate, 
which is expected to achieve a substantial influence in various applications scenarios, from monitoring 
neuronal activity to machine vision and security.

Correlation Plenoptic Imaging (CPI) is a recently established three-dimensional imaging modality that exploits 
the spatio-temporal correlations of light for enabling plenoptic imaging (PI) at the diffraction  limit1–6. While 
in standard plenoptic imaging the required position and direction information are encoded in the intensity 
registered by a single  sensor7–9, thus sacrificing image resolution, the volumetric information is retrieved in CPI 
by measuring spatio-temporal correlations between two disjoint sensors. As a result of the different physical 
mechanism regulating the two approaches, CPI considerably enlarges the maximum achievable depth of field, at a 
given resolution, with respect to conventional PI, and significantly improves the volumetric  resolution5,10. Several 
alternative configurations of CPI have so far been  proposed4,11–14, based on the correlation properties of either 
chaotic  light1 or entangled  photons3,5. In all cases, the advantages connected with the use of the spatio-temporal 
correlation properties of light are counterbalanced by the main open challenge of correlation imaging: the low 
acquisition speed related with the need for collecting a statistically relevant quantity of samples (i.e., pairs of 
frames simultaneously acquired by the two sensors) to reconstruct the intensity correlation function. In general, 
the number of collected frames cannot be reduced too much without negatively affecting the image quality, i.e., its 
signal-to-noise ratio (SNR)15. This trade-off crucially affects temporal performance of CPI, thus limiting its range 
of effective applicability and its competitiveness with state-of-the-art volumetric imaging techniques, especially 
when dealing with moving objects. Recently, a first attempt was made by Massaro et al.16 to operate CPI at a frame 
rate approaching video rate: here, correlated photon imaging was demonstrated at a rate of 10 volumetric images 
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per second using SwissSPAD2, an array of single photon avalanche photodiodes (SPAD) capable of capturing 
up to  105 frames per  second14,17–19. However, to achieve such a frame rate, a trade-off has been made in terms 
of image quality. The present work addresses this open challenge by developing Artificial Intelligence methods 
to reduce the number of required frames for extracting effective signals from the typically noisy background of 
CPI, thus speeding up acquisition while still achieving an established target in terms of image quality.

Artificial Intelligence has led to the widespread use of deep learning (DL) techniques in various  fields20,21, 
including image denoising, which has acquired considerable attention. In 2015, Liang et al.22 and Xu et al.23, used 
deep networks for image denoising tasks, employing the first Convolutional Neural Network (CNN) architecture 
for this goal. Later, Mao et al.24 utilized multiple convolutions and deconvolutions to suppress noise and restore 
high-resolution images. Additionally, Zhang et al.25 employed the denoising CNN (DnCNN) for image denoising, 
super-resolution, and JPEG image blocking, through a framework consisted of convolutions, back-normalization, 
rectified linear unit (ReLU), and residual learning. Considering the tradeoff between denoising performance 
and speed,  Lefkimmiatis26 proposed the color non-local network (CNLNet), which combined non-local self-
similarity (NLSS) and CNN to efficiently suppress color-image noise. Also in the context of correlated-photon 
imaging, the use of deep learning techniques has been explored for addressing the problem of noise; a mutual 
beneficial effect for both imaging speed and image quality has been demonstrated in two  scenarios27–29: ghost 
imaging (GI) and computational ghost imaging (CGI). In these contexts, several DL applications have been 
implemented to increase the quality of the retrieved images with a reduced number of  realizations30–35, as well 
as to extend the use of these imaging techniques for tracking moving  objects36. It is also worth noticing that the 
exploratory use of Artificial Intelligence techniques is increasingly spreading to other applications of optics and 
quantum  photonics37,38.

