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Immunogenic cell death (ICD) has been demonstrated to activate T cells to kill tumor cells, which

is closely related to tumor development, and long noncoding RNAs (IncRNAs) are also involved.
However, it is not known whether ICD-related IncRNAs are associated with the development of lung
adenocarcinoma (LUAD). We downloaded ICD-related genes from GeneCards and the transcriptome
statistics of LUAD patients from The Cancer Genome Atlas (TCGA) and subsequently developed

and verified a predictive model. A successful model was used together with other clinical features

to construct a nomogram for predicting patient survival. To further study the mechanism of tumor
action and to guide therapy, we performed enrichment analysis, tumor microenvironment analysis,
somatic mutation analysis, drug sensitivity analysis and real-time quantitative polymerase chain
reaction (RT-qPCR) analysis. Nine ICD-related IncRNAs with significant prognostic relevance were
selected for model construction. Survival analysis demonstrated that overall survival was substantially
shorter in the high-risk group than in the low-risk group (P <0.001). This model was predictive of
prognosis across all clinical subgroups. Cox regression analysis further supported the independent
prediction ability of the model. Ultimately, a nomogram depending on stage and risk score was
created and showed a better predictive performance than the nomogram without the risk score.
Through enrichment analysis, the enriched pathways in the high-risk group were found to be primarily
associated with metabolism and DNA replication. Tumor microenvironment analysis suggested that
the immune cell concentration was lower in the high-risk group. Somatic mutation analysis revealed
that the high-risk group contained more tumor mutations (P =0.00018). Tumor immune dysfunction
and exclusion scores exhibited greater sensitivity to immunotherapy in the high-risk group (P <0.001).
Drug sensitivity analysis suggested that the predictive model can also be applied to the choice of
chemotherapy drugs. RT-qPCR analysis also validated the accuracy of the constructed model based on
nine ICD-related IncRNAs. The prognostic model constructed based on the nine ICD-related IncRNAs
showed good application value in assessing prognosis and guiding clinical therapy.
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IRG

KEGG

K-M survival analysis
L

Immunogenic-cell-death related gene
Kyoto Encyclopedia of Genes and Genomes
Kaplan-Meier survival analysis

Low

LC Lung cancer

LncRNA Long non-coding RNA

LUAD Lung adenocarcinoma carcinoma

NES Normalized Enrichment Score

P Probability

PCA Principal component analysis

PID Pathway Interaction Database

RT-qPCR Real-time quantitative polymerase chain reaction
ROC analysis Time receiver-operating characteristic analysis
RS Risk score

Se (coef) Standard error (coefficient)

SNP Simple nucleotide variation

ssGSEA Single sample gene set enrichment analysis
TCGA The Cancer Genome Atlas

TIDE Tumor immune dysfunction and exclusion
TMB Tumor mutation burden

TNM Tumor node metastasis

Z Z scores (standard deviation)

Accounting for 21% of all cancer deaths globally, lung cancer (LC) has become the primary cause of mortality.
The most common subtype of LC is lung adenocarcinoma (LUAD), and the morbidity and mortality of LUAD
continue to increase yearly?. Tumor node metastasis (TNM) staging is frequently used to forecast clinical out-
comes, but the predictive effect is still unsatisfactory>*. Thus, it is imperative to build a better assessment measure
for predicting patient survival and guiding LUAD treatment. In recent years, the approach of constructing a
predictive model through a combination of several biomarkers and using it to assess tumor patient prognosis
has been widely used®~".

By activating T cells to produce direct impacts on tumor cell killing and antitumor immune responses,
immunogenic cell death (ICD) is an example of regulated cell death that can regulate the growth of tumors®.
Long noncoding RNAs (IncRNAs) can regulate tumor development by affecting tumor cell metabolism and cer-
tain oncogenic or carcinogenic factors; for example, cancer-associated fibroblast-specific IncRNA (LINC01614)
enhances glutamine uptake in LUAD, thereby promoting cancer cell growth’. A variety of models constructed
with IncRNAs to predict the prognosis and treatment options for various cancer types are now available and
have also shown good prognostic value>*!°. ICD-related IncRNA models have been developed to forecast the
development of high-grade gliomas (HGGs), head and neck squamous cell carcinoma (HNSC) and gastric cancer
(GC)M~B, but there remains a dearth of ICD-related biomarkers for evaluating LUAD prognosis.

