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Dynamic event‑triggered 
delay compensation control 
for networked predictive control 
systems with random delay
Ji Zhang 

This paper aims to investigate the dynamic event‑triggered control problem for networked predictive 
control systems with random delays and disturbance. First, a discrete‑time dynamic event‑triggered 
control scheme, in which sensor information is only updated when it is necessary, is presented. 
Next, the systems are modeled as a time‑delay singular Markovian jump systems with time‑varying 
switching. Then, a dynamic event‑triggered delay compensation control strategy is proposed. 
Sufficient conditions guaranteeing the asymptotically stable are derived based on the Lyapunov–
Krasovskii functional method together with the linear matrix inequality (LMI) technique. Finally, 
simulation results verify the effectiveness of the proposed strategy.

Networked control systems (NCSs) have garnered research attention and produced a number of exceptional 
works over the past 20 years as a result of their numerous benefits, including cheaper cost, more flexibility, remote 
monitoring, and ease of  operation1. The rise of big data technologies in recent years has nonetheless progres-
sively increased the amount of data transmitted across networks, placing enormous pressure on the constrained 
network capacity. The event-triggered control (ETC) approach successfully addresses this issue. Because of this, 
the subject of ETC in NCSs has received a lot of attention lately (some relevant findings are described  in2 and 
its references).

ETC’s key benefit is its ability to conserve network traffic while maintaining the system’s essential functional-
ity. According to the methodology, several issues with conventional NCSs were expanded to the event-triggered 
variants. For instance, using the state and fixed threshold event-triggered version known as general mixed ETC. 
For instance, Li et al.3 investigated H∞ control in a networked linear parameter changing system. The issues with 
quantized stabilization for event-triggered NCSs with data packet losses and plant uncertainties were examined 
in  paper4. An event-triggered networked T-S fuzzy system with interval time-varying delays was researched in 
the  publication5.

An enhanced ETC of a network-based T-S fuzzy system was suggested in the  publication6 for the tracking 
control of NCSs. Numerous papers have been published recently that focus on the relative ETC as a particular 
example of general ETC, including H∞ control for networked Markov jump  system7, networked singular system 
with  quantization8, and discrete-time nonlinear networked singular  system9. The reference model was introduced 
 in10, and in contrast to the conventional approach with the fixed triggered condition, the new adaptive ETC’s 
triggered condition was controlled by the state error.

In addition, the output-based general mixed ETC was expanded to include output feedback control (OFC) 
combined non-uniform sampling and H∞  in11. In addition, H∞ control for nonlinear NCSs, which was mod-
eled by the parallel distributed compensation (PDC) and non-PDC fuzzy control rules, were solved  in12,13. A 
novel output-based ETC with a state-dependent threshold, which differs from the mixed ETC with a constant 
threshold, was introduced  in14 and addressed the issue of L∞ control co-design for NCSs with delay and external 
disturbances. Additionally, the fuzzy filter of the networked T-S fuzzy time-delay system and the H∞ OFC of 
Markov jump systems with measured output quantization were explored  in15,16 for the output-based ETC without 
threshold. The issues of OFC with an event-triggered architecture of NCSs and distributed NCSs were investigated 
 in17,18 by setting the scalar triggered parameter to zero. Numerous additional brand-new ETC algorithms have 
also been developed, including a revolutionary mode-dependent event-triggering  scheme19, dynamic event-trig-
gered control (DETC)20, decentralized  ETC21, and adaptive ETC incorporating input and output  information22.
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Additionally, some outstanding findings on the ETC of networked predictive systems were made. For instance, 
given the asynchronous coordination between subsystems, a mixed time/event-triggered dual-mode distributed 
predictive control algorithm was developed in  paper23.  Paper24 provided innovative solutions to the unsyn-
chronized problem for NCSs with delay using a model-based periodic ETC configuration. The model-based 
event-triggered predictive control problem for NCSs with delay and data dropout, were discussed in  papers25,26, 
respectively.  In27, a unique Lyapunov-based ETC design was provided that took packet dropouts for NPC by the 
switching system into account. However, there are not many DETC for networked predictive control systems, 
and there are no published findings about time-varying gain.

