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A depth iterative illumination 
estimation network for low‑light 
image enhancement based 
on retinex theory
Yongqiang Chen 1, Chenglin Wen 1,2*, Weifeng Liu 2,3 & Wei He 2,3

Existing low-light image enhancement techniques face challenges in achieving high visual quality 
and computational efficiency, as well as in effectively removing noise and adjusting illumination 
in extremely dark scenes. To address these problems, in this paper, we propose an illumination 
enhancement network based on Retinex theory for fast and accurate brightening of images in low-
illumination scenes. Two learning-based networks are carefully constructed: decomposition network 
and enhancement network. The decomposition network is responsible for decomposing the low-
light input image into the initial reflectance and illumination map. The enhanced network includes 
two sub-modules: the illumination enhancement module and the reflection denoising module, 
which are used for efficient brightness enhancement and accurate reflectance. Specially, we have 
established a cascaded iterative lighting learning process and utilized weight sharing to conduct 
accurate illumination estimation. Additionally, unsupervised training losses are defined to improve the 
generalization ability of the model. The proposed illumination enhancement framework enables noise 
suppression and detail preservation of the final decomposition results. To establish the efficacy and 
superiority of the model, on the widely applicable LOL dataset, our approach achieves a significant 
9.16% increase in PSNR compared to the classical Retinex-Net, and a remarkable enhancement of 
19.26% compared to the latest SCI method.

In recent times, the advancement of imaging technologies has allowed us to capture a plethora of visual infor-
mation even in challenging low-light conditions. However, these low-light images often suffer from diminished 
visibility, reduced contrast, and loss of crucial details. Such limitations can hinder various applications, including 
surveillance, photography, and autonomous systems.To address this issue, the field of low-light image enhance-
ment (LLIE) has emerged as a pivotal research domain, aiming to restore and enhance the perceptual quality of 
images captured under inadequate lighting conditions.

Presently, artificial intelligence has made remarkable strides in domains like image recognition1, object 
detection2, semantic segmentation3, and autonomous driving4. However, these advancements primarily pertain 
to well-lit daytime scenarios, with limited discourse on target recognition and detection techniques under chal-
lenging conditions such as low-light, insufficient exposure, and uneven illumination commonly encountered in 
nighttime settings. Due to the low brightness, poor contrast, and color distortion of images and videos captured 
at night, the effectiveness of visual systems such as object detection and recognition is seriously weakened. 
Enhancing the quality of images captured under low light conditions through LLIE can help improve the accu-
racy and effectiveness of many imaging-based systems. Therefore, LLIE is an essential technique in computer 
vision applications.

Currently, various methods have been proposed for LLIE, including histogram equalization, Non-local Means 
Filtering, Retinex-based methods, multi-exposure fusion, and deep learning-based methods, among others. 
Among them, LLIE methods based on Retinex theory have gained much attention due to their ability to simu-
late human visual color perception. According to Retinex theory5, an observed image I can be represented as:

(1)I = R⊗ L
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where R represents the reflection component, and L represents the illumination component. In this way, the 
LLIE problem can be formulated as the estimation of the illumination component L under low-light conditions. 
Recently, numerous approaches6–10 that integrate Retinex theory with deep learning have been proposed for 
enhancing low-light images. While these approaches have achieved remarkable progress, three main challenges 
impede their practical deployment in real-world scenarios. Firstly, most CNN-based methods require training 
examples with references, which means that both low-light and normal-light images of the same visual scene 
need to be captured simultaneously. However, this is an extremely challenging task, which limits the availability 
of such training examples. Moreover, deep learning methods face difficulties in dealing with extremely low-light 
conditions, which require specialized techniques to achieve good performance. Finally, low-light images often 
suffer from high levels of noise, making it difficult to enhance them effectively. Previous studies have typically 
focused on addressing one of these challenges, rather than all three simultaneously.

