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Wavelet radiomics features 
from multiphase CT images 
for screening hepatocellular 
carcinoma: analysis 
and comparison
Van Ha Tang 1,2, Soan T. M. Duong 1,2*, Chanh D. Tr. Nguyen 1,3, Thanh M. Huynh 1,3, Vo T. Duc 4, 
Chien Phan 4, Huyen Le 4, Trung Bui 5 & Steven Q. H. Truong 1,3

Early detection of liver malignancy based on medical image analysis plays a crucial role in patient 
prognosis and personalized treatment. This task, however, is challenging due to several factors, 
including medical data scarcity and limited training samples. This paper presents a study of three 
important aspects of radiomics feature from multiphase computed tomography (CT) for classifying 
hepatocellular carcinoma (HCC) and other focal liver lesions: wavelet-transformed feature extraction, 
relevant feature selection, and radiomics features-based classification under the inadequate training 
samples. Our analysis shows that combining radiomics features extracted from the wavelet and 
original CT domains enhance the classification performance significantly, compared with using those 
extracted from the wavelet or original domain only. To facilitate the multi-domain and multiphase 
radiomics feature combination, we introduce a logistic sparsity-based model for feature selection 
with Bayesian optimization and find that the proposed model yields more discriminative and relevant 
features than several existing methods, including filter-based, wrapper-based, or other model-based 
techniques. In addition, we present analysis and performance comparison with several recent deep 
convolutional neural network (CNN)-based feature models proposed for hepatic lesion diagnosis. The 
results show that under the inadequate data scenario, the proposed wavelet radiomics feature model 
produces comparable, if not higher, performance metrics than the CNN-based feature models in terms 
of area under the curve.

According to Globocan 2020, liver malignancy is the sixth most common cancer overall and the third most preva-
lent cause of cancerous death in both  genders1. Among primary liver cancers, the most frequently encountered is 
hepatocellular carcinoma (HCC)2,3, for which treatment plans are distinguished from the remaining entities. The 
most crucial factors in enhancing patient prognosis are early detection and accurate characterization of  HCC4,5.

Over the past decade, there has been a growing interest in developing computer-aided diagnosis (CAD) of 
liver lesions based on medical image analysis. As the medical data of the hepatic lesions is typically scarce, the 
majority approaches for liver lesion diagnosis can be divided into two categories: deep convolutional neural 
networks (CNN) and radiomics features-based models. The deep CNN aims to enhance performances of liver 
lesions prediction and overcomes the issue of data scarcity by leveraging the knowledge learned from the similar 
image processing tasks. In particular, it uses deep CNN backbones well-trained on generic image datasets for the 
adaptation to the medical imaging domain, also known as a transfer learning (TL) technique. With application 
to HCC identification, several deep CNN models, including  VGG6, ResNet-507,  GoogleNet8, and 3D ResNet-189 
have been employed and shown improved performances.

The radiomics features analysis of liver lesions, on the other hand, has captured numerous studies due to its 
capability of encoding informative biological information from medical images and handling the insufficient 
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data  scenarios10–15. Radiomics generally refers to the high-throughput extracting and selecting of quantitative 
image features, and subsequent mining them for clinical knowledge and  application16–18. A typical radiomics 
features-based pipeline includes data acquisition, image segmentation, feature extraction and selection, as well 
as lesion classification. Data collection can be performed using CT, which is one of the most common and robust 
imaging techniques for the detection of liver cancer. Segmentation is performed either manually or automatically 
to yield the region of interest (ROI) of liver lesions used for subsequent steps. Extracting and selecting relevant 
and high-quality features play a crucial role in liver lesion classification and  treatment4,19,20.

Several radiomics feature-based methods have been proposed for enhancing liver lesion classification 
 performances10,11,21–28. These investigations mainly focus on feature extraction, feature selection, and liver lesion 
classification techniques.  In22–24, shape and geometric features were extracted from original CT images for liver 
lesions differentiation. Similarly, histogram-based feature extraction followed by logistic regression (LR) and 
support vector machine (SVM) were used for the diagnosis of HCC and cirrhosis diseases  in11.  In25–28, first-order 
features characterizing the histogram of the ROI were used for early HCC detection. In addition, second-order 
texture descriptors of the gray level co-occurrence matrix (GLCM) were employed to characterize HCC  in13,28,29.

Together with feature extraction, several feature selection and classification techniques were investigated for 
enhancing liver lesion identification. Among such feature selection models, principal component analysis (PCA) 
was prominently introduced to prune non-relevant features  in23,27,30. Furthermore, filtering techniques, includ-
ing variance-based and correlation-based statistical threshold, as well as the model-based approach using least 
absolute shrinkage and selection operator (LASSO) were investigated for improving feature representation and 
classification of HCC and hepatic  hemangioma20. In terms of classifiers, techniques including SVM used  in13,22,30, 
multilayer perceptron (MLP) neural network employed  in31,32, and LR  in11,14 were shown to be prominent in the 
present context for the binary classification of HCC and non-HCC (focal) lesions, called as non-HCC for short. 
It is worth noting here that although efforts have been made to exploit radiomics features for characterizing liver 
lesions, it is needed to investigate how to combine radiomics features extracted from different imaging modali-
ties, enrich their representations in different imaging domains, and develop an efficient model for the feature 
selection and HCC and non-HCC classification.

In this paper, we consider three important issues in classifying HCC and non-HCC liver lesions: radiomics 
feature extraction, feature combination, and feature selection using the CT imaging model. We introduce the 
wavelet-transformed radiomics features and analyze their effects on the classification performance, especially 
when combined with those extracted from the original CT imaging domain. Our analysis shows significant per-
formance improvement by combining relevant wavelet-domain texture features and important original-domain 
features. The combination and enrichment of radiomics features extracted from different domains and modalities 
enhance the classification capability, but also lead to a challenge for feature selection. To address this issue, we 
evaluate different approaches for feature selection, including filter-based, wrapper-based, and model-based meth-
ods, and propose a logistic sparsity-based regression model for efficient feature selection. Experimental results 
show that the proposed sparsity-based feature selection model is the most effective technique among the tested 
feature selection methods; it gives a more compact feature subset and yields significantly higher performance 
metrics for most prominent classifiers, including logistic sparsity-based regression, MLP, and SVM. To support 
this research, we have prepared a dataset that comprises CT data of 253 patients with manually segmented liver 
lesion ROI and their hepatic lesion labeling for HCC and non-HCC categorization. The key contributions of 
this paper are highlighted as follows: 

1. We introduce wavelet-domain radiomics features derived from multiphase CT images to enrich the represen-
tations of different focal liver lesions (FLLs). We also analyze the effects of combining the wavelet and original 
CT image domain radiomics features on the HCC and non-HCC classification performance. Experimental 
results show that combining features extracted from the two domains significantly improves the discrimina-
tive capability compared to using only the wavelet-domain or original-domain features. Although wavelet 
radiomics features have been considered previously, this study, for the first time, introduces wavelet radiom-
ics for the representations of FLLs imaging by multiphase contrast-enhanced CT modality and analyzes its 
effects on classifying HCC and non-HCC. Such analysis and comparison have not been investigated so far.