In this paper, we consider the stability and stabilization problems for a class of discrete-time NCSs based on 
DETC. The networked closed-loop system is established by using the networked delay compensation method 
and time-delay system approach. The disturbance of the model and random round-trip time (RTT) delay are 
also included. Motivated by the  paper28, a dynamic event-triggered network delay compensation control (DET-
NDCC) strategy with time-varying gains is presented. Compared to the fixed gain of traditional NPC, this 
method has less conservatism. On the sensor side, an DETC exists to determine whether the signal is transmitted. 
On the controller side, a time-varying gains feedback controller is designed to generate a sequence of control 
signals. On the actuator side, a networked delay compensator (NDC) is set to select the suitable control signal 
for the plant depending on the networked-induced delay. The main contributions of this article are given:

• By integrating the network delay compensation approach and ETC, a dynamic event-triggered network delay 
compensation control strategy is proposed. The method combines the merits of reducing the networked 
bandwidth occupation and compensating for network delay actively.

• Based on the predictive control, delay-dependent state feedback controllers with time-varying gains are 
designed. Which have less conservatism than the fixed gain predictive  controller29.

• The stability and stabilization problems of the dynamic event-triggered NCSs with and without external 
disturbance are discussed. The H∞ performance of the system under biased noise is guaranteed.

The rest of the article is organized as follows. “Problem formulation” states the problem formulations. “Main 
results” gives the stability analysis and controller design. “Robust control of NPC” shows the H∞ performance 
based on the proposed method. Simulations are shown in “Simulation and experiment results”. A discussion is 
shown in “Discussion”, Finally, “Conclusion” presents a conclusion to the paper.

Problem formulation
Considering the following discrete-time system:

where x(k) ∈ Rn , y(k) ∈ Rq , and u(k) ∈ Rm are the state vector, output vector and input vector, respectively. 
ω(k) ∈ Rm is the disturbance input. A, B, C, D and E are the constant matrices of appropriate dimensions.

The structure of the NCSs is shown in Fig. 1. On the sensor side, the DETM is added to the system. It is 
assumed that the state data x(ks) is transmitted successfully at the time ks , the following condition is  introduced28

where r = {1, 2, . . . ,N} . 0 < µ < 1 is a given scalar parameter. and θ(k) is determined by

(1)
x(k + 1) =Ax(k)+ Bu(k)+ Eω(k)

y(k) =Cx(k)

z(k) =Dx(k)

(2)θ(k)+ β

(

µxT (ks + r)�x(ks + r)− [x(ks + r)− x(ks)]�[x(ks + r)− x(ks)]
)

≤ 0

(3)θ(k + 1) = θ(k)+
(

[x(ks + r)− x(ks)]�[x(ks + r)− x(ks)] − µxT (ks + r)�x(ks + r)
)

Figure 1.  ET-NDCC scheme.
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where β > 1 , θ(0) > 0 . Supposing that the first state x(0) is transmitted successfully. When the above condition 
is satisfied, then the state is transmitted, otherwise, it cannot be sent. The system executes the last data and then 
generates a new state that is verified whether it satisfies the condition (2).