Our Contributions: To address the above-mentioned challenges, we propose a data-driven deep network for 
learning the decomposition and enhancement of low-light images. Specifically, two separate networks are used 
for decomposition and enhancement tasks. The decomposition network first separates the low-light image into 
reflection and illumination components. Aiming at the problem of many noise points in the reflection compo-
nent, the reflectance denoising module in the enhanced network is used for denoising. To address the problem 
of low brightness in the illumination component, an illumination enhancement module is introduced in the 
enhancement network, which estimates the illumination component from the low-light image in a hierarchical 
manner. Finally, the denoised reflection component and estimated illumination component are used for image 
reconstruction. Figure 1 illustrates the effectiveness of our proposed method in enhancing low-light images. Our 
approach enhances image brightness while preserving details, resulting in significant improvements compared 
to the original input image. Remarkably, some of the results are even superior to the ground truth images.

In summary, this paper makes the following main contributions:

•	 Based on the Retinex model, we propose a low-illumination image enhancement framework, which includes 
decomposition and enhancement networks corresponding to initialization, illumination map adjustment 
and reflection map optimization, respectively. Furthermore, the entire network is optimized with zero-shot 
learning instead of relying on supervised learning;

•	 We define unsupervised training losses to constrain the output of each stage, which enables our method to 
adapt to different scenes. Additionally, illumination learning with weight sharing is used to ensure conver-
gence between the results of each stage, improve exposure stability, and significantly reduce the computational 
burden;

•	 Our method outperforms existing techniques on benchmark datasets, achieving significant improvements in 
evaluation metrics such as MAE, PSNR, SSIM, LPIPS (reference) and NIQE (no-reference), demonstrating 
its superior efficiency.

The rest of this paper is as follows: “Related works” introduces the proposed network framework. “The proposed 
illumination estimated network” explains the unsupervised losses used in each component. “Experimental results 
and analysis” presents the evaluation of our method through subjective and objective assessments on multiple 
datasets. Finally, “Conclusion and future work” concludes and discusses future work.

Related works
LLIE plays an irreplaceable role in restoring intrinsic color and detail as well as compressing noise in low-light 
images. In the following, we provide a comprehensive review of previous work on low-light image enhancement, 
including both traditional and learning-based approaches.

Model‑based methods
Traditional methods for LLIE can be roughly categorized into several aspects, including Tone Mapping11, Gamma 
Correction (GC)12, Histogram Equalization (HE)13, and Retinex-based method14. Tone Mapping is used to create 
images with more details, color, and contrast, while maintaining a natural appearance. Although Tone Mapping 
can preserve details in images, linear mapping can result in information loss in the brightest and darkest areas. 
Gamma Correction performs nonlinear tone editing by editing the gamma curve of an image to detect dark 
and bright parts of the image signal. However, global parameters can cause local over-/under-exposure, and it 
is difficult to choose the value of global parameters. Rahman et al.15 proposed an adaptive Gamma Correction 
method which determines the intensity transfer function based on the statistical characteristics of the image.

Histogram equalization enhances image contrast by transforming the original image histogram into a uni-
form histogram, thereby expanding the dynamic range of the image. It is simple to implement and has a fast 
processing speed, but some local areas may not be enhanced, leading to poor performance for images with 
varying depths of field. Adaptive histogram equalization (AHE)16 is a method that has been proposed to map 
the histogram of local regions to a simple mathematical distribution. In contrast, Contrast-Limited Adaptive 
Histogram Equalization (CLAHE)17, which sets a threshold and assumes that if a pixel value in the histogram 
exceeds the threshold, the pixel is clipped, and the excess part above the threshold is uniformly distributed to 
every pixel. Similarly, Rahman et al.18 proposed the conversion of images from the RGB color space to the HUV 
color space. They introduced nonlinear functions to control brightness and contrast, effectively addressing the 
exposure issues in degraded images.

The Retinex theory is a computational theory that aims to model human visual perception of color constancy. 
Within this context, Dai et al.19 introduced a fractional-order fusion model derived from the Retinex theory. This 
model’s versatility extends to intricate low-light scenarios, where it proficiently heightens visual quality while 
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simultaneously preserving intricate image details. Notably, various algorithms dedicated to color constancy, such 
as single-scale Retinex (SSR)20, multi-scale Retinex (MSR)21, color restoration-based Retinex (MSRCR)22, and 
white balance methods23,24, have been proposed. They not only achieve color constancy, but most algorithms also 
allow for color enhancement and high dynamic range compression of images. However, there is still room for 
improvement in the visual color information processing mechanism and algorithm universality of these methods. 
In most cases, traditional model-based approaches rely heavily on manually designed prior or statistical models. 
When applied to different scenarios, their effectiveness may vary.