In this work, we apply DL techniques to address the noise reduction problem in CPI. Despite its similarities 
with other correlation-based imaging techniques such as GI and CGI, the effect of noise on the measured four-
dimensional correlation function is very specific to CPI and its various alternative  architectures15,39,40. Thus, 
models developed previously in other contexts cannot be applied directly and a dedicated approach must be 
developed. We feed our deep model with a sample of refocused images obtained within the experiment performed 
in Massaro et al.16. We employ a model based on the U-Net architecture, where we use, for the encoding part, the 
convolution section of a pretrained VGG-19 net, thus realizing a transfer learning model to improve the denoising 
power. To demonstrate the effectiveness of our deep model, we compare our results with those obtained by using 
a combination of two well-known image noise-reduction filters, namely,  bilateral41 and Gaussian filters. This 
work represents the first application of an artificial intelligence method to the field of correlated photon-based 
plenoptic imaging, and paves the way for extending CPI to scan-free real-time volumetric imaging at video rate.

Results
We adopted a DL strategy to mitigate noise in CPI. To increase the de-noising capacity of our system, we used a 
transfer learning approach with a model in which we combined a U-Net architecture and a popular deep CNN 
named VGG-19 (see “Materials and methods” for details) that were previously trained through the ImageNet 
database. A scheme of the workflow implemented in the present research is displayed in Fig. 1. We exploited 
captures of 6 different planar transmissive targets to obtain as many 128x128 pixels refocused images. Then, for 
each target, we produced three sets of undersampled refocused images (100 images for each set) using three 
different sampling ratios (S) (0.025%, 0.25% and 5%). So, after the image generation procedure, we obtained 6 
data sets containing one hundred 128x128 pixels images for each S. At a fixed S, we used 5 generated data sets 
to train the network within a 5-fold cross validation (CV) procedure and the sixth data set to test the model. 
Inside the 5-fold CV framework, repeated 100 times, we applied a data augmentation procedure on 4 of 5 data 
sets for a total of 4400 training images after the data augmentation procedure and 100 images used to validate 
the model. Figure S2 of the Supplementary Materials section shows loss and learning rate as a function of epochs 
for a single network implementation. To estimate the quality of the output images, we evaluated their Structural 
Similarity (SSIM) with their respective labels. Further details are given in the “Material and methods” section. 
The result of 5-fold procedure are reported in Table 1 where SSIM ranging from 0.63 for S = 0.025% to 0.92 for 
S = 5% . We reported computational network parameters in Table S1 of the Supplementary Materials section.

Figure 1.  The flowchart of CPI using convolutional neural networks (CNNs). Green represents the training 
stage and orange the testing stage. The steps composing the analysis and the related findings are described in 
detail in the “Results” and “Materials and methods” sections.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19645  | https://doi.org/10.1038/s41598-023-46765-x

www.nature.com/scientificreports/

Then we tested the trained model through the sixth data set of generated images. Figure 2 shows a qualitative 
comparison between an image of the test sample obtained by the standard CPI refocusing algorithm in differ-
ent S conditions (Input), the corresponding output images of the conventional denoising and the outputs of DL 
models. By visual inspection, starting from S = 5% , we can see that the image reconstructed by the deep neural 
network, is almost identical to the ground truth image. At a lower sampling ratio ( S = 0.25% ), DL algorithm 
provides a reasonable reconstruction of the target. For an even lower sampling ratio of 0.025% , we get only a 
partial reconstruction of the target, but the result is excellent when compared with the initial CPI image. Our 
denoising strategy (Bilater + Gaussian filters) is able to reconstruct the image with a good yield only in the case 
of the highest sampling ratio. These findings are confirmed by applying another well-known denoise algorithm, 
named Block-matching and 3D (BM3D)  filter42, as shown in Fig. S6 in the Supplementary Materials section. 
Furthermore, to state the rebustness of our results, we show more reconstructions of the test dataset in Figs. S3, 
S4 and S5. The capability of CNNs to reconstruct much clearer images can also be observed in Fig. 3, where we 
report, for each sampling ratio, the distributions of SSIM (computed with respect to the ground truth) obtained 
by applying both our DL framework and the standard denoising strategy to the test sample. DL resulted the best 
performing method, providing SSIM ranging from 0.46 for S = 0.025% to 0.87 for S = 5% , and, according to 
a Kruskal–Wallis  test43, the two methodologies of noise reduction are significantly different ( p < 0.1) for each 
considered S.

