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Cement pavement void 
detection algorithm based 
on GPR signal and continuous 
wavelet transform method
Qiuqin Yu 1, Youxin Li 2,3,4, Tingyi Luo 1, Jun Zhang 2,3*, Liang Tao 1*, Xin Zhu 2,3, Yun Zhang 1,5, 
Liufen Luo 1 & Xinxin Xu 2,3

The dimension of the void area in pavement is crucial to its structural safety. However, there is no 
effective method to measure its geometric parameters. To address this issue, a void size extraction 
algorithm based on the continuous wavelet transform (CWT) method was proposed using ground-
penetrating radar (GPR) signal. Firstly, the finite-difference time-domain (FDTD) method was used 
to investigate the GPR response of void areas with different shapes, sizes, and depths. Next, the 
GPR signal was processed using the CWT method, and a 3D image based on the CWT result was used 
to visualize the void area. Based on the differences between the void and normal pavement in the 
time and frequency domains, the signal with maximum energy from the CWT time–frequency result 
was extracted and combined to reconstruct the new B-scan image, where void areas have energy 
concentration phenomenon. Based on this, width and depth of void detection algorithm was proposed 
to recognize the void area. Finally, the detection algorithm was verified both in numerical model 
and physical lab model. The results indicated that the CWT time–frequency energy spectrum can be 
used to enhance the void feature, and the 3D CWT image can clearly visualize the void area with a 
highlighted energy area. After fully testing and validating in numerical and lab models, our proposed 
method achieved high accuracy in void width and depth detection, providing a precise method for 
estimating void dimension in pavement. This method can guide DOT departments to carry out pre-
maintenance, thereby ensuring pavement safety.

The cement pavement subjects to void problem, namely gap between slab and base, due to uneven construction, 
uneven settlement of subgrade, and the influence of vehicle load and temperature stress. The geometric size of 
the void area is vital for the bearing capacity of slab. With the size increasement of the void area, the void leads 
to the settlement and misalignment of the cement slab, and eventually causes the slab  breaks1. Therefore, it is 
urgent to develop a non-destructive testing (NDT) method to determine the void area and give an accurate 
maintenance guide before the slab broken.

Currently, a wide range of methods have been developed for void detection, including impulse response 
 technology2,3, acoustic vibration  method4, distributed optical vibration sensing  method5 and ground penetrating 
radar (GPR)  method6,7. Among them, GPR is the most effective NDT technology in pavement void detection, 
and GPR has been widely used in detecting pavement  defect8, structural  thickness9,  rebar10,11, and etc. Through 
numerical analysis, Li et al. found that the width of the void area affects the bearing capacity of the structure, 
while the void thickness doesn’t  affect12. To obtain the width of the void area, the newly developed deep trans-
fer learning method provide a quick method to locate the void area in the GPR image. For example, our work 
adopted the hybrid ResNet50-YOLO model to identify the width of moisture damage in asphalt  pavements13, 
and the shallow ResNet18-YOLOv2 model with IRS methods were adopted to locate the void range in airport 
 runway11. Besides, Yan et al. used Faster-CNN network to detect pavement crack, and combined the morphologi-
cal method to calculate the length and width of crack  area14. The image-based deep learning method provides a 
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new method for the interpretation of GPR data; however, it requires a large number of B-scan images for network 
training, and subjects to the problem of determining the boundary of target area.

A-scan, which is the basic signal unit in GPR system, contains target information such as depth, layer thick-
ness and material dielectric property. Thus, the GPR signal can be used for identifying boundary of defect area. 
For example, we surveyed the bridge deck asphalt pavement with a high-frequency 2.3 GHz antenna, and 28 time 
and frequency domain statistical parameters from A-scan signal were extracted to train an ANN model to locate 
moisture damage  area15. Similarly, 28 time and frequency domain parameters and PCA method were also adopted 
to classify void and normal pavement in our another  work16. The joint time–frequency parameters provide a 
new view for identification of underground target, but the selection of sensitive feature parameters is affected by 
human experience. In contrast, the time–frequency domain transform method can obtain richer information 
than previous statistical parameters. Dai et al. used short-time Fourier transform (STFT) to improve the inter-
pretation accuracy of GPR signals with a Hamming window based on an integer multiple of the radar wavelet 
 length17. STFT subjects to the problem of determining the window width, which affects the signal resolution.