In this study, we first used Pearson’s analysis to derive ICD-associated IncRNAs that play a role in LUAD, fol-
lowed by differential analysis, univariate and multivariate cox analysis, and lasso regression to finally screen nine
IncRNAs to construct a prognostic model. After the successful verification of this model, we created a nomogram
to estimate the survival time of patients with LUAD. Subsequently, we explored the likely mechanisms by which
ICD-associated IncRNAs act in LUAD and provided ideas for options for clinical treatment.

Materials and methods

Statistics source

We downloaded the transcriptome statistics for LUAD from The Cancer Genome Atlas (TCGA) (https://portal.
gdc.cancer.gov/, until October 29th, 2022), consisting of 59 normal samples and 526 tumor samples (585 sam-
ples), including FPKM data and count data. The count data were log2-transformed using the “limma” package!*.
Additionally, for further study, the survival information, clinical information, and simple nucleotide variation
(SNP) information for LUAD were retrieved from TCGA. The term “immunogenic cell death” was searched
in GeneCards (https://www.genecards.org/, until October 29th, 2022), and we selected 138 ICD-related genes
(IRGs) based on correlation scores > 35. All statistical analyses were carried out in accordance with R4.2.1.

Investigation of ICD-related IncRNAs with differential expression

Our method is displayed in a flowchart (Fig. 1). To identify ICD-related IncRNAs that are differentially expressed,
we isolated IncRNAs expressed in LUAD for Pearson analysis with IRGs, selected ICD-related IncRNAs based
on P <0.05 and |correlation coefficient| > 0.3, and then performed difference analysis with the criteria [log2Fold-
Change|>1 and P <0.05.

Constructing the model

All cases with normal or no survival details were removed, leaving a total of 477 tumor samples. At a random ratio
of 1:1, the 477 patients were divided into two groups, with 239 samples in the training subgroup and 238 samples
in the test subgroup. The training cohort was used for model construction. To identify ICD-associated IncRNAs
that play a major role in LUAD, we carried out univariate Cox analysis to identify ICD-related IncRNAs linked to
prognosis (P <0.05, HR > 1), followed by LASSO analysis to avoid overfitting. Then, we performed multivariate
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Figure 1. Flowchart.

Cox analysis to confirm the prognostic ICD-related IncRNAs to construct the model. RiskScore =EXP,,, * gene-
coefl + EXPye,, * genecoef2 + *++ + EXPyeye, * genecoefn.

Verifying the model’s feasibility

The test cohort and entire cohort were used for model validation, and employing the RiskScore algorithm, the
risk score for each individual was computed. Then, the median of each cohort was used to classify each cohort
into high- and low-risk groups. All three cohorts underwent Kaplan—Meier (K—M) analysis'?, receiver operating
characteristic (ROC) analysis'®, risk mapping, heatmapping to visualize expression, and principal component
analysis (PCA)' to assess the predictive effect and determine whether there was a discernible distinction in
life expectancy between the two risk groups. Stratified analysis can help us understand whether this prognostic
model is applicable to the entire population. To confirm whether the constructed model was an independent
predictor, we used age, gender, stage, T stage, N stage, and M stage together with the risk score and conducted
univariate and multivariate Cox analyses'®.

Structuring the nomogram
We investigated the link between the risk score and other clinical factors. To identify whether the risk score
has the potential to outperform other clinical indicators as an independent predictor, the predictive effect was
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compared based on the area under the ROC curve (AUC). Stage and risk score (P <0.001, HR > 1) were incor-
porated into a nomogram to predict survival rates at 1 year, 3 years, and 5 years'®. Two calibration curves were
made, one containing risk and stage and one without risk, and then, the fit of the two calibration curves was
compared. Decision curve analysis (DCA) was developed to evaluate whether a prognostic model that included
a risk score would increase clinical benefit?.

