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Prognostic value and immune 
landscapes of immunogenic cell 
death‑associated lncRNAs in lung 
adenocarcinoma
Kexin Shu 1,2, Chenxi Cai 1,2, Wanying Chen 1,2, Jiatong Ding 1,2, Zishun Guo 1, Yiping Wei 1* & 
Wenxiong Zhang 1*

Immunogenic cell death (ICD) has been demonstrated to activate T cells to kill tumor cells, which 
is closely related to tumor development, and long noncoding RNAs (lncRNAs) are also involved. 
However, it is not known whether ICD‑related lncRNAs are associated with the development of lung 
adenocarcinoma (LUAD). We downloaded ICD‑related genes from GeneCards and the transcriptome 
statistics of LUAD patients from The Cancer Genome Atlas (TCGA) and subsequently developed 
and verified a predictive model. A successful model was used together with other clinical features 
to construct a nomogram for predicting patient survival. To further study the mechanism of tumor 
action and to guide therapy, we performed enrichment analysis, tumor microenvironment analysis, 
somatic mutation analysis, drug sensitivity analysis and real‑time quantitative polymerase chain 
reaction (RT‑qPCR) analysis. Nine ICD‑related lncRNAs with significant prognostic relevance were 
selected for model construction. Survival analysis demonstrated that overall survival was substantially 
shorter in the high‑risk group than in the low‑risk group (P < 0.001). This model was predictive of 
prognosis across all clinical subgroups. Cox regression analysis further supported the independent 
prediction ability of the model. Ultimately, a nomogram depending on stage and risk score was 
created and showed a better predictive performance than the nomogram without the risk score. 
Through enrichment analysis, the enriched pathways in the high‑risk group were found to be primarily 
associated with metabolism and DNA replication. Tumor microenvironment analysis suggested that 
the immune cell concentration was lower in the high‑risk group. Somatic mutation analysis revealed 
that the high‑risk group contained more tumor mutations (P = 0.00018). Tumor immune dysfunction 
and exclusion scores exhibited greater sensitivity to immunotherapy in the high‑risk group (P < 0.001). 
Drug sensitivity analysis suggested that the predictive model can also be applied to the choice of 
chemotherapy drugs. RT‑qPCR analysis also validated the accuracy of the constructed model based on 
nine ICD‑related lncRNAs. The prognostic model constructed based on the nine ICD‑related lncRNAs 
showed good application value in assessing prognosis and guiding clinical therapy.
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IRG  Immunogenic-cell-death related gene
KEGG  Kyoto Encyclopedia of Genes and Genomes
K–M survival analysis  Kaplan–Meier survival analysis
L  Low
LC  Lung cancer
LncRNA  Long non-coding RNA
LUAD  Lung adenocarcinoma carcinoma
NES  Normalized Enrichment Score
P  Probability
PCA  Principal component analysis
PID  Pathway Interaction Database
RT-qPCR  Real-time quantitative polymerase chain reaction
ROC analysis  Time receiver-operating characteristic analysis
RS  Risk score
Se (coef)  Standard error (coefficient)
SNP  Simple nucleotide variation
ssGSEA  Single sample gene set enrichment analysis
TCGA   The Cancer Genome Atlas
TIDE  Tumor immune dysfunction and exclusion
TMB  Tumor mutation burden
TNM  Tumor node metastasis
Z  Z scores (standard deviation)

Accounting for 21% of all cancer deaths globally, lung cancer (LC) has become the primary cause of  mortality1. 
The most common subtype of LC is lung adenocarcinoma (LUAD), and the morbidity and mortality of LUAD 
continue to increase  yearly2. Tumor node metastasis (TNM) staging is frequently used to forecast clinical out-
comes, but the predictive effect is still  unsatisfactory3,4. Thus, it is imperative to build a better assessment measure 
for predicting patient survival and guiding LUAD treatment. In recent years, the approach of constructing a 
predictive model through a combination of several biomarkers and using it to assess tumor patient prognosis 
has been widely  used5–7.