2. This paper proposes a new model for efficient radiomics feature selection. The introduced model employs 
a sparse representation to handle the ill-posed feature selection problem in which the number of studied 
samples is far fewer than the number of extracted radiomics features. Furthermore, the proposed model 
incorporates statistical logistic modeling to represent the target output’s conditional probability given the 
feature. We formulate the problem using the Bayesian framework and introduce an algorithm to solve the 
feature selection problem efficiently.

3. This study analyzes and compares the proposed logistic sparsity feature selection model with several other 
techniques, including filter-based, wrapper-based, model-based, and dimensional reduction methods. We 
find through the experiments that the proposed logistic sparsity model is capable of yielding a compact and 
relevant feature subset and outperforms the other feature selection approaches with statistical significance. 
Furthermore, under the limited number of training samples, the relevant wavelet radiomics features tend to 
generalize well and outperform several deep CNN-based feature models proposed for liver lesion diagnosis.

4. We have prepared and processed a CT dataset of 253 patients with hepatic lesions to support this study. 
The preparation comprises screening and annotating tasks. The former involves using both the clinical and 
pathological information first to select the patients of interest and then identify the types of liver lesions 
in each case chosen. The latter requires experienced radiologists to annotate the masks of hepatic lesions 
manually.
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The remainder of the paper is organized as follows. In the “Materials” section, we present the CT dataset and its 
preparation and annotation for this study. This is followed by the “Methods” section, in which we introduce the 
proposed radiomics feature-based model for HCC and non-HCC discrimination, including feature extraction 
and selection, and classification algorithms. Next, the “Experimental results and discussion” section presents 
the experimental protocol, results, analysis, and discussion. Finally, in the “Conclusion” section, we give the 
concluding remarks.

Materials
This section presents the dataset used in this study. It first gives the patients and screening protocol and then 
presents data annotating and splitting.

Participants and screening protocol
Using an institutional review board-approved protocol, we retrospectively collected data from patients with focal 
liver lesions, including cirrhosis, from March 2016 to November 2020 at the University Medical Center, Ho Chi 
Minh City. We randomly selected 380 patients from the study period. We then chose the data of patients with 
the correct multiphase abdominal CT and fewer than ten FLLs, resulting in a computed tomography dataset 
of 253 patients. The dataset has the age range from 18 to 86, and gender distribution (male|female) = 152|101.

All patients underwent the multiphase abdominal CT without any special preparation, e.g. bowel prepara-
tion or drinking oral contrast, using either 64-slice or 128-slice scanners  (SOMATOM® Definition AS/AS+, 
Siemens Healthineers AG, Erlangen, Germany). The multiphase scanning protocol, including non-contrast, 
arterial, venous, and delayed phases, was performed after the administration of intravenous contrast material 
 (Xenetix® 300 mgI/ml, Guerbet SA, Villepinte, France;  Ultravist® 300 mgI/ml, Bayer AG, Leverkusen, Germany; 
OmnipaqueTM 300 mgI/ml, GE Healthcare Inc., Chicago, United States). The arterial phase was 30–35 s after 
the IV contrast injection, while the venous phase was 60–70 s and the delayed phase was 180 s. All 3D CT data 
were acquired with the slices in the axial plane, a size of 512 × 512, and pixel spacing ranging from 0.5 to 0.86 
mm. The slice increment varied in the range (0.6–1.0) mm. The number of slices felt within a wide range, i.e. 
(175–830), as most patients underwent the abdomen CT scan while a few underwent the chest-abdomen CT 
scan for additional staging purposes.

Hepatic lesion labeling and data splitting
The labeling process was conducted by radiologists with more than five years of experience in hepatic imag-
ing to provide the best quality of the benchmark, including lesion segmentation masks and the corresponding 
types. This process contains two steps: screening and annotating. In the screening step, the radiologists first 
selected the patients of interest, as mentioned in the Participants and Screening Protocol Subsection. They then 
determined the type of lesions in each case study. In detail, HCC was determined using histopathology reports 
and evidence-based practice EASL/AASLD  guidelines33,34. Non-HCC was based on histopathology reports or 
typical characteristics of imaging. The non-HCC group includes metastate, intrahepatic cholangiocarcinoma, 
hemangioma, cyst, abscess, focal nodular hyperplasia, adenoma, too small to characterize, undifferentiated, and 
other rare lesions.

In the annotating step, the radiologists then manually annotated the 3D region of the lesion using the free 
and open-source 3D Slicer imaging  platform35. Based on the screening information, the radiologists used the 
CT phase specified in the screening step that provided the clearest depiction of the lesions to annotate all FLLs, 
except the one with a diameter smaller than 5 mm. Two radiologists independently annotated each lesion to 
guarantee the accurate mask of the FLLs. The annotation was accepted if two independent radiologists’ lesion 
masks reached a consensus with a Dice score greater than 0.8. Otherwise, the radiologists must discuss to confirm 
the annotated masks of lesions. Each lesion’s ground-truth mask was considered the intersection of the accepted 
annotations. Figure 1 visualizes the intersect annotated masks of the HCC and non-HCC lesions overlaid on the 

Figure 1.  Examples of CT venous slices (top row) and the hepatic lesion annotation overlaid (bottom row) in 
out dataset. HCC tumors (red) are in the first two CT slices, and non-HCC lesions (cyan) are in the last two CT 
slices. Best view in color.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19559  | https://doi.org/10.1038/s41598-023-46695-8

www.nature.com/scientificreports/

venous phase series. After the labeling process, we obtained 391 lesion masks from 253 patients, with 158 HCC 
tumors from 129 patients and 233 non-HCC lesions from 145 patients. The mean annotation consensus between 
radiologists in terms of Dice score was 0.92. A summary of the dataset is presented in Table 1. It is worth noting 
that rigid registration was performed to align the phases of each case study together. In particular, the arterial 
and delayed phases were automatically registered into the venous phase through our developed registration 
algorithm based on the iterative closest point technique.