Gene set enrichment analysis (GSEA)

After dividing all samples into two risk groups, we used KEGG, BIOCARTA, PID, GO, REACTOME, and
WIKIPATHWAYS in GSEA4.3.2 software to derive different pathways enriched in the two risk groups using
P <0.05 and FDR <0.25 as criteria to help understand the different mechanisms of LUAD progression and to
provide guidance for treatment ideas?!.

Evaluation of the tumor immune microenvironment

The stromal cell and immune cell concentrations in the tumors were compared between the two risk groups
using the ESTIMATE method to determine whether there were any variations. Overall, 16 immune cell types
and 13 immune-associated regulatory mechanisms were included in the 29 immunological markers measured
and compared by single sample gene set enrichment analysis (ssGSEA) in the two risk groups using the “GSVA”
R package®. Finally, we constructed an immune-related heatmap. In timer 2.0 (http://timer.cistrome.org/, until
October 29th, 2022), the proportion of immune cells was determined using seven different methods: TIMER,
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, EPIC, and MCPCOUNTER. Additionally, scatter plots
were generated using the CIBERSORT method (P <0.05) to display the interactions between immune cells and
the risk score®.

Somatic cell mutation analysis

Simple nucleotide variation (SNP) data were downloaded from TCGA for LUAD. We utilized the “maftools”
package to determine the mutation status of individuals and to estimate the tumor mutation burden (TMB) score
for every individual. We then compared the TMB between the two risk groups®.

Clinical pharmacotherapy

Tumor immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.edu/, until October 29th, 2022) is
a method for simulating immunological escape of tumors and predicts sensitivity to PD1 drugs and CTLA4
drugs, and the probability of immune evasion is positively associated with the TIDE score?*. We applied the
“oncoPredict” R package to predict the susceptibility of LUAD patients to 198 chemotherapeutic agents and to
search for the most effective chemotherapeutic drugs for the two risk groups. We defined drugs with P <0.05
as sensitive drugs?.

Real-time quantitative polymerase chain reaction (RT-qPCR) for human lung adenocarcinoma
At the Second Affiliated Hospital of Nanchang University, we collected 18 lung adenocarcinoma tissues from
patients after surgical resection. The samples were quickly frozen and kept in liquid nitrogen at — 80 °C. Informed
consent was obtained from all participants, and the study was authorized by the ethics committee of the Second
Affiliated Hospital of Nanchang University.

All samples were divided into a high-risk group and a low-risk group. According to the manufacturer’s recom-
mendations, RNA was obtained from LUAD tissues using TRIzol reagent (Life Technologies CA, USA) and then
randomly assigned for RT-qPCR analysis. This was followed by reverse transcription using the SureScript First-
Strand cDNA Synthesis kit (GeneCopropol, Guangzhou, China) at 45 °C for 1 h. The Applied Biosystems 7500
Fast Real-Time PCR System and BlazeTaq SYBR Green qPCR Master Mix (GeneCopropol, Guangzhou, China)
were used to complete the RT-qPCR analysis (Applied Biosystems). To determine the level of RNA expression
in each sample, we employed 222 values.

In the Human Protein Atlas (HPA) (https://www.proteinatlas.org/, until January 20th, 2023), we analyzed
the variations in protein expression of selected ICD-related genes in normal tissues and LUAD tissues, which
provides some evidence for the role of ICDs in LUAD.

Ethics approval and consent

The current study investigated the publicly available data, and was also approved by the ethics committee of the
Second Affiliated Hospital of Nanchang University (Nanchang, China). All methods were carried out in accord-
ance with the Declaration of Helsinki.

Informed consent
Written informed consent was obtained from all participants included in the study.