By activating T cells to produce direct impacts on tumor cell killing and antitumor immune responses, 
immunogenic cell death (ICD) is an example of regulated cell death that can regulate the growth of  tumors8. 
Long noncoding RNAs (lncRNAs) can regulate tumor development by affecting tumor cell metabolism and cer-
tain oncogenic or carcinogenic factors; for example, cancer-associated fibroblast-specific lncRNA (LINC01614) 
enhances glutamine uptake in LUAD, thereby promoting cancer cell  growth9. A variety of models constructed 
with lncRNAs to predict the prognosis and treatment options for various cancer types are now available and 
have also shown good prognostic  value5,6,10. ICD-related lncRNA models have been developed to forecast the 
development of high-grade gliomas (HGGs), head and neck squamous cell carcinoma (HNSC) and gastric cancer 
(GC)11–13, but there remains a dearth of ICD-related biomarkers for evaluating LUAD prognosis.

In this study, we first used Pearson’s analysis to derive ICD-associated lncRNAs that play a role in LUAD, fol-
lowed by differential analysis, univariate and multivariate cox analysis, and lasso regression to finally screen nine 
lncRNAs to construct a prognostic model. After the successful verification of this model, we created a nomogram 
to estimate the survival time of patients with LUAD. Subsequently, we explored the likely mechanisms by which 
ICD-associated lncRNAs act in LUAD and provided ideas for options for clinical treatment.

Materials and methods
Statistics source
We downloaded the transcriptome statistics for LUAD from The Cancer Genome Atlas (TCGA) (https:// portal. 
gdc. cancer. gov/, until October 29th, 2022), consisting of 59 normal samples and 526 tumor samples (585 sam-
ples), including FPKM data and count data. The count data were log2-transformed using the “limma”  package14. 
Additionally, for further study, the survival information, clinical information, and simple nucleotide variation 
(SNP) information for LUAD were retrieved from TCGA. The term “immunogenic cell death” was searched 
in GeneCards (https:// www. genec ards. org/, until October 29th, 2022), and we selected 138 ICD-related genes 
(IRGs) based on correlation scores > 35. All statistical analyses were carried out in accordance with R4.2.1.

Investigation of ICD‑related lncRNAs with differential expression
Our method is displayed in a flowchart (Fig. 1). To identify ICD-related lncRNAs that are differentially expressed, 
we isolated lncRNAs expressed in LUAD for Pearson analysis with IRGs, selected ICD-related lncRNAs based 
on P < 0.05 and |correlation coefficient| > 0.3, and then performed difference analysis with the criteria |log2Fold-
Change| > 1 and P < 0.05.

Constructing the model
All cases with normal or no survival details were removed, leaving a total of 477 tumor samples. At a random ratio 
of 1:1, the 477 patients were divided into two groups, with 239 samples in the training subgroup and 238 samples 
in the test subgroup. The training cohort was used for model construction. To identify ICD-associated lncRNAs 
that play a major role in LUAD, we carried out univariate Cox analysis to identify ICD-related lncRNAs linked to 
prognosis (P < 0.05, HR > 1), followed by LASSO analysis to avoid overfitting. Then, we performed multivariate 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org/
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Cox analysis to confirm the prognostic ICD-related lncRNAs to construct the model. RiskScore =  EXPgene1 * gene-
coef1 +  EXPgene2 * genecoef2 +  ⋯ +  EXPgenen * genecoefn.

Verifying the model’s feasibility
The test cohort and entire cohort were used for model validation, and employing the RiskScore algorithm, the 
risk score for each individual was computed. Then, the median of each cohort was used to classify each cohort 
into high- and low-risk groups. All three cohorts underwent Kaplan‒Meier (K‒M)  analysis15, receiver operating 
characteristic (ROC)  analysis16, risk mapping, heatmapping to visualize expression, and principal component 
analysis (PCA)17 to assess the predictive effect and determine whether there was a discernible distinction in 
life expectancy between the two risk groups. Stratified analysis can help us understand whether this prognostic 
model is applicable to the entire population. To confirm whether the constructed model was an independent 
predictor, we used age, gender, stage, T stage, N stage, and M stage together with the risk score and conducted 
univariate and multivariate Cox  analyses18.

Structuring the nomogram
We investigated the link between the risk score and other clinical factors. To identify whether the risk score 
has the potential to outperform other clinical indicators as an independent predictor, the predictive effect was 

Figure 1.  Flowchart.
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compared based on the area under the ROC curve (AUC). Stage and risk score (P < 0.001, HR > 1) were incor-
porated into a nomogram to predict survival rates at 1 year, 3 years, and 5  years19. Two calibration curves were 
made, one containing risk and stage and one without risk, and then, the fit of the two calibration curves was 
compared. Decision curve analysis (DCA) was developed to evaluate whether a prognostic model that included 
a risk score would increase clinical  benefit20.