We randomly separated the introduced dataset into the training set and test set with two criteria: (i) the ratio 
of the training set and test set was at most 8:2, and (ii) the distributions of lesion types and size between the sets 
were maximally equal. This results in the training set of 149 patients, with 99 HCC and 127 non-HCC lesions. 
The test set comprised 104 patients, with 59 HCC and 106 non-HCC lesions. Note that this study considered 
each lesion as a sample. Table 2 summarizes the sets.

Methods
This was a retrospective study with the approval of the Human Research Ethics Committee at the Univer-
sity Medical Center of Ho Chi Minh City (number 93/GCN-HDDD, dated September 17, 2021). The written 
informed consent was waived by the Human Research Ethics Committee of the University Medical Center of 
Ho Chi Minh City. All methods were performed following the ethical standards of the Helsinki Declaration.

The rest of this section presents the workflow of the proposed radiomics feature-based model for classifying 
HCC and non-HCC lesions. We first describe the radiomics feature extraction and selection, and then clas-
sification algorithms.

Radiomics feature extraction and selection
Radiomics features of the liver lesions can be extracted using the ROI on the segmented images. This study 
investigates features in original CT and wavelet domains for informative representations of liver diseases.

Feature extraction
Feature extraction has been performed in both original and wavelet domains. To mitigate the influence of incon-
sistent CT scan spacing within our dataset, prior to the feature extraction, we employed a cubic spline interpola-
tion technique to recalibrate CT images to a uniform spacing of 1 mm × 1 mm × 1 mm. Each phase image of the 
original CT domain contributes 100 attributes, including 18 first-order statistics features, 14 shape features, and 
68 texture features. We detail a list of all the used radiomics features in the supplementary document.

The first-order features characterize the spatial distribution of voxel intensities within the ROI. Such features 
represent commonly used metrics, including mean, variance, skewness, entropy, and uniformity. They are com-
puted using direct image intensities or based on the histogram of the liver lesion ROI.

The shape features, on the other hand, are independent of the intensity distribution and give the visual repre-
sentation of the FLLs. Typical shape attributes include diameter, area, and volume. Furthermore, elongation and 
flatness are also included as potential shape-related biomarkers. The texture features are based on second-order 
statistics and described via the density histogram and the spatial locations of image pixels. Three types of textures 
including gray level co-occurrence matrix (GLCM)36, gray level run length matrix (GLRLM)37, and gray level 
size zone matrix (GLSZM)38 are considered in this study.

In addition to the original-domain features, we extract several features from wavelet-derived images, namely 
higher-order features. They are extracted based on the first-order statistics and second-order textural features. 
These features are captured from the wavelet-domain images transformed by applying high (H) or low (L) filters 
in each of the three dimensions of the CT image. For the first level of wavelet decomposition, the filtering pro-
cessing results in a total of 8 wavelet-filtered images: wavelet-LHL, wavelet-LHH, wavelet-HLL, wavelet-LLH, 

Table 1.  A summary of the dataset used in the experiments. Note that a patient can have both HCC and non-
HCC lesions, leading to the summation of the number of patients with HCC and with non-HCC greater than 
the total number of patients. The annotation consensus between annotated was measured using Dice score.

Types No. patients Gender dist. M|F Mean age (range) No. lesions Annotation consensus

HCC 129 86|43 58.94 (23–86) 158 0.93 ± 0.06

Non-HCC 145 79|66 57.88 (18–86) 233 0.92 ± 0.06

Overall dataset 253 154|99 58.31 (18–86) 391 0.92 ± 0.06

Table 2.  A summary of the training and test sets.

Types No. patients M|F Age range No. HCC No. non-HCC

Train 149 93|56 (23–86) 99 127

Test 104 61|43 (18–86) 59 106

Total 253 154|99 (18–86) 158 233
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wavelet-HLH, wavelet-HHH, wavelet-HHL, and wavelet-LLL. Each wavelet-filtered image contributes 86 features 
(100 features excluding 14 shape features). Thus, one-level wavelet decomposition aggregates 688 radiomics 
features into the feature set. Higher-level wavelet decomposition further increases the number of radiomics 
features used for representing the hepatic lesions.

Feature selection
Feature selection plays a crucial role in the radiomics feature-based CAD models as this task produces compact 
but representative features that lead to improved interpretation, prediction, and generalization. In general, the 
feature selection can be performed using several techniques, including filter-based, wrapper-based, or model-
based  methods39. The filter-based methods select useful features by considering the statistical properties of the 
features. One widely-used filtering technique is the feature variance thresholding, which works by examining the 
feature variances and removes those with low values, i.e., likely containing little information. Another common 
technique, namely the feature correlation thresholding checks for features that have high correlations with others 
and eliminates one of them as they tend to contain redundant information.

The wrapper-based methods, on the other hand, employ an appointed model (regressor or classifier) to 
select features. The idea is to repeatedly train the selected model that contains its parameters, namely, weights or 
coefficients. At the first time, the model is trained using all the features. Then, the features are selected based on 
their important scores/ranks corresponding to the large absolute weights or coefficients. Note that the features 
selected by the wrapper-based methods may be sub-optimal due to being subjective to the nominated model.

In this study, we investigate the model-based techniques as they perform feature selection in the process 
of model construction. In particular, we consider feature selection as an ill-posed problem and introduce an 
efficient technique based on sparse representation to identify a compact but informative subset of features. It is 
worth noting here that the feature selection is regarded as an ill-posed or under-determined problem because 
the number of training samples (M) is far fewer than the number of features/variables (N)—M ≪ N , especially 
for multiphase radiomics feature selection problems. This ill-posed problem can be addressed efficiently using 
the least squares (LS) optimization with regularizations.