Results

Identification of ICD-related IncRNAs significantly associated with prognosis

The 138 selected IRGs and 14,831 IncRNAs were analyzed by Pearson correlation analysis to obtain 9928 ICD-
related IncRNAs, after which differential analysis was performed to obtain 2679 differentially expressed IncR-
NAs (Fig. 2A). A total of 585 samples were included in our study (Table S1), and a total of 477 LUAD samples
with survival information were arbitrarily classified into a training set and a test set. (Table 1). The training
set was subjected to a univariate Cox analysis with P <0.05, resulting in 280 ICD-related IncRNAs correlated
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Figure 2. Screening of ICD-related IncRNAs for model construction. (A) The volcano plot of differential
analysis; (B) Correspondence between IRG and the nine ICD-related IncRNAs; (C,D) 14 ICD-related IncRNAs
were identified by lasso regression; (E) Correlation of nine ICD-related IncRNAs with prognosis in the construct
model.

with prognosis, of which 191 with hazard ratios (HRs) <1 were protective factors and 89 with HRs > 1 were
risk factors (Table S2). After performing LASSO regression analysis, we chose the most appropriate A value
to extract 14 ICD-related IncRNAs (Fig. 2C,D). Finally, we screened a total of 9 noncoexpressed ICD-related
IncRNAs (CTA.384D8.34, LINC00908, KIAA0125, LINC01117, RP11.488P3.1, RP11.114N19.3, RP11.14N7.2,
RP11.78A19.4 and RP11.102K13.5) using multivariate Cox analysis (Fig. 2E). Specific information on the 9 risk
ICD-related IncRNAs is shown in Table S3. We visualized the association of these 9 risk ICD-related IncRNAs
with IRGs (Fig. 2B).

Development of a prognostic model and internal validation

We constructed a prognostic model using 9 filtered ICD-related IncRNAs, and risk scores were determined for
every sample in the three cohorts. Risk score = Exp (CTA.384D8.34) x (—0.557615273) + Exp (LINC00908) x (—
0.716805923) + Exp (KIAA0125) x (—0.692196258) + Exp (LINC01117) x (0.967632641) + Exp (RP11.488P3.1
)% (0.374158171) + Exp (RP11.114N19.3) x (- 0.831794158) + Exp (RP11.14N7.2) x (0.501522434) + Exp (RP1
1.78A19.4) x (0.517470278) + Exp (RP11.102K13.5) x (0.460623178). The classification of the high-risk group
and low-risk group was performed utilizing the middle value for each cohort, as shown for the entire cohort
grouping in Table 2.

According to K—M analysis, in all three cohorts, the low-risk group had a longer life expectancy than the
high-risk group (P <0.001) (Fig. 3A-C). The reliability of estimating survival rates for 1 year, 3 years, and 5 years
was evaluated using the AUC values in time-ROC curves (training: 0.741, 0.783, 0.905; testing: 0.656, 0.634,
0.564; entire: 0.691, 0.702, 0.706) (Fig. 3D-F). Heatmap illustrating the expression of nine ICD-related IncRNAs
modeled among the three cohorts (Fig. 3G-I). People with the disease in the low-risk group had a better chance
of surviving than those in the high-risk group, according to risk plots for the three cohorts (Fig. SIA-F). PCA
was performed with all genes, all IncRNAs, all ICD-related IncRNAs, and risk ICD-related IncRNAs for model
construction, in which only risk ICD-related IncRNAs could separate the two risk groups better (Fig. S1G-]). A
clinical correlation heatmap revealed that the expression landscape of the nine risk ICD-related IncRNAs mod-
eled was not related to other clinical features (Fig. S2). In addition, K—M analysis showed that the constructed
model was fit to predict the prognosis for all LUAD patients (age < 65, age > 65; female, male; stage I-11, stage
III-1V; T1-T2, T3-T4; N0, N1-3; M0, M1) (Fig. S3).
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Entire
Train cohort | Test cohort | cohort
(n=239) (n=238) (n=477)
Feature n % n % n %
Status
Alive 151 |63.18 | 151 |63.45 |302 |63.31
Dead 88 |36.82 87 |36.55 | 175 | 36.69
Age
<=65 109 |45.61 | 121 |50.84 |230 |48.22
>65 130 | 54.39 | 117 |49.16 |247 |51.78
Gender
Female 118 |49.37 | 141 |59.24 |259 |54.30
Male 121 | 50.63 97 |40.76 | 218 |45.70
Stage
Stage I 122 |51.05 | 136 |57.14 |258 |54.09
Stage IT 68 |28.45 48 (2017 |116 |24.32
Stage IIT 37 |15.48 41 |17.23 78 |16.35
Stage IV 12 5.02 13 5.46 25 5.24
T stage
T1 74 | 30.96 89 |37.39 |163 |34.17
T2 133 | 55.65 | 118 |49.58 |251 |52.62
T3 23 9.62 20 8.40 43 9.01
T4 8 3.35 9 3.78 17 3.56
Unknown 1 0.42 2 0.84 3 0.63
M stage
MO 157 |65.69 | 159 |66.81 |316 |66.25
M1 11 4.60 13 5.46 24 5.03
Unknown 71 29.71 66 |27.73 | 137 |28.72
N stage
No 149 |62.34 | 160 |67.23 |309 |64.78
N1 55 [23.01 35 | 14.71 90 |18.87
N2 32 | 13.39 35 | 14.71 67 | 14.05
N3 0 0.00 2 0.84 2 0.42
Unknown 3 1.26 6 2.52 9 1.89