Deep learning‑based methods
In recent years, there has been a shift towards deep learning-based approaches in the research on low-light image 
enhancement. LLNet25 is a pioneering work by LLIE that performs contrast enhancement and denoising based on 
a depth autoencoder. However, the relationship between real-world illumination and noise is not touched, and 
thus residual noise and over-smoothing problems occur. Chen et al.6 proposed Retinex-Net, which decomposes 
the input image into a reflectance map and an illumination map, and enhances the illumination map for low-light 
enhancement using a deep neural network. Post-processing with BM3D is then used for denoising. Although 
Retinex-Net is effective in enhancing the brightness and detail features of the image, the image smoothing is 
poor and the color distortion is severe. Lv et al.26 proposed an end-to-end multi-branch enhancement network 
(MBLLEN) consisting of feature extraction, enhancement, and fusion modules to facilitate the performance of 
LLIE. Inspired by the field of super-resolution reconstruction, UTVNet27 and URetinex28 proposed an adaptive 
unfolding network to robustly denoise and enhance low-light images.

Recently, zero-shot learning based approaches have gained attention for their efficiency and economy, requir-
ing fewer images compared to traditional supervised learning-based approaches in LLIE. For example, Liu et al.29 
proposed a Retinex-based Unrolling with Architecture Search (RUAS) and designed a collaborative reference-free 
learning strategy to discover low-light prior architectures from a compact search space. Guo et al.30 proposed a 
Zero-DCE, which is implemented through an intuitive nonlinear curve mapping. Subsequently, they developed 
and demonstrated a faster and more lightweight network known as Zero-DCE++31. Zero-DCE relies on the use 
of multiple exposure training data and does not account for noise while being less effective for extreme cases of 
enhancement. Zhu et al.32 introduced RRDNet, a three-branch convolutional neural network for restoring under-
exposed images. RRDNet utilizes an iterative approach to decompose the input image into its constituent parts: 
illumination, reflectance, and noise. This is achieved by minimizing a customized loss function and adjusting the 
illumination map through gamma correction. The reconstructed reflectance and the adjusted illumination map 
are then multiplied element-wise to generate the enhanced output image. Ma et al.33 proposed a learning frame-
work called self-calibrating illumination (SCI) for fast and flexible enhancement in real-world low-illumination 
scene images. The method estimates a convergent illuminance map through the network, and based on Retinex 
theory, the input low-illuminance image is divided element by element with the estimated illuminance map to 
derive an enhanced reflectance map. Although SCI converges the illuminance map in iterations, it does not take 
into account the interference caused by the noise in it.

In summary, both learning-based and traditional methods have their limitations in the realm of image 
enhancement. Learning-based approaches often excel in adapting to complex data distributions but require 
substantial amounts of data and computational resources. Traditional methods might rely more on prior knowl-
edge and are constrained by their limited non-linear modeling capabilities. In practical applications, the selec-
tion of an appropriate method is crucial, dependent on the task’s nature and available resources. Future research 
might delve into strategies that fuse these two approaches to overcome their respective constraints and achieve 
enhanced image enhancement effects.

The proposed illumination estimated network
In the third section, we introduce our novel method for enhancing low-light images and present the detailed 
framework for LLIE.

As shown in Fig. 2, the proposed framework includes two networks, ie. decomposition network and enhance-
ment network. The decomposition module decomposes the input low-illumination image I into illumination 
map Llow and reflection map Rlow ; the illumination enhancement module estimates the appropriate illumination 
map L̂ by network iteration; the reflectance denoiseing module then denoises and fine-tunes the reflection map 
Rlow obtained from the decomposition module to obtain the estimated reflection map R̂ ; finally, according to 
the Retinex theory, the reflection map R̂ is multiplied element by element with the illumination map L̂ to obtain 
the enhancement result Îresult.