To overcome the shortcoming of STFT, Wu et al. used continuous wavelet transform (CWT) to analyse the 
GPR signals in the airport runway, and found that the void size could be determined according to the CWT 
 energy18. He et al. used the S-transform spectral inversion optimization algorithm to process the GPR data of the 
airport roadway, and effectively estimated the thickness of the thin void layer 19. In addition, Liu et al. adopted 
deconvolution method to extract thickness dimension, and proposed a sparse pulse deconvolution algorithm to 
extract reflection coefficient sequences, which effectively improved the longitudinal resolution of GPR  data20. 
Zhao et al. used the L-curve method to determine the parameters of regularized deconvolution, and predicted 
the thickness of thin  asphalt21. Jazayeri et al. proposed a sparse blind deconvolution algorithm to improve the 
precision extraction of geometric parameters in target  regions22,23. Existing studies have shown that both the 
time–frequency statistical parameters and time–frequency transform of GPR signal can be used to estimate the 
thickness of the underground target area, but there is no research on using the joint time–frequency parameters 
to determine the geometrical parameters of the void area.

To address the above issue, a void width and depth extraction method was proposed by using CWT method. 
FDTD method was adopted to simulate the void area in different situations to get the ground truth of void and 
normal pavement signal. CWT was used to process the GPR signal, based on the energy difference between void 
and normal pavement in CWT results, a reconstruction energy spectrum method was proposed to estimate the 
width and depth of void areas. The void geometric parameter detection algorithm was tested and verified both 
in numerical and lab model. The research results, including void width and depth parameters, can be used to 
evaluate the bearing capacity and residual life of pavement structures, which is crucial for making premainte-
nance plan of pavement.

GPR signal processing principle
F-K migration algorithm
According to the GPR imaging principle on a single object, hyperbolic curve will be formed on both sides of 
the target. However, the envelope lines are not the position of the object. The F-K migration algorithm can 
effectively focus the scattered energy and can eliminate and suppress the hyperbolic effect. Its principle is based 
on the fact that the electromagnetic (EM) wave emitted by the GPR will undergo multiple refractions and reflec-
tions underground. Each reflection point is used as a sub wave source that emits EM waves from zero time. The 
migration results can be obtained by inversion of the echo data. It uses the reflection source model to solve the 
wave Eq. (1), in which the reflection signal field is generated by the reflection at the position of the object. F-K 
migration method calculates the wave field when reflection occurs and the wave is still at the reflection source 
t = 0. The essence of F-K migration is Fourier transform, which is derived from the general summation expres-
sion of wave function as Eq. (2)24,25.

where v is the propagation velocity of EM waves, kx and kz are wave-numbers in the x and z directions; 
ω = (v/2)

√

k2x + k2y  represents the frequency; and ϕ is the Fourier transform from the surface field ϕ(x, 0, t) . 
ϕ(x, 0, t) equals to the measured signal ϒ(x, t) when GPR acquires the waves propagated to the pavement surface. 
The target is estimated by the initial wave-field I(x, z) at t = 0 as following.

By resampling ϕ(kx ,ω) to the kx − kz domain, the migration results can be calculated by the inverse fast 
Fourier transform F−1 . In our work, F-K migration and the following GPR signal process are all processed by 
home-made MATLAB program, and the parameter of propagation velocity can be calculated as following.
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F-K migration is a linear function since the Fourier transform satisfies the linear super-position principle. 
The migration results of radargram can be regarded as the summation of migration from all Stationary wavelet 
transform (SWT) coefficients as following.

where M(·) represents the F-K migration function. The SWT coefficients have a good time–frequency resolution, 
and each component can contain clutter, targets, or hyperbola interference. Effective SWT signals containing 
the targets can enhance the migration results, while those occupied by clutter or hyperbola interference should 
be discarded. Thus, the final target profile is reconstructed by selected migration components.