The sequence of states which satisfy the above condition are packed and sent to the controller

With the traditional state feedback controller u(ks) = Kx(ks) , where the gain K is fixed for all the time. In 
consideration of the time variability of networked-induced delay, a more reasonable control law is  designed28

where, the delay τk = {0, 1, 2 . . . , τ̄ } , the feedback gain K(τk) is switched depend on networked-induced delay.
Depending on the different delays, there exists a sequence control signal as follows:

where the τ̄ is the upper bound of the time-delay. We can select the suitable control signal based on the delay τk 
at any time ks .The control signals were packed and transmitted to the actuator side in the form as

On the actuator side, the NDC chooses the suitable control signal depending on the networked-induced 
delay. The relationship between the delay τk , the current time k and the event-triggered time ks is τk = k − ks . 
And the predictive controller is

Then, when the ω(k) = 0 , the closed-loop system is

Referring to the  article30, the relationship between triggering time and networked delay is divided into the fol-
lowing two cases.

Case 1: If ki + 1+ τ̄ ≥ ki+1 + τki+1 , define a function τ(k) as

It follows from Eq. (9) that

Case  2 :  If  ki + 1+ τ̄ < ki+1 + τki+1 ,  consider  the  fol lowing inter va ls  
[

ks + τks , ks + τ̄
]

and 
[ks + τ̄ + l, ks + τ̄ + l + 1] , where l ∈ Z+ satisfying l ≥ 1 . There must be a positive integer d satisfying

Define a function τ(k) as

where 

{

Z0 = [ks + τks , ks + τ̄ + 1)
Zi = [ks + i + τ̄ , ks + i + τ̄ + 1)
Zdm = [ks + dm + τ̄ , ks+1 + τks+1

)
Then it can be easily shown that

In Case 1, define e(k) = 0 . In Case 2, define

Combine the e(k) and the event-triggered condition (2), we have

After that, for k ∈ [ks + τks , ks+1 + τks+1 ) , closed-loop system (1) without disturbance can be further rewritten as

(4)�ks =
[

x(k1) x(k2) · · · x(ks)
]

(5)u(ks) = K(τk)x(ks)

(6)û(ks) = Kix(ks), i = {0, 1, 2, . . . , τ̄ }

(7)Uks =
[

û(ks) û(ks + 1) · · · û(ks + τ̄ )
]

(8)u(k) = u(k|k − τk) = u(ks + τk|ks)

(9)x(k + 1) = Ax(k)+ BK(τk)x(ks)

(10)τ(k) = k − ks , k ∈ [ks + τks , ks+1 + τks+1 )

(11)τks ≤ τ(k) ≤ (ks+1 − ks)+ τks+1 ≤ 1+ τ̄

(12)ki + d + τ̄ < ks+1 + τks+1 ≤ ki + d + τ̄ + 1

(13)τ(k) =

{

k − ks, k ∈ Z0

k − ks − l, k ∈ Zi

k − ks − dm, k ∈ Zdm

(14)







τk ≤ τ(k) ≤ 1+ τ̄
�
=dm, k ∈ Z0

τk ≤ τ̄ ≤ τ(k) ≤ dm, k ∈ Zi

τk ≤ τ̄ ≤ τ(k) ≤ dm, k ∈ Zdm

(15)e(k) =

{

0, k ∈ Z0

x(ks)− x(ks + r), k ∈ Zi

x(ks)− x(ks + dm), k ∈ Zdm

(16)eT (k)�e(k) ≤ µxT (k − τ(k))�x(k − τ(k))

(17)x(k + 1) = Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k)
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The purpose of this paper is to propose appropriate control strategies to make the above systems still operate 
stably under the influence of delay and interference, and the frequency of data transmission can be reduced.

Remark 1 As we all know, Zeno behavior refers to an event triggering an infinite number of times for a finite 
period of time, which can occur in the study of event triggering in continuous-time systems. But in a discrete-
time control system, the worst-case scenario for event triggering is that data is sent at every moment k, i.e. time 
triggering. Therefore, even if the event trigger of the discrete-time system occurs in the Zeno behavior, the worst 
case will disable its ability to reduce the frequency of data transmission, but it will not affect the stability of the 
system.

Main results
In this section, the stability and controller design are addressed. Selecting a switched Lyapunov–Krasovskii 
function is to to prove the stability of the system.