Decomposition module
The inspiration for our decomposition module comes from the Retinex theory, which decomposes an image I 
into its illumination component L and reflection component R. The reflection component R is a constant part 
determined by the inherent properties of the object, while the illumination component L is influenced by exter-
nal illumination and can be enhanced by removing the illumination influence or correcting the illumination 
component. The classic Retinex-Net proposed by Chen et al.6 introduces a large amount of random noise and 
color shifts when decomposing the input image, so it is crucial to choose an appropriate decomposition strategy 
for image enhancement.

To obtain more informative initial illumination and reflectance without introducing distortion, we pro-
pose a data-dependent decomposition module called Decom-Net. This module uses a fully convolutional net-
work to simultaneously learn Rlow and Llow in an adaptive manner. The Decom-Net module consists of three 
Conv+LeakyReLU layers and one convolutional layer followed by a ReLU layer, with a kernel size of 3× 3 for all 
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convolutional layers. The first three Conv+LeakyReLU layers capture low-level features while suppressing noise 
and extraneous information. The subsequent convolution and ReLU layers refine the decomposition results to 
produce the final illumination and reflection components. By incorporating the Decom-Net module, we aim to 
uncover coarse details in a data-dependent manner while minimizing distortion.

Illumination enhancement module
Our proposed Illumination Enhancement Module (IEM) is illustrated in Fig. 3, which uses a fully convolutional 
network to adaptively learn the illumination estimation map Lt and iteratively converge to obtain the estimated 
result Lt of the desired illumination map. It consists of two parts: an enhancement unit and a correction unit. 
The original low-light input image is added to the enhancement unit to obtain a rough illumination estimation 
map Lt , which is used as the input of the correction unit in the next stage; The input of the correction unit is 
composed of the illumination estimation map Lt obtained from the enhancement unit and the guidance map 

Figure 2.   The framework of the proposed model.

Figure 3.   Illustration of our proposed illumination enhancement module (IAM). The IAM consists of two 
units: enhancement unit (E) and correction unit (C). The IAM iteratively refines the illumination layer to obtain 
an estimated illumination map L̂.
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Gt , which are concatenated and sent into the correction unit through an attention mechanism. The output of 
the correction unit is denoted as St . The transformation input item obtained by adding the input image I with St 
is used as the input of the next stage enhancement unit and participates in the overall loop. It should be noted 
that both units share parameters throughout the entire training process, and an accurate illumination estimation 
map is obtained as the final result.

Enhancement unit
The enhancement unit consists of three parts: the starting layer Conv+ReLU, the middle layer 
Conv+BatchNorm+ReLU, and finally the Conv+Sigmoid layer. The convolutional kernel size is uniformly set 
to 3× 3 , and the dilatation rate is set to 1 so that it expands the perceptual field of the convolutional network 
without increasing the computational burden and improves the ability to extract features. the BatchNorm layer 
normalizes each channel to reduce the dependency between channels, and at the same time accelerates the con-
vergence of the network. The enhancement unit initially gets the estimated light component Lt in preparation 
for the next stage. The enhancement unit is denoted as:

Where L represents the illumination term and t-th stage ( t = 0, . . . ,T − 1 ) represents the different stages and 
each stage uses the same network architecture H and weight θ.

Correction unit
The correction unit is designed to ensure that the results of each stage converge to the same state. The input for 
each stage comes from the previous stage, with the first stage taking a low-light image I as input. To achieve con-
vergent, a correction image S is introduced and added to the low-light image, displaying the difference between 
each stage and the input of the first stage. This indirectly explores the convergence behavior between each stage, 
ensuring that the results are almost the same in all stages.

The correction unit is similar to the enhancement unit, consisting of five parts: the initial layer of Conv+ReLU, 
an attention block, followed by a layer of Conv+BatchNorm+ReLU, 3 stacked identical network structures com-
posed of Conv+BatchNorm+ReLU, and a final layer of Conv+Sigmoid to ensure the output is within the range 
of 0–1. The size of the convolution kernel is also set to 3× 3 , and the dilation rate is set to 1. First, the input I is 
divided element-wise by the illumination map Lt to obtain the guidance map Gt . Then, the input to the correc-
tion unit consists of the illumination estimation image Lt obtained from the enhancement unit and the guidance 
image Gt . However, the degree of distortion in the guidance image G is highly dependent on the brightness of 
the illumination layer L, with darker areas exhibiting more severe degradation. Therefore, these two inputs are 
concatenated and fed into the correction unit Kθ as input, guided by an attention mechanism34 to guide the 
recovery of the correction image S. Finally, the input It is added to the correction image St to obtain the converted 
term Vt , which is the input to the next stage of the enhancement unit.