Table 1. Clinical information of 477 LUAD samples in the TCGA database. LUAD lung adenocarcinoma,
TCGA The Cancer Genome Atlas, T tumor, N node, M metastasis.

Constructing a nomogram and anticipating patient survival

Univariate (P <0.001, HR=1.631) and multivariate Cox analyses (P <0.001, HR=1.567) were performed
(Fig. 4A,B), and the risk score was shown to be an individual indicator to predict patient prognosis (Table S4).
In contrast to age and gender, we found that M stage (P=0.0021), T stage (P=0.01), and N stage (P=0.0011) were
considerably linked with the risk score (Fig. 4C-H). Then, we drew ROC curves and obtained AUC values (risk
score=0.727, stage=0.702, gender = 0.544, age =0.486), revealing that the risk score showed superior predictive
value over other clinical indicators (Fig. 5A). A nomogram was constructed on the basis of stage and risk, and
different patients could be scored by this system to allow prediction of rates of survival at 1 year, 3 years, and
5 years (Fig. 5B). Then, we chose a patient for successful validation (Fig. S4). Calibration curves with risk showed
that the prediction curve highly overlapped with the best prediction line of 45° (C-index=0.7291493), which had
a better fit than the nomogram without risk (C-index=0.6799758) (Fig. 5C,D). DCA indicated that the model
with the risk score had a better clinical benefit than the model without the risk score (Fig. 5E).

Functional analysis

We performed enrichment analysis using five different pathway libraries in GSEA, and the results were similar.
The high-risk group showed particular upregulation of pathways that are engaged in DNA replication and
metabolism. For example, in the KEGG database, cellular pathways such as DNA replication, cell cycle and citrate
cycle TCA cycle were significantly enriched in the high-risk group. In the low-risk group, the pathways that were
engaged in immunity and inflammation were particularly upregulated. For example, in the WP database, cellular
pathways such as the T-cell receptor signaling pathway, T-cell activation sarscov2 and Th17 cell differentiation
pathway were significantly enriched in the low-risk group (Fig. 6A-F).
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High-risk Low-risk
group group
(n=238) (n=239)
Feature n % n %
Status
Alive 124 | 52.10 | 178 | 74.48
Dead 114 | 47.90 61 |25.52
Age
<=65 123 | 51.68 | 107 | 44.77
>65 115 |4832 | 132 | 5523
Gender
Female 120 |50.42 | 139 |58.16
Male 118 |49.58 | 100 |41.84
Stage
Stage I 108 |45.38 | 150 |62.76
Stage II 66 |27.73 50 |20.92
Stage IIT 47 |19.75 31 | 1297
Stage IV 17 7.14 8 3.35
T stage
T1 70 |29.41 93 | 3891
T2 130 | 54.62 | 121 |50.63
T3 26 |10.92 17 7.11
T4 9 3.78 8 3.35
Unknown 3 1.26 0 | 0.00
M stage
MO 159 |66.81 | 157 | 65.69
M1 16 6.72 8 3.35
Unknown 63 |26.47 74 | 30.96
N stage
NO 137 |57.56 | 172 | 71.97
N1 54 |22.69 36 | 15.06
N2 42 | 17.65 25 | 10.46
N3 0 0.00 2 0.84
Unknown 5 | 210 4 1.67