Table 1.  Summary of the performance measure (SSIM) of the proposed deep learning (DL) approach, as 
obtained through a 5-fold cross validation procedure repeated 100 times. The SSIM values obtained for the 3 
considered sampling ratios are reported with the corresponding standard deviations. Input refers to images 
obtained by CPI; output to images obtained after implementing our DL model.

Sampling ratio (S) SSIM label-input SSIM label-output

0.025% 0.050 ± 0.001 0.630 ± 0.150

0.25% 0.090 ± 0.010 0.680 ± 0.140

5% 0.280 ± 0.010 0.920 ± 0.070

Figure 2.  The panel shows a qualitative comparison of the output of our algorithms applied to the test dataset. 
Starting from the left we see: the Ground Truth image, the input images obtained by the standard undersampled 
CPI algorithm, the output of the denoising method and the output of DL. S stands for the sampling ratio.
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Discussion
As mentioned earlier, our DL model was trained using experimental images taken at a specific setting, based on 
the CPI architecture and employing SPAD arrays as sensors as implemented in Massaro et al.16. In these refo-
cused images, noise inherent to the image formation procedure, i.e., the computation of pixel-by-pixel intensity 
correlations, prevents a standard denoising algorithm from significantly increasing the SNR of the image. Our 
DL model significantly improves the performance with respect to the standard denoising algorithm despite the 
small training sample. A well known limitation of DL algorithms is that they have poor performances when the 
number of observations in the training set is too low and thus not informative enough. Therefore, to improve 
the performance of our model, it would be necessary to have a larger number of images in the training phase, 
for example by using simulated images based on realistic noise models. Through simulations, the algorithm can 
also be trained on a richer variety of possible scenarios and objects that are difficult to deal with experimentally, 
such as complex objects requiring a much larger statistical pool than a ground glass disk, or fast-moving objects. 
Furthermore, the use of more complex simulated images is reasonably expected to increase the discriminative 
power of the deep model.

It is worth remarking that a sampling ratio of 5% allows to perform CPI at 10 Hz with a satisfactory SNR level, 
as demonstrated by the SSIM reported in Fig. 3. However, the application of our DL model enables to obtain 
SNR values fully comparable with the ground truth, as demonstrated in Fig. 2. This primarily leads a general 
improvement of image quality under condition of low-SNR, but more specifically it shows that it is possible to 
further reduce the required number of frames and achieve video rate acquisition speed, as demonstrated by the 
cases with a lower sampling ratio in Fig. 2. In fact, if we take into account the actual frame rate of the SPAD array 
used in our experiment (almost 100.000 frames per second), it is possible to estimate a potential acquisition 
speed of the CPI setup of 200 volumetric images per second for S = 0.25% , and even 2000 volumetric images 
per second for S = 0.025% , therefore more than a factor of 20 compared to the fastest CPI demonstrated so far.

A direct comparison of our results with the literature is difficult to make, because our work is the first applica-
tion of a DL model to CPI. However, as mentioned in the “Introduction”, DL methods for noise reduction have 
been applied to ghost imaging. In particular, for computational ghost imaging (CGI), Rizvi et al.33 used deep 
convolutional autoencoder network to achieve imaging at a frame rate of 4–5 Hz with 10–20% sampling ratios, 
for reconstructing good-quality 96× 96 images. Earlier, Lyu et al.30 and He et al.31 used DL approaches, also with 
the support of Compressive  Sensing44, to reconstruct, still in the CGI framework, good-quality 32x32 and 64x64 
images, respectively, with sampling ratios between 5 and 20%. Recently, Hu et al.36 demonstrated the possibility 
to reconstruct both the trajectory and a clear image of a moving object via GI, by using a convolutional denoising 
auto-encoder network; the quality of images was enhanced with a sampling ratio even down to 3.7%. Our work 
shows that the employed DL method can achieve a sampling ratio smaller than 1%, with an SSIM of about 0.7. 
As mentioned before, this result demonstrates the potential of our approach to retrieve volumetric images at a 
frame rate larger than 200 Hz, well beyond video rate.