The iterative convergence of illumination L is expressed as:

In the training phase, T is set to 3 to ensure that Lt tends to be consistent in the iteration. At the same time, to 
reduce the computational burden and improve the image processing speed, only one enhancement unit is selected 
in the test phase to obtain the enhanced illumination image L̂ from input I.

Reflectance denoising module
Due to factors such as the collection environment and equipment, low-light images often contain a large amount 
of noise in dark areas. Noise reduces image information and lowers image quality. At the same time, the reflec-
tion component reflects object features and contains a large amount of detailed information. To better process 
low-light images, it is necessary to achieve good noise reduction and detail preservation effects. As shown in 
Fig. 4, an improved Reflectance Denoising Module (RDM) is used to denoise the reflection component Rlow of 
the low-light image.

The RDM aims to solve the clear reflection component R. The initial reflection component Rlow containing 
noise obtained from the decomposition module is fine-tuned to obtain the denoised reflection component. It 
consists of a SE block, six Conv+ReLU layers, and one Conv layer. The convolution kernel size is uniformly set 
to 3× 3 across the entire convolutional layer, and the padding mode is set to replicate to prevent edge artifacts. 
By using a learnable denoising network G (R) in a similar way to DnCNN10, the degraded Rt can be transformed 
into a cleaner reflection map. Thus, the network used to perform the R update is represented as:

This module uses a residual learning strategy to remove the same part of the main part of the image so that the 
model focuses on learning small changes in the image, so that the network directly learns the residual image, 
that is, the difference between the noisy image and the clear image. This method helps the model to focus on 
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learning the noise in the image and indirectly obtain a clear image by subtracting the learned residual image 
from the noise image. The denoised reflectance and enhanced illumination are then combined into the final 
result through element-wise multiplication, which can be expressed as: Îresult = R̂⊗ L̂.

Figure 5 provides a detailed illustration of the results obtained by our method in different modules. Specifi-
cally, the reflectance map obtained by our Decom-Net module effectively preserves the original image details 
while suppressing noise. Meanwhile, the illumination map obtained by our illumination enhancement module 
(IEM) significantly improves contrast and retains more details.

Unsupervised loss function
In the training phase, the two subnets are trained separately, so the whole loss function consists of two parts: the 
decomposition loss LDc and the enhancement loss LEn . These loss functions are described in detail as follows.

Decom-Net Loss: To initialize the two components of low-light images, the loss function is designed as 
follows:

(6)LDc = �I − Rlow · Llow�1 + µ

∥

∥

∥

∥

Llow − max
c∈{R,G,B}

I(c)
∥

∥

∥

∥

2

F

Figure 4.   Illustration of our proposed reflectance denoising module (RDM).

Figure 5.   The decomposition results obtained by our method. The illumination map and reflectance map are 
obtained by the Decom-Net, the enhanced illumination map is obtained by IAM, and the denoised reflectance 
map is obtained by RDM.
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The expression ||·||1 represents the L1 norm, while µ = 0.1 is a hyperparameter, and c ∈ {R,G,B} refers to the 
RGB color channels. The first term of the loss function is intended to measure the reconstruction error, while 
the second term is devised to promote the preservation of the overall structure of the input image by the initial-
ized illumination.

Enhance-Net Loss: We utilize a combined loss function for both reflectance and illumination, comprising 
of several components, namely the fidelity loss, smooth loss, reflection consistency loss, and total variation loss.

The fidelity loss is a constraint that ensures the preservation of pixel-level consistency between the input of each 
stage and the estimated illumination, expressed mathematically as:

where T denotes the total number of stages.
Smooth loss: Mainly to measure the degree of smoothing between the enhanced image and the real image, 

to avoid the loss of the original image structure. Smooth loss is a type of regularization technique used in deep 
learning to encourage the model to produce smoother predictions by penalizing abrupt changes in the output. 
It is presented as:

Where N is the total number of pixels, i represents the i-th pixel, and N(i) represents the neighboring pixels of 
i in its 5x5 window. wi,j denote the weights, and the equation is of the form:

The symbol c represents the image channel in the YUV color space, while σ = 0.1 denotes the standard deviation 
of the Gaussian kernel.