Stability analysis
Firstly, the stability problem of closed-loop NPC systems without disturbance is addressed.

Theorem 1 For given parameter µ > 0 and gains Ki , system (17) is asymptotically stable if there exist real matrices 
Pi > 0 , Qi > 0 , Ri > 0 , Si > 0 , �i > 0 and Xi , Yi with appropriate dimensions such that

w h e r e  �i =







�(Qi − Pi) ∗ ∗ ∗
0 µ� ∗ ∗
0 0 −Qi ∗
0 0 0 −�






 ,  ξi =

[

Xi Yi − Xi −Yi 0
]

 ,  �21 =
[

PiA PiBKi 0 PiBKi

]

 , 

�31 =
[

Ri(A− I) RiBKi 0 RiBKi

]

 , and Ki = K(τk).

Proof Construct the following Lyapunov–Krasovskii function as

where δ(l) = x(l + 1)− x(l).
From Eq. (16), for all k ∈ (ks, ks+1),

If β > 1 , we have

Then, it can be obtained that

and θ(0) > 0 , we have θ(k) > 0

Define �Vi(k) = Vτk+1
(k + 1)− Vi(k) , Along the solution of system (17), we obtain that

(18)�i =





�i + ξi + ξTi + iSi ∗ ∗
�21 −�Pi ∗
�31 0 −dmRi



 < 0,

(19)
[

Si Xi

∗ 1
�
Ri

]

≥ 0,

[

Si Yi

∗ 1
�
Ri

]

≥ 0

(20)Pj ≤ �Pi Qj ≤ �Qi Rj ≤ �Ri

(21)

Vi(k) =V1
i (k)+ V2

i (k)+ V3
i (k)+ θ(k) = xT (k)Pix(k)+

k−1
∑

l=k−dm

xT (l)Qix(l)

+

−1
∑

s=−dm

k−1
∑

l=k+s

δT (l)Riδ(l)+ θ(k)

(22)θ(k)+ β

(

µxT (k − τ(k))�x(k − τ(k))− eT (k)�e(k)
)

> 0

(23)µxT (k − τ(k))�x(k − τ(k))− eT (k)�e(k) > −
1

β
θ(k)

(24)θ(k + 1) >

(

1−
1

β

)

θ(k)

(25)�θ(k) = θ(k + 1)− θ(k) = µxT (k − τ(k))�x(k − τ(k))− eT (k)�e(k)
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Based on the free-weighting matrix  approach31, it can be seen that

Combing the Eqs. (25), (26), (27), (28), we have

where η1 =
[

xT (k) xT (k − d(k)) xT (k − dm) e(k)
]T.

Further, let Pj ≤ �Pi ,Qj ≤ �Qi ,Rj ≤ �Ri , the formula (29) can be simplified to

where η2 =
[

ηT1 δT (l)
]T.

The condition of theorem one can be made by Shure’s complement theorem. If condition (18–20) is met, then 
�Vi(k) < 0 , i.e. system (17) is asymptotically stable. The proof is completed.   �

Remark 2 The Lyapunov–Krasovskii function introduces a time-delay term, which makes it less conservative in 
analyzing the stability of time-delay systems. The value of the Barrier Lyapunov function (BLF) tends to infinity 
as the function variable approaches the constraint boundary, as shown in the figure. This means that while the 
BLF remains bounded by the designed controller, the function variables remain within the constraint boundary, 
i.e. the constraint is satisfied. This makes BLF more advantageous in dealing with systems with state constraints.

Controller design
Based on Theorem 1, the delay-dependent controller design method for the system (17) can be easily obtained.