Table 2. Clinical features of LUAD patients in two risk groups. LUAD lung adenocarcinoma.

Tumor immune microenvironment analysis

High-risk group members presented a relatively lower average stromal score (P =0.0081), a lower immune score
(P<0.001), and a lower ESTIMATE score (P <0.001) than low-risk group members (Fig. 7A-C). The low-risk
group presented a state of moderate activity and had more immune cells and immune functional pathways
(Fig. 7E,F). Tumor purity is the proportion of tumor cells to all cells in the sample. A lower estimate score
indicates a lower proportion of stromal and immune cells in the tumor and, conversely, a higher proportion of
tumor cells, and in the study, we can conclude that the high-risk group suffered from high tumor purity and low
immune-related marker expression (Fig. 7D). Higher concentrations of most immune cells corresponded to lower
risk scores based on seven different immune algorithms, in which the CIBERSORT algorithm resulted in P <0.05
immune cells (Fig. S5A). The majority of eosinophils, activated memory CD4 T cells, MO macrophages and M2
macrophages had a higher proportion in the high-risk group. The majority of memory B cells, plasma cells,
resting memory CD4 T cells and regulatory Tregs had a higher proportion in the low-risk group (Fig. S5B-I).

Somatic mutation analysis

We mapped the first 20 genes with the most frequent mutations in the two risk groups, and the most commonly
altered gene in both groups was TP53 (Fig. 8A,B). We found that the top 5 genes with the highest mutation
rates in the two risk groups were TP53, TTN, MUC16, CSMD3, and RYR2. Mutations in these five genes may
be closely related to LUAD progression. In comparison to the low-risk group, the TMB was substantially higher
in the high-risk group (P=0.00018), indicating that these patients may experience a worse result and respond
more favorably to immunotherapy (Fig. 8C).
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Figure 3. Internal validation of prognostic models. (A-C) Kaplan-Meier analysis; (D-F) Time-ROC curves;
(G-I) Heatmap of 9 risk-ICD-related IncRNAs expressions.

Immunotherapy and chemotherapy

The TIDE results showed notably lower scores in the high-risk group than in the low-risk group (P <0.001), sug-
gesting that the high-risk group was more amenable to immunological treatment (Fig. 8D). Eleven anticancer
medicines were effective in the high-risk group, primarily by blocking the EGFR and ERK-MAPK signaling
pathways (Table S5). The low-risk group was susceptible to 116 anticancer agents, mainly by inhibiting the PI3K/
mTOR signaling pathway and DNA replication (Table S6). In both groups, there were no differences in sensitivity
to 68 chemotherapeutic agents (Table S7).

Biological validation

The HPA database was used to compare the protein expression of ICD-related genes in normal tissues and LUAD
tissues by cellular immunohistochemical staining. The protein expression of the genes is shown in Fig. S6A. The
primer sequences of nine ICD-related IncRNAs modeled for RT-qPCR are shown in Table S8. The RT-qPCR
results showed that the nine ICD-related IncRNAs used to construct the model were differentially expressed in
the two risk groups, which was consistent with our study (Fig. S6B).