Continuous wavelet transform
GPR signal belongs to transient non-stationary signal. The traditional Fourier transform cannot reveal the 
distribution of different frequency components in the time domain due to the limit characteristics of its basis 
function. CWT is a time–frequency localization analysis method with fixed window size and changeable shape, 
which captures the local and global characteristics of signals through different scales. CWT is often used for 
time–frequency analysis or transient signal location, especially for signals with sudden change of instantaneous 
 frequency24, such as electrocardiogram (ECG) signal diagnose analysis. Continuous wavelet coefficient matrix 
is extracted from time domain to time–frequency energy spectrum analysis, which is adopted to enhance the 
characteristics of void area. According to our previous analysis, the GPR feature of the void and normal area 
in time domain and frequency domain are quite  different16, usually, the amplitude in void area would be larger 
than that in normal pavement both in time and frequency domain. Therefore, when the GPR signal is converted 
from time domain to time–frequency domain, the signal from void area would present high energy than that of 
normal pavement, this could help us locate the void area.

The expression of CWT is as following.

where x(t) is the GPR signal and ψa,b(t) is the mother wavelet. a and b are the scale and translation parameters of 
the mother wavelet, respectively. Therefore, wavelet transform is a multi-resolution analysis method that projects 
the signal onto a series of wavelet basis functions generated by the mother wavelet.

According to the inner product theorem of wavelet transform, the weighted sum of the amplitude squared of 
wavelet transform in time and frequency domain is equal to the total energy of the signal in time domain, which 
was described in Eq. (8). Therefore, the amplitude square of wavelet transform can be used as another form of 
time–frequency distribution of signal energy.

where ψ(ω) is the Fourier transform of ψ(t).
Considering a good balance between localization in time and frequency, and extracting more feature informa-

tion, the mother wavelet adopts nonorthogonal complex Morlet (or amor wavelet named in MATLAB) wavelet, 
which is a Gaussian function with zero mean and modulated by complex cosine. The waveform of mother wavelet 
has the characteristics of energy attenuation and local convex peaks, which can achieve a good matching to the 
GPR Ricker reflection wavelet. The time domain analytic function of the mother wavelet is defined as follows.

Void geometric parameters extraction algorithm
Reconstructed energy spectrum
The GPR uses spherical wave to transmit and receive signal, therefore, GPR signal would contain many clutters. 
To improve the signal-to-noise ratio (SNR) of GPR signal and enhance the characteristics of void signal, dedicated 
GPR signal processing methods were employed, including static correction, energy gain, background removal, 
band-pass filtering, and F-K migration method.

According to the GPR propagation principle, if the EM wave meets the reflecting surface with dielectric dif-
ference during the propagation process, EM wave will be reflected. The larger the reflection index is, the stronger 
the energy of the reflected wave is. Ricker wavelet has the characteristics of local energy attenuation. The energy 
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and frequency of the reflected wavelet are closely related to the size of the target area and the difference of the 
medium.

Due to the target area presents large amplitude or high energy phenomena, we proposed a CWT energy recon-
structed method by extracting the single frequency signal information corresponding to the maximum energy 
in the CWT result. The processing process is shown in Fig. 1. Taking the i-th A-scan xi(t) from processed GPR 
data, CWT method was used to transform it from time domain to time–frequency domain, where its wavelet 
coefficient spectrum is Gi

(

f , t
)

 . If this GPR signal contains a target, we will obtain a maximum value from CWT 
results denoted as Gi

max at the target depth area. The frequency component f im corresponding to maximum Gi
max 

is taken as the main frequency from CWT result and was extracted as new A-scan xi(t) . Repeating the recon-
struction process for the all the traces in GPR data, we got a new reconstructed signal B-scan B(x, t) , which is 
the stacking of all new A-scan with maximum frequency from CWT result. Compared new reconstructed B-scan 
with the original B-Scan in Fig. 1, one can observe that the reconstructed energy spectrum B(x, t) has higher 
resolution, which could effectively reveal the horizontal and vertical distribution of void areas area.