We acknowledge that our work presents some other limitations. Mainly, in the training phase of our DL 
model, the computational demands, in terms of RAM, GPU and computation time, rapidly increase with image 
resolution. So using higher image resolution (for example 1024× 1024 pixels) would require a different approach 
(e.g. image patch calculations).

Figure 3.  SSIM distributions for the test sample and for the three different sampling ratios so far considered. 
We computed SSIM (with respect to the ground truth image) for the input CPI images (red), the images 
obtained with the standard denoise procedure (green) and those from DL (blue).
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Further research will be dedicated to the application of Artificial Intelligence methods directly on the images 
acquired by the two sensors of CPI setup, in the attempt to entrust DL with both the data analysis, and the denois-
ing stage, by feeding the algorithm the raw data and obtaining the denoised 3D stack of refocused images as the 
output. This type of approach could revolutionize the CPI technique, because it would definitely overcome the 
problem of image acquisition and reconstruction times that currently represents the main bottleneck towards 
real-time volumetric imaging.

Materials and methods
Correlation plenoptic imaging
The dataset used to train and test the network is composed of images acquired in a setup based on the concept 
of correlation plenoptic imaging between arbitrary planes13 (CPI-AP). Massaro et al.16 describes both its working 
principle and experimental realization in detail: the conjugate planes of the two high-resolution sensors are 
located at general axial distances from an imaging lens, in the surroundings of the object of interest. A beam-
splitter is used to deflect the chaotic light from the object onto the two sensors. Unlike a conventional light-field 
camera, which uses both the usual camera lens and a microlens array, our setup is implemented with a single 
lens that captures light from the selected planes and focuses it on the sensors. To avoid the need for synchroniza-
tion, the two sensors are realized by using two halves of the same SwissSPAD2  sensor17,18; each acquired frame, 
thus, consists of a binary matrix identifying the pixels triggered by at least one detected photon. The software 
evaluates the correlations between the photon-number fluctuations, pixel by pixel, between the two halves of the 
sensor, and reconstructs the volumetric image of the scene. As the light from the scene is chaotic, by calculating 
the simultaneous pixel-by-pixel correlation between the number of photons detected by the sensors, we obtain 
the correlation function:

where Na ( Nb ) and ρa ( ρb ) are the number of photons and the coordinates denoting the pixel positions on the 
sensors a (b) respectively, while 〈. . . 〉 indicates the averaging process. The correlation function in Eq. (1) rep-
resents the correlation between the intensity fluctuations reaching two points, one placed on the first, and the 
other on the second detector. Ŵ(ρa, ρb) contains plenoptic information and thus allows the reconstruction of 
features of a 3D object that can lie both between and beyond the two selected planes imaged on the  detectors12,45. 
Ŵ(ρa, ρb) encodes a collection of multi-perspective volumetric images; proper processing of these volumetric 
images provides the refocused image of a specific transverse plane in the scene.

Image generation
In our specific case, the CPI device is used for imaging several transmissive planar test targets placed out of 
focus on both sensors. The targets are illuminated by a chaotic light source with controllable polarization, 
intensity, and coherence time, generated by a laser scattered by a rotating ground glass disk. We performed a 
series of acquisitions with the object at different axial positions. For each target, we acquired a large number of 
frames (larger than 200 k). Following the workflow of the refocusing  algorithm45,46, we used these data to create 
a dataset for training and testing the network. Basically, we used 6 acquisitions of different transmissive targets 
and we exploited each full dataset to achieve a 128× 128 pixels refocused image of the sample. The retrieved 
images can be considered as our ground truth. However, the behaviour of the SNR of a refocused image deviates 
from the 