Discussion

One of the principal reasons for human mortality is cancer””. More than 350 deaths are caused by LC daily. LUAD
is the main type of LC, and its incidence remains high'. Traditional TNM staging still has significant limitations
for assessing patient prognosis and selecting treatment options*. New predictive tools need to be discovered?.
Selective induction of cancer cell death is the most effective way to fight cancer®. When tumor cells are stimulated
externally, the conversion of nonimmunogenicity to immunogenicity mediates the induction of ICD by the body
to generate an antitumor immune response®. The high-risk group showed active pathways that are associated with
DNA replication and metabolism. The immune system of patients in the high-risk group remained suppressed.
The comparatively high TMB and low TIDE scores in the high-risk group suggest that these patients might be
more susceptible to anti-PD1 and anti-CTLA4 treatments. The two risk groups had dissimilar susceptibilities
to distinct chemotherapeutic agents.
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Figure 4. Verify that risk score is an independent predictive indicator. (A) Univariate cox regression analysis;
(B) Multivariate cox regression analysis; (C-H) Correlation of different clinical characteristics with risk score,
including age, gender, stage, T, N, M.

The construction of prognostic models using ICD-related IncRNAs and the prediction of cancer patient
prognosis have been employed for a variety of tumor types, including HGGs, HNSC and GC''"**. Our findings
were consistent with these previous studies, with the high-risk group experiencing a poorer outcome and the
nomogram used to assess patient prognosis having a better predictive value, suggesting that prognostic features
constructed based on ICD-related IncRNAs are a good predictive tool for assessing patient prognosis. There-
fore, to construct a similar prognostic model, we identified nine ICD-related IncRNAs via Pearson analysis,
univariate Cox analysis, LASSO regression, and multivariate Cox analysis. To accurately forecast the survival
rate, we created a nomogram that was successfully validated. Our model has great scientific validity, and two
ICD-related IncRNAs affecting tumor mechanisms were investigated. Signal transducer and activator of tran-
scription is negatively regulated when LINC00908 is knocked down, encouraging the growth of tumors®. Based
on our constructed model, the high-risk group had low LINC00908 expression and a worse prognosis, consist-
ent with previous findings. KIAA0125 overexpression has also been shown to inhibit tumor cell proliferation,
metastasis and infiltration through Wnt/B-linked protein signaling®', which is consistent with our study, where
high KIAA0125 expression in the low-risk group inhibited tumor proliferation and metastasis, leading to a bet-
ter prognosis. Subsequently, we explored the molecular mechanisms involved in the progression of tumors by
enrichment analysis, and to understand the efficacy of immunotherapy in LUAD patients, we performed tumor
microenvironmental analysis, tumor mutation burden, and TIDE. Finally, we predicted the sensitivity of LUAD
patients to various chemotherapeutic agents, which provides a basis for the clinical search for appropriate drugs.

GSEA was conducted in the two risk groups to identify potential pathways, and immunological and inflam-
matory-associated pathways were notably enriched in the low-risk group, which indicated a close correlation
between the development of LUAD and immunity. A large percentage of neoplastic cells may be killed when
ICD is activated in the low-risk group, improving prognosis®. Pathways related to metabolism and DNA rep-
lication were more abundant in the high-risk group, among which the pentose phosphate pathway (PPP) not
only synthesizes pentose phosphate to provide nucleic acids as a raw material for cancer cell proliferation but
also generates nicotinamide adenine dinucleotide phosphate (NADPH), which is necessary for redox reactions
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Figure 7. Tumor immune microenvironment analysis. (A-C) Comparing the differences in stromal score,
immune score, and estimate score between two risk groups; (D) Differential infiltration of tumor immune
microenvironment in two risk groups; (E,F) Boxplot displaying the expression of 16 immune cells and 13
immune function pathways in two risk groups based on ssGSEA algorithm.

in the metabolism of various substances. Activation of the PPP allows cancer cells to metabolize nutrients and
actively proliferate, promoting tumor progression. Some tumor suppressors, such as TP53, are also associated
with PPP regulation, and in this study, we astonishingly observed that TP53 showed the highest mutation level
in the high-risk group. Moreover, TP53 deletion has been shown to reduce the ability of TP53 to prevent can-
cer cells from absorbing glucose, contributing to overactivation of the PPP and resulting in a poor outcome®.
The high-risk group is immunosuppressed, and the immunosuppressive state of most tumors can significantly
limit ICD-driven immunity to clear tumor cells. In addition, poor immune cell infiltration, including antigen-
presenting cells and their precursor cells, means that dead tumor cells are less likely to be effectively processed
and drive ICD, which leads to a poor prognosis®.