Reflection consistency loss: To maintain the inherent characteristics of the image according to the Retinex 
theory, the reflection component should remain unchanged during image processing. To ensure this, the reflec-
tion consistency loss function is utilized in this paper, which constrains the consistency of the reflection between 
the input and output images. The function can be expressed as:

Total Variation loss: To suppress noise, we use total variation to further refine the image Rt . While the TV loss 
helps reduce noise, it may also cause a blur effect on the image structure. Thus, we set its weight to a lower value.

In the experiment, Empirically the four weights are set to 2 1 1 0.1.

Experimental results and analysis
In this part, we describe the experimental results and analysis in detail. First, we briefly introduce the parameter 
setting and comparison methods. Then, the qualitative and quantitative evaluation of paired and unpaired data 
sets is described. Finally, the experimental results are analyzed.

Experimental settings
In the following section, we provide detailed information on our parameter settings, comparison methods, and 
evaluation index.

For all experiments in this paper, we maintained a uniform configuration environment, which included 
an Ubuntu system with 32 GB RAM and an NVIDIA GeForce RTX3090 GPU. The network framework was 
constructed using PyTorch and optimized by ADMM with the following parameters: β1 = 0.9 , β2 = 0.99 , and 
ǫ = 0.95 . The batch size was set to 16, while the learning rate was set at 0.0003. Additionally, the training sample 
size was uniformly adjusted to 320 × 320, and we used 485 paired images randomly selected from the LOL dataset 
to train our model. The training epoch number was set to 1000.

To evaluate the performance of our proposed network on low-light image datasets, we conducted a visual 
analysis and compared it with other state-of-the-art methods and codes. The traditional methods including 
HE13 and Tone Mapping11, supervised methods such as Retinex-Net6, unsupervised methods including RUAS29, 
Zero-DCE30, SCI33, and RRDNet32 were used for comparison. We selected two paired data sets (LOL and LSRW) 

(7)LEn = ωfLf + ωsLsmooth + ωrcLrc + ωTVLTV

(8)Lf =

T
∑

t=1

∥

∥Lt −
(

I + St−1
)∥

∥

2

(9)Lsmooth =

N
∑

i=1

∑

j∈N(i)

wi,j

∣

∣

∣
Lti − Ltj

∣

∣

∣

(10)wi,j = exp






−

�

c

��

Ii,c + St−1
i,c

�

−
�

Ij,c + St−1
j,c

��2

2σ 2







(11)Lrc =

T
∑

t=1

∥

∥Rlow − Rt
∥

∥

2

(12)LTV =

T
∑

t=1

∥

∥∇
(

Rt · Lt
)∥

∥

1



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19709  | https://doi.org/10.1038/s41598-023-46693-w

www.nature.com/scientificreports/

and three unpaired data sets (LIME, MEF, and NPE) for verification experiments to test their performance in 
image enhancement.

For quantitative evaluation, we use mean absolute error(MAE), peak signal-to-noise ratio(PSNR), struc-
tural similarity index (SSIM)35, learned perceptual image patch similarity(LPIPS)36 and natural image quality 
evaluator(NIQE)37 as metrics. The following content provides the explicit definitions of these five evaluation 
metrics.

MAE: The MAE is calculated using the sum of the absolute values of the grayscale differences between the 
evaluation image and the original image at each point divided by the size of the image. The smaller the value 
indicates the smaller the deviation from the original image and the better the image quality.

M and N denote the number of pixel points in the length and width of the image, respectively, g(x, y)and ĝ(x, y) 
are the gray-scale values at the points of the original image and the image to be evaluated, respectively.