Theorem 2 For given parameters � > 1 , µ > 0 and dm , under the event-triggering condition (2, 3), the system 
in (17) is stabilizable, if there exist matrices Q̄i > 0 , Wi > 0 , Vi > 0 , S̄i > 0 , �̄i > 0 , X̄i , Ȳi , K̄i with appropriate 
dimensions satisfying the following LMIs:

(26)

�Vi(k) =�V1
i (k)+�V2

i (k)+�V3
i (k)+�θ(k)

= xT (k + 1)Pτk+1
x(k + 1)− xT (k)Pix(k)+ xT (k)Qτk+1

x(k)

− xT (k − dm)Qix(k − dm)+ dmδ
T (k)Riδ(k)−

k−1
∑

l=k−dm

δT (l)Rτk+1
δ(l)

= (Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k))
TPτk+1

(Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k))

− xT (k)Pix(k)+ xT (k)Qτk+1
x(k)

− xT (k − dm)Qix(k − dm)+ dmδ
T (k)Riδ(k)

−

k−1
∑

l=k−dm

δT (l)Rτk+1
δ(l)+ µxT (k − τ(k))�x(k − τ(k))− eT (k)�e(k)

(27)x(k)− x(k − dm)−

k−1
∑

l=k−dm

δ(l) = 0

(28)iηT1 (k)Siη1(k)−

k−1
∑

l=k−d

ηT1 (l)Siη1(l) = 0

(29)

�Vi(k) =�V1
i (k)+�V2

i (k)+�V3
i (k)+�θ(k)

≤�V1
i (k)+�V2

i (k)+�V3
i (k)

+ 2ηT1 Xi



x(k)− x(k − τ(k))−

k−1
�

l=k−τ(k)

δ(l)



+ 2ηT1 Yi



x(k − τ(k))− x(k − d) −

k−τ(k)
�

l=k−dm

δ(l)





+ dmη
T
1 (k)Siη1(k)−

k−1
�

l=k−d

ηT1 (l)Siη1(l)+ µxT (k − τ(k))�x(k − τ(k))− eT (k)�e(k)

(30)�Vi(k) ≤ ηT1 (k)�iη1(k)−
k−1
∑

l=k−τ(k)

ηT2 (k)

[

Si Xi

∗ 1
�
Ri

]

η2(k)−
k−τ(k)
∑

l=k−dm

ηT2 (k)

[

Si Yi

∗ 1
�
Ri

]

η2(k)

(31)





�̄i + ξ̄i + ξ̄Ti + iS̄i ∗ ∗

�̄21 −�Wi ∗

�̄31 0 −dmVi



 < 0

(32)
[

Si Xi

∗ 1
�
(2Wi − Vi)

]

≥ 0,

[

Si Yi

∗ 1
�
(2Wi − Vi)

]

≥ 0,
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w h e r e  �̄i =









�(Q̄i −Wi) ∗ ∗ ∗

0 µ�̄i ∗ ∗

0 0 −Q̄i ∗

0 0 0 −�̄i









, ξ̄i =
�

X̄i Ȳi − X̄i −Ȳi 0
�

 , 

�̄21 =
[

AWi BK̄i 0 BK̄i

]

, �̄31 =
[

(A− I)Wi BK̄i 0 BK̄i

]

 . In addition, by solving LMI and matrix transforma-
tion, the switched controller gains matrices are given by Ki = K̄iW

−1
i .

Proof Pre- and post-multiplying Eqs. (18) , (19) with �1 = diag {P−1
i , P−1

i , P−1
i , P−1

i , P−1
i ,R−1

i } , 
�2 = diag {P−1

i , P−1
i , P−1

i , P−1
i }, respectively. and defining some new variables as Wi = P−1

i  , Vi = R−1
i  , 

Q̄i = P−1
i QiP

−1
i  , R̄i = P−1

i RiP
−1
i ,�̄i = P−1

i �iP
−1
i  , S̄i = �2Si�2 , ξ̄i = �2ξi�2 . The Eq. (30) can be obtained. 