A higher TMB indicates a higher possibility of neoantigens and a higher immune reaction rate®. In the
high-risk group, the TMB was higher and the TIDE scores were lower. According to these findings, the high-risk
group seems to be more responsive to immunological therapies, including anti-PD1 and anti-CTLA4 agents. In
contrast, the TIDE scores remained higher in the low-risk group, indicating a higher likelihood of immunologi-
cal escape. Patients with early-stage lung cancer rely mainly on surgical resection, and in patients with advanced
lung adenocarcinoma, EGFR inhibitors usually have good benefits*. In our study, the high-risk group was found
to be sensitive to EGFR inhibitors, such as erlotinib, lapatinib, and gefitinib, which are already being used as the
principal treatments for LC.

We present the following innovative ideas in our study. First, we are the first to develop a prognostic model
using ICD-related IncRNAs to predict the outcome of patients with LUAD. Second, our risk model has a better
prediction effect than alternative clinical indicators. Moreover, we compared a nomogram constructed using only
the traditional stage to a nomogram that included the risk model and found that the latter had a better prediction
capacity. Third, we found that Lu et al. developed a pattern of necroptosis-related IncRNAs to predict overall
survival in LUAD?. We performed somatic mutation analysis, immunotherapy analysis, and drug sensitivity
analysis, which they did not perform. Furthermore, the AUC value of their constructed model (0.723) was smaller
than that of ours (0.727). Therefore, our model is more useful in assessing the prognosis of LUAD patients and
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Figure 8. Somatic mutation analysis and immunotherapy. (A,B) Top 20 genes with the highest mutation
frequency in tumor cells of the two risk groups; (C) Comparison of TMB between two risk groups; (D)
Comparison of TIDE scores between two risk groups.

selecting treatments. Although our results have good scientific validity, there are still shortcomings. First, we
only chose the TCGA database for the analysis, without external validation. Second, the specific mechanisms of
action of the ICD-related IncRNAs in LUAD investigated in our study are still not clear and need to be explored
in subsequent experiments. The advancement of interaction prediction research in various fields of computational
biology would provide valuable insights into genetic markers and related diseases, such as the NDALMA model
and GCNCRF model for predicting interactions between IncRNAs and miRNAs***, the GFPA model and the
scAAGA model for processing single-cell data’®??, the MDA-AENMF model and the GCNAT model for forecast-
ing potential relationships between metabolites and disease**!, and the DMFGAM model for developing related
drugs*. In follow-up studies, we can make predictions by developing or using similar models to investigate the
mechanism of action of IncRNAs in LUAD and the clinical development of related drugs. Third, this thesis only
considered the role of ICD in LUAD, but there are many other types of cell death within the cell. Similar to what
Li et al. found, whether our screened IncRNAs also bind to different substances (e.g., miRNAs, proteins) to drive
droplet assembly and mediate different types of cell death modes needs to be explored*>**. This may help us to
have a more in-depth understanding of disease mechanisms and therapeutic targets.

Conclusion

Based on 9 ICD-related IncRNAs, we developed a predictive model and a nomogram that has great value in
assessing prognosis and directing clinical therapy in LUAD patients. The presence of DNA replication and
metabolism-related pathways and an immunosuppressed state in the high-risk group likely results in a poorer
outcome. The risk model is also valuable in guiding the choice of antineoplastic agents for LUAD patients. The
RT-qPCR results also further confirmed the accuracy of this model. Due to the above shortcomings, this study
still requires basic research to further confirm the specific mechanisms, and the selection of clinically relevant
drugs must be verified through clinical practice.
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