Let us denote the supervised learning task having M training samples {(xi , yi), i = 1, . . . ,M} ; each xi ∈ R
N is 

an N-dimensional feature vector, and yi ∈ {0, 1} is a class label. It is worth noting here that for model performance 
improvement and outlier impact reduction, the feature vector xi is standardized to make sure it has a mean zero 
and a unit standard deviation,

where µ and σ are, respectively, the mean and standard deviation of the feature vector xi.
C onst r u c t i ng  t he  t arge t  ve c tor  y = [y1, y2, . . . , yM ]T ∈ R

M  and  t he  fe atu re  mat r i x 
X = [x1, x2, . . . , xM ]T ∈ R

M×N . Defining the ℓ2-norm of a generic vector x ∈ R
N as �x�2 = (

∑N
i=1 x

2
i )

1/2 , the 
features can be selected by solving the following ℓ2-norm regularized LS problem:

where θ ∈ R
N is the parameter vector (weights/coefficients) and � is a hyperparameter. Problem (2) is known 

as the ridge regression in the statistics literature. This problem consists of two terms. The first one is the LS term 
that attempts to fit the estimated response to the target, and the second term is the ℓ2 regularizer used to prevent 
the parameter values from increasing largely.

Using the ℓ2 regularizer can alleviate the over-fitting issue, but this model cannot yield a compact feature 
subset. The reason is the ridge regressor does not guarantee a sparse solution for the parameter vector θ . To 
enforce model sparsity, we can replace ℓ2 with ℓ1 regularizer as

In (3), the ℓ1-norm of vector θ is defined as the sum of the absolute of its entries: �θ�1 =
∑N

i=1 |θi| . This ℓ1-
norm regularization promotes the sparsity by driving many entries of θ to be zeros. The non-zero entries θi in θ 
corresponds to the important features xi in X , which are considered to be the relevant vector machine (RVM)40. 
This sparsity-based model is similar to the LASSO technique in the statistics literature, and is robust to problems 
with the presence of many irrelevant  features41. Note that the sparsity level, i.e., the number of nonzero values 
K ( K ≪ N ) is governed by the hyperparameter � . Increasing � leads to a sparser model and thus obtains fewer 
relevant features. In contrast, decreasing � means selecting more features. In practice, this important hyperparam-
eter can be determined using searching techniques with cross-validation, such as grid-search, random-search42, 
or Bayesian  optimization43.

The sparsity-based regression model in (3) is suitable for the problem where the target vector y contains 
continuous entries. However, in our case, the vector y comprises variables with only two states of 1 and 0 repre-
senting the HCC and non-HCC classes, respectively. Thus, extending the model in (3) is crucial to make it more 
efficient for our problem. The extension can be made by employing the statistical logistic regression method to 
model the probability of the target output. At the same time, we aim to keep the ℓ1 regularizer to maintain the 
model sparsity and RVM property. Integrating the logistic model and sparse representation may enhance the 
feature selection performance.

The proposed logistic sparsity-based regression can be modeled using the Bayesian framework. In particular, 
the probability distribution of the target yi given the feature vector xi can be expressed as

(1)xi =
xi − µ

σ
,

(2)θ = argmin
θ

(�y − Xθ�22 + ��θ�2),

(3)θ = argmin
θ

(�y − Xθ�22 + ��θ�1).
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Here, σ(·) is the logistic sigmoid function. The prior distribution is introduced on the parameter θ using the 
Laplacian function given by

Using the likelihood function in (4) and prior distribution in (5), we can estimate the parameters θ by the maxi-
mum a posteriori (MAP). Note that maximizing the posterior function is equivalent to minimizing the negative 
of the log of this function, and thus we have the following optimization model:

Problem (6) can be solved efficiently via proximal splitting  methods44. By splitting, the first term in (6) is convex 
and differentiable and the second term is ℓ1-regularization which has a closed-form solution using soft-thresh-
olding or shrinkage  technique45–47. We detail the algorithm to solve Problem (6) in the supplementary document.

It is worth noting that the logistic sparsity regression (LSR) and LASSO are used for feature selection, but LSR 
is more suitable for HCC and non-HCC classification. LASSO primarily focuses on feature selection, whereas 
LSR excels in both feature selection and classification tasks due to its logistic regression foundation. Furthermore, 
LASSO’s linearity in (3) does not consider the non-linearities in the relationship between the wavelet-radiomics 
features and target classes. In contrast, LSR’s logistic formulation in (6) accommodates these complexities, ena-
bling it to model intricate radiomics-target relationships.

Classification of HCC and non-HCC
To differentiate between HCC and non-HCC lesions, we can apply any binary classification technique to the 
selected radiomics features. In this study, we aim to investigate the effects of using radiomics features extracted 
from the wavelet domain and their combination with those extracted from the original CT image. Furthermore, 
we evaluate the effectiveness of the proposed logistic sparsity-based model for both feature selection and clas-
sification. Therefore, we consider different popular classifiers, including the proposed LSR, SVM, and MLP.

The proposed LSR model in (6) can be considered as an extension of the widely used LR classifier in machine 
learning (ML). Note that for liver disease prediction, the standard LR was one of the prominent techniques 
employed in several studies,  including11,14,48,49. This study uses the LSR model for the radiomics feature selection 
and HCC and non-HCC classification.

The SVM classifier is a popular technique for solving classification, regression, and novelty detection prob-
lems. In the classification case, the SVM is a decision machine designed to map the training examples to the 
points in the feature space to maximize the margin between the categories. The key feature of the SVM is that 
its object function not only maximizes the margin between the two classes but also minimizes a measure of the 
error on the training  set50,51. In liver lesion classification, the state-of-the-art results obtained by SVM have been 
reported in numerous studies,  including11,52,53.

The MLP is a fully connected feed-forward neural network used extensively in classification and regression. 
Compared to the LR and SVM, MLP is capable of yielding more complex decision boundaries. A comprehen-
sive introduction to the MLP is given  in54. For liver lesion classification, MLP has been used in several works, 
 including31,55,56.

Experimental results and discussion
This section presents the experimental results, performance analysis and comparison for the different important 
aspects of the wavelet-radiomics features-based approach to classifying HCC and non-HCC, including feature 
selection, the effect of combining different domain features, comparison of different feature selection models, 
analysis of using different wavelet families for optimal filter identification, and comparison with several deep 
CNN-based models. First, we give the experimental setup , then describe the results, analysis, and discussions 
on the study findings.

Experimental protocol
Radiomics features were extracted in both original CT and wavelet-filtered images. For the original CT domain, 
feature extraction were performed for all the three phases, which results in 300 features. For the wavelet-domain 
feature extraction, the Haar filter was employed with one-level wavelet decomposition, leading to a set of 2064 
texture features. All the radiomics features were obtained using pyradiomics, a python package for extracting 
radiomics features from medical  imaging57.