Energy function probability of the void area
3D visualization of the energy spectrum B(x, t) can effectively highlight target area and reveal the spatial energy 
distribution of the entire data. The 3D visualization of reconstruction B-scan was shown in Fig. 2, where void 
areas present local convex peak features. The convex peak is the energy concentration area, which can represent 
the location and width of the void area. To obtain the void dimension from reconstruction signal more easily, we 
reduce the dimension of the 2D matrix B(x, t) into 1D energy function y(x) . Thus, the local convex peak of the 
void becomes the local extreme point of the curve y, and the maximum points can be further used to determine 
the position of the void. The dimensionality reduction process could be expressed as

where y(xi) is the maximum value of energy spectrum at i-th trace xi , and N is the A-scan number in B-Scan. 
y(xi) is the maximum value of i-th trace that makes up the maximum vector y(x) , which is described as following.
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Figure 1.  Reconstructed energy spectrum flow chart.
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The smoothness of y(x) is affected due to noise signal. To smooth the curve, the Symlets 4 wavelet (sym4) 
is used for the signal y(x) and a 4-layer discrete wavelet transform (DWT) is performed. The decomposition 
process is shown in Fig. 3. The algebraic relationship between the original signal and the decomposed wavelet 
coefficients is shown in Eq. (13).

where cDi is the high-frequency wavelet coefficient, cAn is the low-frequency wavelet coefficient. n is the number 
of decomposition layers, the smaller n is, the lower the frequency band resolution is, and vice versa.

Figure 4 is the result curve after 4-layer decomposition by DWT method. Compared with the raw signal, the 
decomposed approximate signal γ (x) (or cA4 ) does not affect the position of the extreme value point of curve 
y(x) and can make the curve smoother. Therefore, we could directly get the extreme points from signal γ (x) to 
determine void area.

In Fig. 4, decomposition signal γ (x) has three void areas. Each void area has convex peak feature and contain 
one peak area and two edges, i.e., the local minimum points f1 and f2 are the two edges of void area. If we want 
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to determine the void width, we only need to find the two local minimum points. However, due to the interfer-
ence of background noise, the local minimum value may not be a real local minimum point of void area, which 
would cause width error. Therefore, it is necessary to set a threshold to determine whether this point is the local 
minimum point of void area or not.

Assuming that the energy distribution approximately of sample signal γ (x) obeys the lognormal distribution. 
The energy probability density function is shown in Eq. (14). Therefore, the expected value E(γ ) can be used as 
the threshold, which can be determined from Eq. (15).

where µ and σ is the mean value and standard deviation of logarithm of γ (x) , respectively.
Due to GPR signal has hyperbolic interference phenomena, it would cause pseudo void points between the 

two void areas, these points need to be filtered. In Fig. 5, there have multiple pseudo local points, whose value is 
ymin with yellow line. We introduced a relative height factor α to determine whether this point is real or pseudo 
point, and it is defined as following.

where M1,M2 are the two extreme points on the left and right of the local minima point of minimum value ymin . 
When α > 0 , this local point is caused by hyperbolic interference and should be deleted, otherwise, we keep this 
point as edge of void aera.

Void width extraction algorithm
The void width extraction algorithm is shown in Fig. 6, and the extraction step is as following.

1. Obtain 1D dimensionality reduction energy function. B(x,t) is the reconstruct matrix with void area accord-
ing to the flowchart of Fig. 1, and the energy distribution curve T(t) is calculated according to B(x,t). The 1D 
dimensionality reduction energy function y(x) was obtained according to Eqs. (10) and (11).