√
Nt  scaling, where Nt is the number of the acquired frames, since our source can only provide a finite 

number of statistically independent  realizations16. For this reason, we estimated the full sampling rate at 200 k 
detections. Thus, we define the sampling ratio S as the ratio between the considered number of acquired frames 
and the total number of acquired frames at the full sampling rate. To test our DL approach, we generated three 
sets of undersampled refocused images, for each considered test target, using three different sampling ratios S 
(0.025%, 0.25% and 5%). For a given value of the sampling ratio S, each data set was generated by randomly 
extracting, from the images of the target directly retrieved by the sensor, a number of frames corresponding 
to the considered sampling ratio. By repeating the random procedure 100 times, we were able to increase the 
variability of the data sets while keeping constant the introduced noise level. Figure 4 schematically shows the 

(1)Ŵ(ρa, ρb) = �Na(ρa)Nb(ρb)� − �Na(ρa)��Nb(ρb)�,

Figure 4.  Schematic representation of the construction of each data set: for each sampling ratio S, 100 images 
were reconstructed, each one containing a different random noise due to the random choice of the frames from 
the acquired out-of-focus images of the test target.
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composition of each dataset: 5 datasets of 128× 128 pixels images have been used to train the network for each 
value of S, and the remaining one has been used for testing the model. It is worth noting here that all the data 
sets were built in the same modality, namely, starting from images of different targets placed in different axial 
positions within the same setup described in the dedicated section.

Deep learning
After the image collection phase we developed a DL model based on CNN framework to remove image noise. 
Figure 1 shows a schematic overview of the performed analysis: first, we trained 3 DL models, one for each 
sampling ratio used (see “Image generation” section for details), then we tested our algorithms on a dataset 
independent of the training sample.

Data augmentation
When there is only a limited number of training samples available, it is crucial to use data augmentation tech-
niques in order to train the network on the required invariance and robustness characteristics. Therefore, we 
implemented Data Augmentation by rotating the source images at various angles, and also using the transposed 
image and its rotations. Specifically, for each training image we built: 6 rotations (45°, 90°, 135°, 180°, 225° and 
270°), the transposed image, 3 rotations of the transposed image (90°, 180°, 270°). In this way, our training set 
has reached the number of 4400 images (from the initial 400) for each sampling ratio used.

Learning model
CNNs are a class of DL algorithms that have been specifically developed to address various computer vision and 
image processing  tasks47,48. CNNs structure is inspired by the visual cortex of some  animals49,50, and is comprised 
of three main types of layers: convolutional, pooling, and fully connected layers. In contrast to conventional 
Artificial Neural Networks, CNNs eliminate the need for a feature engineering and extraction process as the 
convolutional layer automatically performs these functions. This layer uses both linear and nonlinear operations 
by applying a fixed-dimension filter (known as a kernel) across the layer’s input during each linear operation. 
The resulting output is then transferred to a nonlinear activation function. The pooling layer conducts a down-
sampling operation over the feature maps’ spatial dimensions. The most frequently utilized pooling operation is 
max pooling, which extracts fixed-dimension blocks from the input feature maps and retains only the maximum 
value in each block. Over the last years, deep convolutional networks overcame previous best practices in vari-
ous visual recognition assignments. In particular, the newly suggested CNNs have significantly improved the 
removal of image noise procedures because of their powerful expressive capabilities and speedy  performance51. 
In this work, we used a transfer learning approach with a model composed by two different algorithms (U-Net 
and VGG-19 architectures) for a noise reduction task. The U-Net is a type of CNN that was created specifically 
for the purpose of biomedical image segmentation in  201552. Unlike typical CNNs, the U-Net is designed to 
be trained using a smaller number of images. Its architecture consists of four coding blocks connected to four 
decoding blocks via a bridge and four “skip connections” that bring directly in the decoding block the spatial 
information from the encoding blocks. The encoding part works as a feature extractor and learns, during the 
training phase, an abstract representation of the image, which the decoding part expands back to its initial size. 
By using noisy input images and corresponding clean images as labels during the training phase, U-Net can learn 
to denoise similar images within the same domain as the input images. The VGG-1953 is a DL model consisting of 
19 layers, of which 16 layers are convolutional and the remaining 3 are fully connected. Its main goal is to classify 
images into 1000 different categories using the ImageNet database, which includes a vast collection of images. 
The 16 convolutional layers are employed for feature extraction and are divided into five groups, each followed 
by a max-pooling layer. Finally, the last three layers of the model are used for classification. In this work we used 
the U-Net architecture, with the encoding part formed by the pre-trained VGG-19 Feature Extraction block. In 
our configuration we implemented the default parameters: the binary crossentropy loss and Adam optimizer. 
The U-NET was composed by a final convolutional layer with 1 filter, 1 pixel kernel and sigmoid as activation 
function. Starting from the weights of VGG-19, pretrained on ImageNet database, we trained our DL model 
through a cross validation procedure, as detailed in the following section. We reported the network structure in 
Fig. S1 of the Supplementary Materials section.