To evaluate the performances of the different models, standard performance metrics for binary classification 
problems were used, including F1 score and the area under the curve (AUC) of receiver operating characteristic 
(ROC). The F1 score is the harmonic mean of the precision and recall. The AUC is a performance measure that 
provides the capability of distinguishing between the classes at different threshold  levels58.

To assess the statistical significance of the proposed method, this study utilized the independent two-sample 
t-test59 and DeLong’s test on the AUC measures. These statistical tests determine whether the disparity between 
the means is likely to have occurred by chance (null hypothesis) or is statistically significant (alternative hypoth-
esis), based on the calculated p-value. A p-value (p) less than 0.05 signifies rejection of the null hypothesis at a 

(4)p(yi = 1|xi , θ) = σ(θTxi) =
1

1+ exp(−θ
Txi)

.

(5)p(θ) = (�/2)N exp(−��θ�1).

(6)min
θ

{

f (θ) =

M
∑

i=1

− log p(yi|xi , θ)+ ��θ�1

}

.
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95% confidence level. In the context of our experiments, this implies a significant distinction in the AUC meas-
ures between our proposed methods and the compared methods.

Relevant feature selection: dominance of wavelet-derived features over original-domain 
features
This experiment aims to examine the proposed LSR model for feature selection and the contribution of different 
domain features to the selected subset features. In doing so, a total of N = 2364 features extracted from both the 
original and wavelet domains was used as input for feature selection. Since the feature selection was performed 
on the training set, these features represent the key characteristics for M = 226 training samples. The feature 
matrix X is therefore of size M × N = 226× 2364, and the target vector y is of size M × 1 = 226× 1.

To perform feature selection using the LSR in (6), it is vital to tune a suitable hyperparameter � . This hyper-
parameter can be determined using grid or random search techniques, which are known to be computationally 
expensive. To overcome this limitation, we used a 10-time repeated fivefold cross-validation (CV) with Bayesian 
optimization (BO). BO is capable of providing a principled technique to direct the search for a global optimiza-
tion function (maximizing AUC metric in our case). By building a probabilistic model for the objective function, 
the search is effective with an acquisition function to choose candidate samples for the next objective function 
evaluation. It has been shown  in42,43 that BO obtained better results in far fewer evaluations than its grid-search 
and random-search counterparts.

Figure 2 shows the performance metric AUC as a function of the hyperparameter � . Here, the boundary 
search for this hyperparameter was initialized as [10−6 − 106] . It can be observed that the BO technique was very 
effective in that it can lead the searching direction to the potential space containing the optimum value. Once the 
search was finalized, the optimal hyperparameter log(�) = 0.84 was found at the maximum value of AUC = 0.91.

Using the obtained hyperparameter, the proposed LSR model selected the features by solving Problem (6). 
After convergence, the parameter vector θ has only K = 29 nonzero coefficients out of the total of N = 2,364 
entries ( K/N = 1.23% ). This means that the proposed LSR model selected only 29 features from a total of 2364 
features extracted from both original and wavelet domains. Table 3 lists such the selected features corresponding 
to the non-zero coefficients. It can be observed that the features extracted from both the original and wavelet 
domains were selected. However, the texture features from the wavelet domain tend to dominate those from the 
original counterpart. The wavelet domain contributes 20 out of 29 features ( 68.97% ), while the original domain 
makes up 9 out of 29 features ( 31.03% ). This implies that the wavelet-domain features play a very crucial role in 
the HCC and non-HCC classification performance, especially when combined with those extracted from the 
original domain.

Furthermore, we find that all the three phases contribute to the selected feature subset. This 29-feature 
selected subset comprises 13 features from venous phase, 11 features from delayed phase, and 5 features from 
arterial phase. This result indicates that all the phases contain essential features necessary for screening HCC, 
and multiphase processing tends to be needed for performing HCC diagnosis.

Figure 2.  Bayesian optimization with a 10-time repeated fivefold cross-validation searching for the 
hyperparameter � used in the proposed logistic sparsity-based model based on maximum AUC criteria; the 
optimal regularization strength hyperparameter log(�) = 0.84 was chosen at the maximum value of AUC = 
0.91.
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Analysis and comparison of different models for radiomics feature selection
In this experiment, we examine the performances of the different feature selection techniques for HCC and 
non-HCC discrimination with three different classifiers, i.e. logistic sparsity regression, multi-layer percep-
tron, and support vector machine. Here, we considered four major approaches: filter-based, wrapper-based, 
dimensional reduction with PCA, and model-based techniques. For filter-based methods, we implemented two 
popular techniques, namely the feature variance thresholding (FVT) and the feature correlation thresholding 
(FCT), that have been employed  in20 for classifying HCC and hepatic hemangioma. Note that the FVT requires 
a pre-defined threshold τv for pruning the features with variances smaller than τv . Similarly, the FCT needs a 
pre-defined threshold τc to identify the level of high-correlation between two features. In our experiment, we 
set τv = 0.5 and τc = 0.99 . The wrapper-based approach, on the other hand, sticks to an appointed model to 
rank the features. Here we tested the wrapper method using the LR and random forest (RF) as these models are 
efficient for important feature rankings.

For the model-based techniques, together with the proposed logistic sparsity regression model, we also evalu-
ated its variants of logistic ridge regression and logistic elastic-net regression. While the logistic sparsity regression 
uses ℓ1-regularizer and the logistic ridge regression employs ℓ2-regularizer, the logistic elastic-net regression 
enforces both the ℓ1 and ℓ2 penalties on the model parameters. For comparison, we tested here the LASSO model 
employing ℓ1 for sparse feature selection used for HCC  identification20. Furthermore, we tested the widely-used 
PCA method, which reduces the number of features and retains the variance in the features. In our experiment, 
the PCA reduces the features but retains 99% variances.

Table 4 lists the results and performance metrics obtained by a 10-time repeated fivefold cross-validation for 
the different classifiers using the features selected by the different feature selection techniques. Here, all the feature 
selection techniques were performed on the training subset with the full 2,364 features extracted from both the 
original and wavelet domains. It can be observed that among the tested feature selection methods, the proposed 
logistic sparsity regression was the most efficient model. This model selected only 29 relevant features out of 
the total 2,364 features (1.23% of the full features), and yielded the highest F1 and AUC metrics. The proposed 
logistic sparsity regression followed by the logistic sparsity classifier was found to obtain the highest F1 score of 
0.89 (95% CI 0.87–0.90), and AUC = 0.96 (95% CI 0.95–0.96).