2. Find the threshold value. Estimate the lognormal distribution of each sample γ (x) and determine the thresh-
old value K according to Eqs. (14) and (15).

3. Locate the void boundary point. Find all the maximum points of the function γ (x) and store their values to 
form a vector AN , N is the trace number. Set the vector value Aj = 0 when Aj > K.

4. Search the index of void boundary. Filter the interface points between two adjacent void area, search all the 
local minimum point ϕ(x) from AN and calculate their mean value as Hmean,if ϕ(xi) > Hmean , let ψ(i) = 0 . 
After this, the vector ψ(m) saves the index of extreme points from A , and m is the number of all extreme 
points.

5. Determine the void width. According to the index of ψ(m) , find the two nearest minimum points on the left 
and right of the maximum point in the function y(x) to determine the width boundary.

CWT method is performed on the processed GPR data according to the process in Fig. 6, DWT with the sym4 
wavelet function is used to obtain the curve γ (x) , which is shown in Fig. 7. Based on the extraction algorithm, 
we got the trace index of extreme point array ψ(x) . For example, we find the trace number of maximum points 
at Point 1, and two nearest local minimum points, denoted as f1, f2 . The void width can be obtained from the 
corresponding track distance between f1 and f2 . To locate the two local minimum point, a threshold limit needs 
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to be set to avoid overlapping. And the boundary points 4 and 5 should be deleted by adding constrained condi-
tion. Similarly, the width of void area near point 2 and 3 can also be determined by the same method.

Void depth extraction algorithm
Due to the edge of void area are not easy to locate due to the resolution of EM wave, here, we take the maximum 
energy position in depth (or sample point) as the upper depth of void area. Given that we have obtained the 
void width and stored in vector Lm , which has been determined by width extraction algorithm. To improve the 
resolution in time axis, here, we adopted S-transform Gsi

(

f , t
)

 to process the A-scan data in Lm26,27, search all the 
maximum point in energy function gi(t) for each void trace and combine a depth vector g(t).

where gi(tn) is the maximum energy value at time tn in i-th trace, g(t, i) is the depth vector for void area.
If there is a different dielectric layer underground, there would be a reflected Ricker wavelet, the first sub-

wavelet peak of Ricker wavelet should be the upper depth of void area. Take one S-transform void signal for 
example, Fig. 8a shows the reflection ricker wave at void area, where point 1#, 2# and 3# are the typical peak 
point. Point 2# was used to refer the boundary of different media in A-scan signal. The upper depth could be 
determined by the velocity or dielectric constant (19).

where t = m · dt , m is the sample point index; dt is sample interval time of GPR, ε is the dielectric constant of 
concrete pavement.

Figure 8b is the absolute value from one void S-transform signal, all the values are converted to positive value. 
According to the Ricker wave feature, the upper boundary should be the second extreme value, therefore, the 
void depth could be determined by searching the peak wave points.

Algorithm validation
Numerical model
Cement pavement model with 7 rectangle air void areas were created and shown in Fig. 9, where all the void 
areas have the same dimension with 0.1 m × 0.1 m, while their depth ranges from 0.1 to 0.3 m. Simulation was 
processed in gprMax 3.15 and the simulation parameters are shown in Table 1. The central frequency of the GPR 
antenna is 800 MHz, the wavelength of the EM wave in the air void area is � = 0.375 m.