The proof is completed.   �

Robust control of NPC
Now, we are in a position to solve the problems of stability of NPC system with disturbance and H∞ controller 
design of NPC system with event-triggered mechanism. The networked closed-loop system with disturbance 
is obtained that

Stability analysis

Theorem 3 For given γ , µ and matrices Ki , the system is stable with an H∞ norm bound if there exist 
matrices Pi > 0,Qi > 0,Ri > 0, Si > 0,�i > 0 and Xi ,Yi with appropriate dimensions such that

where ϕ21 = �21, ϕ31 =
[

(PiE)
T 0 0 0

]

, ϕ41 = �31, ϕ51 =
[

D 0 0 0
]

.

Proof For the system (34) with the disturbance vector ω(k) , we considers the following Lyapunov function 
�V(k) = �Vi(k)+�θ(k):

where δ(k) = (A− I)x(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k)+ Eω(k)
It follows Theorem 1 that

when ω(k) = 0 , �V < 0 which implies that the closed-loop system (33) is asymptotically stable Combing the 
Eqs. (25), (37–40), we have

For all k = {1, 2, 3, . . .} , summing Eq. (40) from k= 0 to k = ∞ , it follows that

(33)Wj ≤ �Wi , Vj ≤ �Vi

(34)x(k + 1) = Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k)+ Eω(k)

(35)�i=











�i + ξi + ξTi + iSi ∗ ∗ ∗ ∗
ϕ21 −�Pi ∗ ∗ ∗

ϕ31 0 −γ 2I ∗ ∗
ϕ41 0 RiE −dmRi ∗
ϕ51 0 0 0 −I











<0

(36)
[

Si Xi

∗ 1
�
Ri

]

≥ 0,

[

Si Yi

∗ 1
�
Ri

]

≥ 0

(37)

�V1
i (k) =xT (k + 1)Pτk+1

x(k + 1)− xT (k)Pix(k)

=(Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k)+ Eω(k))TPτk+1

(Ax(k)+ BK(τk)x(k − τ(k))+ BK(τk)e(k)+ Eω(k))− xT (k)Pix(k)

(38)�V2
i (k) =xT (k)Qτk+1

x(k)− xT (k − dm)Qix(k − dm)

(39)�V3
i (k) =dmδ

T (k)Riδ(k)−

k−1
∑

l=k−dm

δT (l)Rτk+1
δ(l)

(40)�V(k)+ zT (k)z(k)− γ 2ωT (k)ω(k) < 0

(41)�V(k) ≤ ηT1 (k)�iη1(k)−
k−1
∑

l=k−τ(k)

ηT2 (k)

[

Si Xi

∗ 1
�
Ri

]

η2(k)−
k−τ(k)
∑

l=k−dm

ηT2 (k)

[

Si Yi

∗ 1
�
Ri

]

η2(k)
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From V(∞) ≥ 0 and inequality (Eq. 41), it can be seen that

Thus, the H ∞-norm of the closed-loop system (Eq. 34) is less than γ . The proof is completed.   �

Controller design
Similar to the Theorem 2, the switched H ∞ controller gains Ki for system (28) are calculated by the following 
theorem.

Theorem 4 For given parameters � > 1 , µ > 0γ and dm , under the event-triggering condition (2, 3), the system in 
Eq. (34) is stabilizable, if there exist matrices Q̄i > 0 , Wi > 0 , Vi > 0 , S̄i > 0 , �̄i > 0 , X̄i , Ȳi,K̄i with appropriate 
dimensions satisfying the following LMIs:

w he re  �̄i =









�(Q̄i −Wi) ∗ ∗ ∗

µ�̄i ∗ ∗

0 −Q̄i ∗

0 0 −�̄i









, ξ̄i =
�

X̄i Ȳi − X̄i −Ȳi 0
�

, ϕ̄31 =
�

ET 0 0 0
�

 ,  ϕ̄21 = �̄21 , 

ϕ̄51 =
[

DWi 0 0 0
]

 , ϕ̄41 = �̄31 . In addition, by solving LMI and matrix transformation, the switched controller 
gains matrices are given by Ki = K̄iW

−1
i  , i = {0, 1, . . . , τ̄ } .