Table 3.  The most relevant radiomics features selected by the proposed logistic sparsity-based regression 
model. These features correspond to the estimated dominant non-zero coefficients.

Phases Feature domains Feature types Feature names Ranks Coefficients

Venous Original GLSZM GrayLevelNonUniformityNormalized 1 0.611

Arterial Original GLSZM LowGrayLevelZoneEmphasis 2 − 0.530

Arterial Wavelet-LLH GLSZM GrayLevelNonUniformityNormalized 3 0.362

Delayed Original GLSZM GrayLevelNonUniformityNormalized 4 0.338

Venous Wavelet-LHL GLSZM GrayLevelNonUniformity 5 0.315

Arterial Wavelet-LHL GLDM DependenceVariance 6 − 0.285

Delayed Original GLDM DependenceNonUniformityNormalized 7 0.209

Delayed Original GLCM InverseVariance 8 -0.207

Venous Wavelet-HLL GLSZM SizeZoneNonUniformityNormalized 9 − 0.181

Venous Wavelet-LHH GLSZM SmallAreaHighGrayLevelEmphasis 10 0.170

Delayed Original GLDM DependenceEntropy 11 − 0.159

Venous Original GLSZM LowGrayLevelZoneEmphasis 12 − 0.143

Delayed Wavelet-LHL GLRLM LongRunLowGrayLevelEmphasis 13 − 0.127

Delayed Original GLSZM SmallAreaLowGrayLevelEmphasis 14 − 0.121

Venous Wavelet-LLL GLDM DependenceNonUniformityNormalized 15 − 0.120

Delayed Wavelet-LHL GLDM LargeDependenceLowGrayLevelEmphasis 16 − 0.110

Venous Wavelet-LLH GLSZM SmallAreaEmphasis 17 0.109

Arterial Wavelet-HLH GLSZM SmallAreaLowGrayLevelEmphasis 18 0.102

Venous Original GLRLM LongRunLowGrayLevelEmphasis 19 0.087

Delayed Wavelet-HLL GLSZM LowGrayLevelZoneEmphasis 20 − 0.085

Venous Wavelet-LHL GLRLM ShortRunLowGrayLevelEmphasis 21 − 0.084

Delayed Wavelet-HLH FIRST-ORDER Maximum 22 0.032

Venous Wavelet-HLL GLSZM ZoneEntropy 23 0.029

Delayed Wavelet-HLH GLCM JointEnergy 24 − 0.027

Arterial Wavelet-HHH GLRLM LongRunLowGrayLevelEmphasis 25 0.019

Delayed Wavelet-LLL GLCM Imc1 26 0.016

Venous Wavelet-LLL GLDM DependenceEntropy 27 0.010

Venous Wavelet-LLH GLSZM SmallAreaLowGrayLevelEmphasis 28 0.005

Venous Wavelet-LHL GLSZM ZoneEntropy 29 0.001
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On the other hand, logistic ridge or elastic-net produced lower performance metrics though they selected 
many more features. The AUCs produced by the logistic ridge and elastic-net are 0.92 (95% CI 0.91–0.93), and 
AUC = 0.90 (95% CI 0.89–0.91), respectively. Compared with these techniques, the LSR model enhances the 
performance with statistical significance ( p < 0.0001 ). The LASSO produced good performances as it is a sparse 
feature selector. It yielded an AUC of 0.95 (95% CI 0.94–0.96). The proposed LSR enhances the AUC mean in 
comparison with LASSO, but not statistical significance ( p = 0.14 ) by the t-test. In contrast, PCA was found to be 
ineffective for extracting informative features for HCC and non-HCC classification. The wrapper-based methods 
with LR and RF using the 30 most important features obtained reasonable performance metrics.

Effects of wavelet-filtered features on classification performance
In this experiment, we aim to analyze the effects of using features extracted from different domains and their 
combinations on the performances of classifying HCC and non-HCC. To this end, we compare the prediction 
capabilities using three radiomics feature sets: (1) those extracted from both the original and wavelet domains, 
(2) those extracted from the original domain only, and (3) those extracted from the wavelet domain only. For 
each feature set, the important features are first selected by the best feature selection performer of the logistic 
sparsity regression, followed by the prediction using the different classifiers.

Table 5 depicts the performance metrics obtained using the three domain feature sets by the different classi-
fiers evaluated on the training and test sets. On the training set, the model was evaluated with a 10-time repeated 
tenfold cross-validation. On the test set, the prediction was performed with a 200-time sampling replacement 
bootstrapping technique. This technique randomly draws data points with replacement from the original test 
set to create multiple test sets of equal size. For each of these bootstrapped sets, we assessed the model’s AUC 
performance. This process yielded a distribution of AUC values, considering variations in the test set composi-
tion. From this distribution, we calculated performance metrics, including the mean AUC and a 95% CI.

The most noteworthy observation from the table is the improvement in the performance metrics obtained 
from the mixed-domain feature set, compared with those computed from the original-domain or wavelet-
domain feature sets. For instance, using the LSR classifier, the mixture of wavelet and original feature set has 
an AUC of 0.96 (95% CI 0.95–0.96), whereas the original radiomics feature set yielded an AUC of 0.92 (95% CI 
0.91–0.93), and the wavelet-domain features only obtained an AUC of 0.90 (95% CI 0.89–0.91). The improvement 

Table 4.  Performance metrics in terms of F1 and AUC by the different classifiers using radiomics features 
selected by the different selection methods. The methods marked with asterisk ( ∗ ) and/or plus (+) symbols 
indicate statistical significance compared to the proposed LSR method using the same classifier at a confidence 
level of 95%, as determined by the t-test and/or DeLong’s test, respectively. The significant values, compared to 
the corresponding group in the first column, are in bolds.