CWT feature of void area
Due to the numerical result doesn’t have noise, therefore, only F-K migration method was used to process the 
raw data and reduce the hyperbolic phenomenon. GPR signal of normal and void area from simulated model was 
used for comparison and shown in Fig. 10. It is obvious that the time frequency spectrum between normal and 
void area are quite different. The CWT result of normal signal is uniform without energy concentration, while 
the void CWT result has energy concentration area, the energy concentration area reflects the void position.
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All the GPR data from simulated model was processed by CWT and further be combined in 4D CTW matrix. 
To view the result more easily, Paraview software was used to for 3D view of void area, where the colour represents 
the amplitude. Therefore, the CWT matrix was exported to VTK file from MATLAB to Paraview. Figure 11a 
shows the 3D visualization of the time–frequency spectrum of the void area. It can be seen that void areas from 
B-1 to B-7 are obvious. The deeper the void area, the less energy of CWT result. To view more clearly of void 
area, traces from 7 central void areas were extracted, and its CWT slice was shown in Fig. 11b, where the 7 void 
areas could be visualized. This indicates that the CWT can enhance the difference between void and normal 
pavement, however, it is not easy to determine the boundary of void area just from CWT result.

To view the void feature in 2D view, we reconstruct CWT result according to the flow chart in Fig. 1. The 
reconstructed energy spectrum is shown in Fig. 12. Compared with simulated model of Fig. 9 with the recon-
structed spectrum of Fig. 12, one can easily observe the void area in CWT spectrum, and the reconstructed 
spectrum is more suitable to present the void shape than that in Fig. 11.

It can be clearly seen that void areas appear in concentration area in Fig. 12. The reason is that the echo energy 
of the normal signal is low and there is no reflected Ricker sub-echo, so the CWT values of normal area are small, 
thus, the normal pavement becomes the background noise, which could be filtered to enhance the void area. 
While the GPR signal appears strong echo in the void area, which highlights void areas in the time–frequency 
energy spectrum. In addition, the vertical distribution of the concentrated band of the reconstructed energy 
spectrum reflects the depth information of void area, while the horizontal distribution reflects the width infor-
mation of the void area, later, we will test our proposed method for width and height detection.

Algorithm validation in numerical model
To calculate the void range, 4-layer DWT is used to eliminate the background noise interference for data in 
Fig. 12. The processed result is shown in Fig. 13. We got the decomposed approximate signal γ (x) , which is 
same to cA4. According to the width extraction algorithm, we firstly search all the extreme points, then filter the 
interface points by setting threshold value K. Finally, we get the boundary index and determine the void width 
according to 

(

f1 − f2
)

× dx , dx is the sample interval. To prevent the minimum point coincidence between the 
void area, the energy threshold is set as K = 7895.2 according to the γ (x) sample.

After the void traces were determined, we used depth extraction algorithm to get the depth for void area. 
After the depth information was found, we overlapped the width and depth on the original B-scan, the result was 
shown in Fig. 14. The original Ricker wave is positive phase, thus the GPR wave in void area is in phase with the 
incident wave. In Fig. 14, almost all the void areas were correctly located at the white band area. However, there 
are two misjudgement area in B4 and B6 void area due to hyperbolic phenomena between adjacent void area, 
this interface could be filtered by adding weight function. The test result indicates that our proposed algorithm 
can be effectively for void area identification.
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Figure 9.  Schematic diagram of the void model.

Table 1.  FDTD forward simulation parameters.

Parameter type Value

Model size  (m2) 4.0 × 0.55

Sample interval (m) 0.005

Time window (ns) 12

Antenna spacing (m) 0.14

Antenna frequency (MHz) 800

Excitation source type Ricker

Trace number 694
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We can not locate the depth range, we find the maximum energy point in time axis as void depth area, which 
is only the upper boudary of void area. Therefore, we only compare the width location accuracy. To evaluate the 
accuracy of our proposed method, the located void width was compared with the ground truth. Figure 15 shows 
width error, where the mean error is about 1.5%. Therefore, the proposed algorithm can effectively calculate the 
geometric parameters of void area, which could be used for further dynamics analysis in void area.