The proof is similar to the Theorem 2, thus omitted.

Simulation and experiment results
In this section, two numerical examples are given to verify the effectiveness of the approach we presented.

Example 1: stabilization of the networked system without disturbance
In this case, a discrete-time linear system without disturbance is considered as the following

The parameters mentioned in Theorem 2 are given: dm = 21, � = 1,µ = 0.5, θ(0) = 1,β = 1 . To solve the 
Theorem 2 by using LMI, the time-varying gains and the weight matrix � can be obtained as follows

(42)
∞
∑

k=0

zT (k)z(k)−

∞
∑

k=0

γ 2ωT (k)ω(k) < −V(∞)

(43)
∞
∑

k=0

zT (k)z(k) <

∞
∑

k=0

γ 2ωT (k)ω(k)

(44)











�̄i + ξ̄i + ξ̄Ti + iS̄i ∗ ∗ ∗ ∗
ϕ̄21 −�Wi ∗ ∗ ∗

ϕ̄31 0 −γ 2I ∗ ∗
ϕ̄41 0 E −dmVi ∗
ϕ̄51 0 0 0 −I











< 0

(45)
[

Si Xi

∗ 1
�
(2Wi − Vi)

]

≥ 0,

[

Si Yi

∗ 1
�
(2Wi − Vi)

]

≥ 0,

A =







1 0.1 −0.0124 −0.0004
0 1 −0.25 −0.0124
0 0 0.0619 0.1021
0 0 1.2502 0.0619






,B =







0.0013
0.0251
−0.0013
−0.0255






C =

�

1 0 1 0
�
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Considering the 0–20 steps random RTT delay shown in Fig. 2, a comparison of the results of the two event-
triggered control methods (SETC and DETC) is shown in Fig. 3. Obviously, with similar stability results, DETC 
has fewer trigger moments than SETC.

In addition, the comparison of the methods between NPC with fixed gains and time-varying gains is given. 
The simulation results is shown in Fig. 4. As can be seen from the pictures, even if the system has random delay, 
the method we proposed can still make the system eventually stable and reduce the frequency of data transmis-
sion. In addition, we compare the proposed method with the fixed-gain NPC method, and the results show that 
our method can converge faster.

Example 2: stabilization of the networked event‑triggered control system with disturbance
In this case, the robust H∞ control of NCSs: the ETC and NDC approach is verified, the system parameters is 
following

The disturbance is set to be ω(k) =
{

sign(sin(k)), k < 30
0, k ≥ 30

The random delay is shown in the Fig. 5. And the parameters in event-triggered condition (3) and the Theo-
rem 4 are dm = 12, � = 2,µ = 0.5, γ = 0.01, θ(0) = 0.01,β = 5 . Then the controller gains and the parameter 
� can be solved by MATLAB LMI toolbox