Cross validation
To increase the robustness of our DL model, we implemented a 5-fold cross validation (CV) framework using 5 
of the 6 generated data sets. It is worth emphasizing that the further data set (the sixth) has been used to provide 
an external validation of the DL algorithm. This technique entails partitioning the original data set into five non-
overlapping subsets consisting of the same number of cases, which are assigned to each fold on a random basis. 
We employed four of the five subsets for training purposes and reserved the remaining portion for validation. On 
the training sample we applied the data augmentation procedure described in a previous section. We repeated 
CV 100 times so the average of the 100 performance values is a reliable indicator of the overall model accuracy.

Performance metrics
As we anticipated, refocusing images starting from an undersampled correlation function leads to a worsening 
of the image quality due to statistical noise; in fact, it is well known that the SNR of correlation-based imaging 
techniques improves with the square root of the number of correlated frames. In CPI, however, attributing a 
single numerical value to the statistical SNR for estimating the image quality can be ambiguous: from Eq. (1), 
we see that the SNR of the correlation function, defined as the correlation function itself over its statistical vari-
ance, is a local non-homogeneous four-dimensional quantity, depending on all four coordinates at the detectors. 
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Because of its local nature, the SNR cannot be used as a global image quality estimator for the refocused images 
as is. Here, we choose a straightforward approach, that is to assess the quality of our image reconstruction in 
terms of Structural Similarity (SSIM)  index54, used as a proxy of the statistical SNR, which has the advantage of 
being a global estimator for the image quality. This index quantifies the degradation of structural information in 
an image and evaluates the similarity measurement through 3 comparisons: luminance, contrast and structure. 
Given an image x considered to have perfect quality, we can measure quantitatively the quality of a second image 
y by means of a similarity measure with x,

where α , β and γ are positive parameters used to modify the relative importance of the three components. The 
first term in Eq. (2) indicates the luminance comparison

with µx and µy the mean intensity of x and y respectively and C1 a constant. The second term in Eq. (2) represents 
the contrast comparison function

that is expressed as the comparison between the standard deviation of x ( σx ) and x ( σy ). The last component of 
Eq. (2) defines the structure comparison function

where C3 is a constant and σxy is

Conventional denoising
To demonstrate the effectiveness of our approach, we compared the results with the ones achieved by combin-
ing two conventional denoising approaches: Bilateral  filter41, and a Gaussian filter. The bilateral filter is a well 
known type of non-linear noise reduction filter having the peculiarity to preserve edges; it has been used in the 
most diverse contexts, including correlation  imaging32. Here, it was applied to the reconstructed testing images. 
Because of the binary nature of the target used in the experiment (i.e. a negative transmissive resolution mask), 
a Gaussian filter was then applied to the previously filtered images in a minimally invasive way, with the aim to 
close the possible artificial gap between adjacent  pixels55 inside the correlated regions. We applied this combined 
noise reduction method to each image of the same data sets generated under the three sampling ratio conditions 
used for testing our DL model.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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