Algorithm validation in lab model
To validate our proposed method which is also suitable for different shape, here, we didn’t stick to square void, 
instead, we adopted circle void. Lab model with 10 void areas shown in Fig. 16a was constructed by C30 cement 
with vertical dimension of 2.07 m × 0.4 m. Ten void holes with an interval of 15 cm are designed, the diameters 
of void areas are 100 mm, 90–30 mm, 25 mm and 16 mm in sequence, and the centre depth of holes is 20 cm 
from top. The USRADAR Subsurface GPR Radar Imaging System with 1 GHz antenna is used for surveying 
the model along the survey line as shown in Fig. 16 (a). A wood plate was used to support the antenna at the 
beginning to make sure hole 10 could be fully detected. This method would add noise to the GPR data, because 
the GPR wave is emitted and received with sphere wave, which would contain the signal of air. The sampling 
frequency is 16 GHz, the time window is 11.675 ns, and the sample points of each A-scan is 207. GPR data was 
processed by static correction, energy gain, background removal, band-pass filtering, and F-K migration method.

Figure 16b shows the 3D visualization of reconstructed energy spectrum of lab model, where 9 void areas 
(from hole 2 to 10) were successfully detected and viewed. Because the size of hole 1 is too small for the sample 
information of 1 GHz, hole 1 is not viewed in original B-scan. Figure 16c is the 3D CWT slice diagram of the lab 
model. The three coordinate axes are arrays corresponding to time, frequency and survey distance, respectively. 
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(a) 3D energy spectrum of void

(b) CWT 3D model slice
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Figure 11.  3D visualization of disease area. (a) The 3D energy spectrum of model. (b)The CWT slice at void 
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Figure 12.  Reconstructed energy spectrum.
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Figure 13.  DWT decomposition signal from energy spectrum.

Figure 14.  Depth and width detecting results.
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Figure 15.  Compared result with void area detection and groundtruth.
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The area of energy concentration is reflected through chromaticity changes, which can effectively reveal the 
time–frequency domain characteristics of the void area.

Similar to numerical model, we also overlap the result with width and depth information on the original 
B-scan and the result was shown in Fig. 16c, where the 9 holes are correctly identified. To calculate the accu-
racy on lab model, Fig. 16d shows the detection width with groundtruth, the error is 4.2% on the lab model, 
Fig. 16e shows the width error bar chart of the void disease. The error of deeper voids is greater, but as the depth 
decreases, the error basically shows a decreasing trend. Therefore, the proposed method can effectively extract 
the void width and depth information from GPR signal, which could be useful for further pavement structure 
safety analysis.
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Conclusions
This study proposes a method for extracting geometric parameters of void areas from GPR signals by using the 
CWT method. The CWT method is used to convert the GPR signal from the time domain to the time–frequency 
domain, where the void area exhibits energy concentration phenomena. By viewing the 3D CWT result, the void 
area can be clearly visulalized, and a width and depth extraction algorithm has been proposed and validated 
through both FDTD and lab experiments, achieving high accuracy in void width detection.

This study can be summarised as follows:

1. There are obvious differences between the time–frequency spectra of void and normal areas in the CWT 
results, where void signal has energy concentration phenomena while normal pavement doesn’t have.

2. The 3D CWT result provides clear visualization of the void area, which could also be used for other under-
ground targets.

3. The proposed void width and depth extraction algorithm has been validated in both simulated and lab 
models, with the width detection accuracy for void areas being 1.5% and 4.2% for simulated and lab models, 
respectively.

In conclusion, this study presents a promising method for directly detecting the dimensions of void areas 
from GPR signals. However, it should be noted that this method relies on the difference in the CWT results 
between normal and void areas, and may not be valid if all test data comes from normal pavement without void 
area. Additionally, the depth information provided by this method is limited to the maximum energy depth layer 
of the void area due to the resolution limitations of the GPR antenna central frequency and void size. Further 
research is needed, including combining this method with machine learning techniques to select relevant void 
data, and integrating dynamics analysis of slab for determining the structural safety of void areas, which could 
be very useful for pavement maintenance.

Data availability
The data used to support the findings of this study are included within the article.
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