K0 =
�

−0.4182 −4.5700 10.2852 −1.2935
�

K1 =
�

−0.9118 −6.9234 12.7267 −1.3184
�

K2 =
�

−1.2904 −7.3054 11.3521 −1.0508
�

K3 =
�

−1.5045 −7.1984 9.7771 −0.7720
�

K4 =
�

−1.5492 −6.5036 8.2041 −0.6189
�

K5 =
�

−1.6552 −6.4370 7.2551 −0.4647
�

K6 =
�

−1.7207 −6.0150 6.3257 −0.3604
�

K7 =
�

−1.7594 −5.8761 5.4663 −0.2627
�

K8 =
�

−1.7464 −5.6220 4.7712 −0.1855
�

K9 =
�

−1.7205 −5.3558 4.1906 −0.1273
�

K10 =
�

−1.6970 −5.1087 3.7046 −0.0787
�

K11 =
�

−1.5701 −4.8953 3.3090 −0.0405
�

K12 =
�

−1.5710 −4.6538 2.9730 −0.0166
�

K13 =
�

−1.3876 −4.4442 2.6613 0.0104
�

K14 =
�

−1.3216 −4.2497 2.4016 0.0326
�

K15 =
�

−1.2637 −4.0826 2.1766 0.0538
�

K16 =
�

−1.1328 −3.8776 2.0252 0.0558
�

K17 =
�

−1.1203 −3.7168 1.8447 0.0707
�

K18 =
�

−0.9853 −3.5508 1.7263 0.0725
�

K19 =
�

−0.9646 −3.4422 1.5978 0.0837
�

K20 =
�

−0.8595 −3.2692 1.4981 0.0812
�

� =







0.0594 0.0028 −0.0009 −0.0000
0.0028 0.0620 −0.0126 0.0010
−0.0009 −0.0126 0.1493 −0.0176
−0.0000 0.0010 −0.0176 0.0453







A =

[

0.85 0 0.1
0.01 0.96 0
0 0 1

]

, B =

[

−0.1
−0.2
−0.1

]

, E =

[

1
1
1

]

,C =
[

1 1 1
]

, D =
[

0.1 0.1 0.1
]

0 50 100 150 200 250 300
k (step)

0

2

4

6

8

10

12

14

16

18

20

R
T

T
 D

el
ay

Figure 2.  0–20 steps RTT delay.
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Figure 3.  Comparison of state and trigger interval between SETC and DETC.

Figure 4.  The results of x1 between NPC and our method.
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In the case of disturbance and delay, the system state and event trigger interval are shown in Fig. 6. As can be 
seen from Figs. 6a–d, the system eventually remains stable despite some jitter under disturbance and delay. And 
the number of data transfers is reduced, and the DETC method performs better than SETC. The simulation 
results in this part show that the proposed method can still make the system converge in the presence of delay 
and disturbance.

Discussion
This paper combines dynamic event trigger control and networked predictive control methods and presents a 
delay compensation control scheme based on dynamic event triggering. This solution allows the system to oper-
ate stably under the influence of delay and disturbance and reduces data transmission.

Compared with the static event triggering method, the method proposed in this article can further reduce 
data transmission without affecting system stability. The introduction of event gain avoids the control of fixed 
gain for better performance. The scheme based on networked predictive control can actively compensate for the 
delay, which is less conservative than the traditional method.

LMI can only get sufficient conditions to stabilize the system. Secondly, LMI is an optimization tool, but 
multiple matrices are scaled in the stability analysis, so the result may be a suboptimal solution. In addition, 
delay-dependent controller gain switching improves control performance, but it is difficult to derive its globally 
stable conditions. Issues such as less conservative adequacy and overall optimal performance will be the focus 
of our future research.

Conclusion
This paper has addressed the DETC problem of discrete-time networked predictive control systems with simul-
taneous consideration of delays and disturbance. The closed-loop system is obtained by investigating the NDC 
method, the DETC method, and the feedback time delay-dependent gain method. The DETC method can effec-
tively reduce the network bandwidth resources occupied by data transmission. The random delay has compen-
sated by NDC actively. A dynamic event-triggered network delay compensation control strategy has proposed. 
Then, the delay-dependent stability conditions have been derived by using the LMI approach. Based on these 
conditions, the time-varying gain predictive controller has designed. Furthermore, the robust H∞ control prob-
lem of NCSs has discussed. Finally, simulations illustrate the effectiveness of the proposed algorithm.

K0 =
[
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]
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[
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[
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,

K3 =
[
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]

, K4 =
[

0.5765 0.6586 0.7870
]

, K5 =
[

0.4621 0.5316 0.6410
]

,

K6 =
[
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]
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]
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[
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]

,
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]
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]
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[
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,
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]
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.

Figure 5.  0–12 steps RTT delay.
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