Classifiers Feature selection models No. selected/total features F1 (95% CI) AUC (95% CI)

LSR

Proposed logistic sparsity 29/2364 (1.23%) 0.89 (0.87–0.90) 0.96 (0.95–0.96)

Logistic ridge∗,+ 796/2364 (33.67%) 0.84 (0.83–0.85) 0.92 (0.91–0.93)

Logistic elastic-net∗,+ 290/2364 (12.27%) 0.81 (0.80–0.83) 0.90 (0.89–0.91)

LASSO20+ 30/2364 (1.27%) 0.89 (0.87–0.90) 0.95 (0.94–0.96)

PCA30∗,+ 194/2364 (8.21%) 0.66 (0.64–0.68) 0.75 (0.73–0.77)

FVT &  FCT20∗,+ 887/2364 (37.52%) 0.73 (0.71–0.75) 0.82 (0.81–0.84)

Wrapper  LR48∗,+ 30/2364 (1.27%) 0.78 (0.76–0.79) 0.82 (0.81–0.84)

Wrapper  RF60∗,+ 30/2364 (1.27%) 0.82 (0.81–0.84) 0.88 (0.87–0.89)

MLP

Proposed logistic sparsity 29/2364 (1.23%) 0.87 ( 0.86–0.89) 0.94 ( 0.93–0.95)

Logistic ridge∗,+ 796/2364 (33.67%) 0.82 ( 0.80–0.83) 0.90 ( 0.89–0.92)

Logistic elastic-net∗,+ 290/2364 (12.27%) 0.82 ( 0.81–0.84) 0.91 ( 0.89–0.92)

LASSO20 30/2364 (1.27%) 0.87 ( 0.86–0.88) 0.94 ( 0.93–0.95)

PCA30∗,+ 194/2364 (8.21%) 0.64 ( 0.62–0.66) 0.70 ( 0.68–0.72)

FVT &  FCT20∗,+ 887/2364 (37.52%) 0.77 ( 0.75–0.79) 0.84 ( 0.83–0.86)

Wrapper  LR48∗,+ 30/2364 (1.27%) 0.75 ( 0.74–0.77) 0.83 ( 0.82–0.85)

Wrapper  RF60∗,+ 30/2364 (1.27%) 0.82 ( 0.81–0.84) 0.89 ( 0.88–0.91)

SVM

Proposed logistic sparsity 29/2364 (1.23%) 0.89 ( 0.88–0.90) 0.96 ( 0.95–0.97)

Logistic ridge∗,+ 796/2364 (33.67%) 0.83 ( 0.81–0.84) 0.91 ( 0.90–0.92)

Logistic elastic-net∗,+ 290/2364 (12.27%) 0.77 ( 0.75–0.79) 0.86 ( 0.85–0.88)

LASSO20+ 30/2364 (1.27%) 0.88 ( 0.87–0.89) 0.95 ( 0.94–0.96)

PCA30∗,+ 194/2364 (8.21%) 0.65 ( 0.63–0.67) 0.73 ( 0.71–0.75)

FVT &  FCT20∗,+ 887/2364 (37.52%) 0.71 ( 0.69–0.73) 0.79 ( 0.77–0.81)

Wrapper  LR48∗,+ 30/2364 (1.27%) 0.77 ( 0.76–0.79) 0.82 ( 0.80–0.83)

Wrapper  RF60∗,+ 30/2364 (1.27%) 0.82 ( 0.81–0.84) 0.88 ( 0.86–0.89)
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of the mixed-domain features over either the original domain or wavelet domain only is statistically significant 
( p < 0.0001 ), confirmed by both the t-test and DeLong’s test.

Similarly, on the test set, the prediction results show that combining the wavelet- and original-domain radi-
omics features enhances the classification performance compared with using the original-domain features only. 
This improvement is statistically significant ( p < 0.0001 ), confirmed by DeLong’s test, though the 95% CIs over-
lap. However, the enhancement of the mixed-domain features over the wavelet-domain features is not statistically 
significant according to the t-test ( p > 0.05 ).

Effects of different wavelet-family radiomics features on classification performance
This section analyzes the effect of using different mother wavelet-based radiomics features on classifying HCC 
and non-HCC performance and aims to identify the most suitable wavelet family for this classification problem. 
We have  followed62 to select four different wavelet families for radiomics feature extraction, including Haar, 
Daubechies 7, Biorthogonal 6.8, and Reverse biorthogonal 6.8. For each family, we performed one level wavelet 
decomposition and radiomics feature extraction, and then used LSR for feature selection and classification.

Table 6 lists the results in terms of the subset of features selected, and performance metric AUC on the training 
and test sets. It can be observed that the proposed wavelet-based radiomics feature model is capable of yield-
ing satisfactory classification performances, regardless of the wavelet families used. In addition, combining the 
wavelet and original-domain features considerably enhances the AUC metrics. This observation is consistent 
among all the tested wavelet families. For these wavelet transforms, on the test set, the Reverse biorthogonal 6.8 
is the most suitable filter and yields the highest AUC of 0.89 (95% CI 0.84–0.94), followed by the Haar wave-
let with an AUC of 0.87 (95% CI 0.82–0.92). According to the t-test and DeLong’s test, the wavelet family of 

Figure 3.  AUC ROC produced by the different classifiers using radiomics features extracted and selected from 
the mixed, original, and wavelet domains. Here the reverse biorthogonal 6.8 wavelet filter was used for the 
extraction of the radiomics features.

Table 5.  The performance metric AUC obtained on the training set and test set by the different classifiers 
using radiomics features extracted from the different image domains. Here, the Haar wavelet filter was used 
for the extraction of the radiomics features. The domain features marked with asterisk ( ∗ ) and/or plus (+) 
symbols indicate statistical significance compared to the mixed-domain features using the same classifier at a 
confidence level of 95%, as determined by the t-test and/or DeLong’s test, respectively. The significant values, 
compared to the corresponding group in the first column, are in bolds.

Classifiers Domain features No. selected/total features

AUC (95% CI)

Training set Test set

LSR

Wavelet and original domains 29/2364 (1.23%) 0.96 (0.95–0.96) 0.87 (0.82–0.92)

Original domain∗,+ 26/300 (8.67%) 0.92 (0.91–0.93) 0.85 (0.80–0.91)

Wavelet domain+ 36/2064 (1.74%) 0.90 (0.89–0.91) 0.86 (0.80–0.91)

MLP

Wavelet and original domains 29/2364 (1.23%) 0.96 (0.95–0.96) 0.87 (0.82–0.92)

Original domain∗,+ 26/300 (8.67%) 0.93 (0.92–0.94) 0.85 (0.79–0.90)

Wavelet domain+ 36/2064 (1.74%) 0.93 (0.91–0.94) 0.86 (0.80–0.91)

SVM

Wavelet and original domains 29/2364 (1.23%) 0.96 (0.95–0.97) 0.86 (0.79–0.92)

Original domain∗,+ 26/300 (8.67%) 0.93 (0.92–0.94) 0.83 (0.76–0.89)

Wavelet domain+ 36/2064 (1.74%) 0.93 (0.92–0.94) 0.85 (0.79–0.90)
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reverse biorthogonal 6.8 enhances the performance among the tested wavelet filters with statistical significance 
( p < 0.0001 ), even though their 95% CIs overlap.