PSNR: PSNR is a widely used image quality metric that measures the difference between two images based 
on their pixel-level differences. It is a full-reference metric, which means that it requires a reference image to 
evaluate the quality of a distorted or compressed image. Mathematically, The PSNR formula can be expressed as:

where MSE is the mean square error between images and Imax is the maxi-mum pixel value of the two images. 
its definition is:

SSIM: SSIM is a useful metric for evaluating image quality in scenarios where a reference image is available and 
the perceptual features of the image are important. It is used to highlight differences in brightness, contrast, and 
structural similarity between two images. Its values range from 0 to 1, where values closer to 1 indicate a higher 
degree of similarity between the two images. Assuming x and y are two input images, the formula is:

where l(x, y) is the brightness comparison, c(x, y) is the contrast comparison, s(x, y) is the structure comparison. 
α , β , γ is greater than 0, is used to adjust the proportion of three parts. l(x, y), c(x, y) and s(x, y) are the following 
equations, respectively.

where µx and µy denote the mean of the two images, σx and σy denote the standard deviation of the two images, 
respectively. σxy denotes the covariance of the two images. c1 , c2 and c3 serve to avoid the denominator being zero.

LPIPS: LPIPS is a deep learning based image quality assessment metric. For LPIPS, we use an AlexNet-based 
model to calculate perceptual similarity. the lower the LPIPS value, the closer the result is to its corresponding 
ground truth in terms of perceptual similarity.

Given a ground truth image reference block x and a noise-containing image distortion block x0 , the perceptual 
similarity measure is formulated as follows:

where d is the distance between x and x0 . The feature stack ŷlhw and ŷl0hw are extracted from the L layer and unit-
normalized in the channel dimension. Using vectors wl to deflate the number of activated channels, the l2 distance 
is finally calculated. Finally, it is averaged over the space and summed over the channels.

NIQE: NIQE is a no-reference image quality metric that measures the perceptual quality of natural images. 
It is based on the hypothesis that natural images have certain statistical properties that are correlated with their 
perceptual quality. These properties include texture richness, edge sharpness, and colorfulness, among others. 
The NIQE index is calculated mainly by calculating the distance between the input image and the Multivariate 
Gaussian Model (MVG) of the natural image, and the lower the value of NIQE, the better the quality of the 
image. Mathematically, NIQE formula is :

where v1 , v2 , m1 and m2 represent the average vector and covariance matrix of the natural MVG model and the 
distorted image MVG model, respectively.
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By using diverse datasets and evaluating multiple metrics, we obtained a comprehensive evaluation of our 
algorithm’s performance in enhancing low-light images across various scenarios.

Subjective visual evaluation
Figures 6 and 7 show some representative results of visual comparison of various algorithms. Figures 6 and 7 
belong to the LOL and LSRW datasets, respectively. In Fig. 6, the enhanced results show that HE can significantly 
increase the brightness of low-light images. However, it applies contrast enhancement to each channel of RGB 
separately, causing color distortion. Retinex-Net significantly improves the visual quality of low-light images, 
but it overly smooths out details, enlarges noise, and even causes color deviation. Tone Mapping can stretch the 
dynamic range of the image, but it still has an insufficient enhancement for the grandstand seating section in the 
image. Although the image effect of RUAS is delicate and has no obvious noise interference, it does not success-
fully brighten the image in extremely dark areas (such as the central seat part). SCI and RRD-Net perform poorly 
in darker images and cannot effectively enhance low-light images. Zero-DCE can preserve the details of the 
image relatively completely, but the brightness enhancement is not obvious, and the color contrast of the image 
is significantly reduced. From Fig. 7, it can be seen that HE has obvious image distortion and color distortion; 
Retinex-Net amplifies inherent noise, losing image details; SCI, Zero-DCE, and RRD-Net have weak brightness 
enhancement capabilities; Tone Mapping, RUAS, and our method perform extremely well in brightness and color 
aspects. Compared to the Ground Truth, our approach not only significantly enhances image brightness but also 
effectively preserves the colors and intricate details of the images to a considerable extent, thereby effectively 
improving the overall image quality. This accomplishment can be attributed to the inherent mechanism of our 
model. Our model employs a multi-stage strategy to achieve brightness adjustment, enabling robustly estimat-
ing appropriate illumination map. Concurrently, we optimize the reflectance map to enhance image details and 
contrast. By thoughtfully integrating these two components, we ensure that the resulting enhanced images not 
only exhibit improved visibility but also faithfully reproduce the characteristics of the original scenes.