For illustration, Fig. 3 shows the AUC of ROC obtained using the radiomics features extracted and selected 
from the different image domains followed by the different classifiers. It can be observed that employing the 
wavelet-domain radiomics features improves the AUC. Furthermore, combining the different radiomics feature 
domains leads to enhanced AUC compared to using either original or wavelet radiomics features only. This 
enhancement can be justified by the fact that the combination of the two domain features gives a more informa-
tive and discriminative representation of HCC and non-HCC lesions.

Performance comparison with deep CNN-based models
This section presents the performance comparison between the proposed wavelet radiomics-based model and 
other existing deep CNN-based approaches for addressing the problem of HCC and non-HCC classification. As 
the deep CNN-based models tend to yield unsatisfactory results in the cases of limited training data samples, 
for fair comparison, we consider here the deep CNN models using transfer learning techniques. The transfer 
learning techniques rely on the CNN backbones pretrained on other tasks and inherit the trained weights, i.e., 
knowledge transfer for solving a new task. The transfer learning techniques using several CNN backbones, 
including  VGG6, ResNet-507, and  GoogleNet8 are considered here. Furthermore, since recent 3D CNN models 
have shown to enhance the liver lesion classification performances, we implemented here the deep 3D CNN 

Figure 4.  AUC ROC produced by the proposed radiomics features-based model and deep CNN-based 
approaches using different backbones for HCC and non-HCC classification.

Table 6.  The performance metric AUC obtained by using the different wavelet family filters for radiomics 
feature extraction from the different image domains. The wavelet family marked with asterisk ( ∗ ) and/or plus 
(+) symbols indicate statistical significance compared to Reverse biorthogonal 6.8 with the corresponding 
feature domain at a confidence level of 99.99% ( p < 0.0001 ), as determined by the t-test and/or DeLong’s test, 
respectively. The significant values, compared to the corresponding group in the first column, are in bolds.

Wavelet filters Domain features No. selected/total features

AUC (95% CI)

Training set Test set

Haar∗,+
Wavelet and original domains 29/2364 (1.23%) 0.96 (0.95–0.96) 0.87 (0.82–0.92)

Original domain 26/300 (8.67%) 0.92 (0.91–0.93) 0.85 (0.80–0.91)

Wavelet domain 36/2064 (1.74%) 0.90 (0.89–0.91) 0.86 (0.80–0.91)

Daubechies 7 ∗,+
Wavelet and original domains 15/2364 (0.63%) 0.94 ( 0.93–0.95) 0.86 (0.80–0.91)

Original domain 26/300 (8.67%) 0.93 ( 0.92–0.94) 0.83 (0.76–0.89)

Wavelet domain 39/2064 (1.89%) 0.92 ( 0.91–0.94) 0.80 (0.74–0.86)

Biorthogonal 6.8∗,+
Wavelet and original domains 27/2364 (1.14%) 0.94 ( 0.93–0.95) 0.87 (0.82–0.92)

Original domain 29/300 (9.67%) 0.93 ( 0.92–0.94) 0.85 (0.80–0.90)

Wavelet domain 36/2064 (1.74%) 0.92 (0.91–0.93) 0.86 (0.81–0.92)

Reverse bior. 6.8

Wavelet and original domains 32/2364 (1.35%) 0.96 (0.95–0.96) 0.89 (0.84–0.94)

Original domain 30/300 (10.00%) 0.93 (0.92–0.94) 0.85 (0.79–0.90)

Wavelet domain 64/2064 (3.10%) 0.93 (0.92–0.94) 0.86 (0.80–0.91)
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model using 3D ResNet-18  architecture9. The Python code using the pre-trained deep CNNs is given in the 
supplementary document.

Table 7 depicts the performance metrics in terms of the F1 and AUC on the test set by the different models. 
It can be observed that the proposed wavelet-based radiomics feature model is capable of yielding satisfactory 
classification performances. It produced an F1 score of 0.80 (95%CI 0.73–0.86). This score is comparable to those 
yielded by the deep CNN-TL using GoogleNet and deep CNN using 3D ResNet-18 methods. In terms of AUC, 
the proposed wavelet radiomics-based model considerably enhances the performance and yields the highest 
AUC of 0.89 (95% CI 0.83–0.93), followed by the deep CNN using 3D-ResNet-18 model with an AUC of 0.87 
(95% CI 0.82–0.93), and deep CNN TL using GoogleNet with an AUC of 0.86 (95% CI 0.79–0.92). Figure 4 fur-
ther illustrates the AUCs yielded by the different classification methods. Compared with the deep CNN-based 
models, the proposed wavelet radiomics-based approach yields higher AUC metrics with statistical significance 
( p < 0.0001 ), as confirmed by both the t-test and DeLong’s test.

Conclusion
This paper presented an analysis of using radiomics features extracted from multiphase CT images to address 
the problem of classifying HCC and non-HCC liver lesions. Through the experimental results, analysis and com-
parisons, the following significant findings can be drawn from this study. First, combining the wavelet-derived 
texture features with the original CT image features significantly improves the discriminative capability between 
the HCC and non-HCC lesions. Second, the proposed logistic sparsity regression with Bayesian optimization 
is capable of selecting compact and relevant radiomics features for HCC and non-HCC representations. The 
proposed logistic sparsity-based model is the most suitable feature selector among the tested feature selection 
counterparts and yields higher performance metrics in terms of AUC. Third, in the limited training data cases, 
the proposed wavelet radiomics-based features approach is comparable if not outperforms several recent deep 
CNN-based models used for HCC and non-HCC classification.

Data availibility
The dataset generated and analyzed during this study is protected patient information. Some data may be avail-
able for research purposes from the corresponding author upon reasonable request.
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