To comprehensively evaluate various algorithms, we also selected three unpaired benchmarks (LIME, MEF, 
NPE) for verification experiments. In Figs. 8, 9 and 10, we show the visual contrast effects produced by these 
cutting-edge methods under various benchmarks. From these enhancement results, it can be seen that HE 
greatly improves the contrast of the image, but there is also a significant color shift phenomenon. Retinex-Net 
introduces visually unsatisfactory artifacts and noise. Tone Mapping and RRD-Net can preserve image details, 
but the overall enhancement strength is not significant, and they fail to effectively enhance local dark areas. RUAS 
and SCI can effectively enhance low-contrast images, but during the enhancement process, they tend to exces-
sively enhance originally bright areas, such as the sky and clouds in Figs. 8, 9, and 10, which are replaced by an 
overly enhanced whitish tone. Among all the methods, Zero-DCE and our proposed method perform well on 
these three benchmarks, effectively enhancing image contrast while maintaining color balance and detail clarity.

Objective evaluation
In addition to the subjective visual evaluation, the effectiveness of the algorithms in this paper is illustrated using 
the recognition image quality metric used for quantitative comparison.

In this study, we have evaluated the proposed method and seven other representative methods on the LOL 
and LSRW paired datasets. The results have been summarized in Table 1, which shows the average MAE, PSNR, 
SSIM, and LPIPS scores for these two common datasets. In terms of evaluation metrics, higher PNSR and SSIM 
values indicate better image quality, whereas lower MAE, LPIPS and NIQE values suggest superior image qual-
ity. Observing the table, it can be inferred that no single method can achieve the best value for all image quality 
detection indicators. However, our method has outperformed the others in several areas. For instance, in the 
LOL dataset test, our method demonstrated the best performance in the PSNR index, with LPIPS ranking second 
among most methods. On the other hand, in the LSRW dataset test, our method was found to perform the best 
in all other indicators except for LPIPS.

In addition, we also evaluated these datasets using the non-reference image quality evaluator (NIQE), as 
shown in Table 2. Except for Zero-DCE, which had the best score on some datasets, our NIQE scores outper-
formed most of the other methods. Overall, Tables 1 and 2 provide stronger evidence for the effectiveness and 
applicability of our proposed method.

Conclusion and future work
We present a novel and effective method for solving the challenging problem of low-light images. Our approach 
involves using a decomposition network to obtain the illumination component map and reflection component 
map, followed by an enhancement network designed for reflectivity denoising and illumination enhancement. 
Specifically, we use RDM to denoise the reflection component, and IEM to enhance the detail and brightness of 
the illumination component of the low-illumination image in three iterations. Finally, we multiply the denoised 
reflection component and corrected illumination component elements for image reconstruction. Comparative 
experiments on multiple public paired/unpaired benchmarks demonstrate that our reconstructed image has 
uniform brightness, prominent details, small color distortion, and is true and natural from a subjective perspec-
tive. Additionally, it performs well when compared to objective evaluation indicators. However, our method still 
has some limitations. For images with non-uniform illumination, our method’s enhancement ability can become 
unbalanced, leading to potential color distortion and a subsequent loss of image integrity. This can result in the 
emergence of a halo phenomenon, further affecting the overall quality of the enhanced image. In future work, 
we plan to optimize the network structure and integrate the complete network into an end-to-end architecture.
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Figure 8.   Visual comparisons of different approaches on the LIME benchmark.



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19709  | https://doi.org/10.1038/s41598-023-46693-w

www.nature.com/scientificreports/

Figure 9.   Visual comparisons of different approaches on the MEF benchmark.

Figure 10.   Visual comparisons of different approaches on the NPE benchmark.
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Data availability
These data can be found here: LOL https://​daoos​hee.​github.​io/​BMVC2​018we​bsite/, LSRW https://​github.​com/​
Jiang​haiSCU/​R2RNet, LIME MEF and NPE https://​drive.​google.​com/​drive/​folde​rs/​1lp6m​5JE3k​f3M66​Dicbx​
5wSnv​hxt90​V4T.
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