Gene set enrichment analysis (GSEA)
After dividing all samples into two risk groups, we used KEGG, BIOCARTA, PID, GO, REACTOME, and 
WIKIPATHWAYS in GSEA4.3.2 software to derive different pathways enriched in the two risk groups using 
P < 0.05 and FDR < 0.25 as criteria to help understand the different mechanisms of LUAD progression and to 
provide guidance for treatment  ideas21.

Evaluation of the tumor immune microenvironment
The stromal cell and immune cell concentrations in the tumors were compared between the two risk groups 
using the ESTIMATE method to determine whether there were any variations. Overall, 16 immune cell types 
and 13 immune-associated regulatory mechanisms were included in the 29 immunological markers measured 
and compared by single sample gene set enrichment analysis (ssGSEA) in the two risk groups using the “GSVA” 
R  package22. Finally, we constructed an immune-related heatmap. In timer 2.0 (http:// timer. cistr ome. org/, until 
October 29th, 2022), the proportion of immune cells was determined using seven different methods: TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, EPIC, and MCPCOUNTER. Additionally, scatter plots 
were generated using the CIBERSORT method (P < 0.05) to display the interactions between immune cells and 
the risk  score23.

Somatic cell mutation analysis
Simple nucleotide variation (SNP) data were downloaded from TCGA for LUAD. We utilized the “maftools” 
package to determine the mutation status of individuals and to estimate the tumor mutation burden (TMB) score 
for every individual. We then compared the TMB between the two risk  groups24.

Clinical pharmacotherapy
Tumor immune dysfunction and exclusion (TIDE) (http:// tide. dfci. harva rd. edu/, until October 29th, 2022) is 
a method for simulating immunological escape of tumors and predicts sensitivity to PD1 drugs and CTLA4 
drugs, and the probability of immune evasion is positively associated with the TIDE  score25. We applied the 
“oncoPredict” R package to predict the susceptibility of LUAD patients to 198 chemotherapeutic agents and to 
search for the most effective chemotherapeutic drugs for the two risk groups. We defined drugs with P < 0.05 
as sensitive  drugs26.

Real‑time quantitative polymerase chain reaction (RT‑qPCR) for human lung adenocarcinoma
At the Second Affiliated Hospital of Nanchang University, we collected 18 lung adenocarcinoma tissues from 
patients after surgical resection. The samples were quickly frozen and kept in liquid nitrogen at − 80 °C. Informed 
consent was obtained from all participants, and the study was authorized by the ethics committee of the Second 
Affiliated Hospital of Nanchang University.

All samples were divided into a high-risk group and a low-risk group. According to the manufacturer’s recom-
mendations, RNA was obtained from LUAD tissues using TRlzol reagent (Life Technologies CA, USA) and then 
randomly assigned for RT-qPCR analysis. This was followed by reverse transcription using the SureScript First-
Strand cDNA Synthesis kit (GeneCopropol, Guangzhou, China) at 45 °C for 1 h. The Applied Biosystems 7500 
Fast Real-Time PCR System and BlazeTaq SYBR Green qPCR Master Mix (GeneCopropol, Guangzhou, China) 
were used to complete the RT-qPCR analysis (Applied Biosystems). To determine the level of RNA expression 
in each sample, we employed  2ΔΔCt values.

In the Human Protein Atlas (HPA) (https:// www. prote inatl as. org/, until January 20th, 2023), we analyzed 
the variations in protein expression of selected ICD-related genes in normal tissues and LUAD tissues, which 
provides some evidence for the role of ICDs in LUAD.

Ethics approval and consent
The current study investigated the publicly available data, and was also approved by the ethics committee of the 
Second Affiliated Hospital of Nanchang University (Nanchang, China). All methods were carried out in accord-
ance with the Declaration of Helsinki.

Informed consent
Written informed consent was obtained from all participants included in the study.

Results
Identification of ICD‑related lncRNAs significantly associated with prognosis
The 138 selected IRGs and 14,831 lncRNAs were analyzed by Pearson correlation analysis to obtain 9928 ICD-
related lncRNAs, after which differential analysis was performed to obtain 2679 differentially expressed lncR-
NAs (Fig. 2A). A total of 585 samples were included in our study (Table S1), and a total of 477 LUAD samples 
with survival information were arbitrarily classified into a training set and a test set. (Table 1). The training 
set was subjected to a univariate Cox analysis with P < 0.05, resulting in 280 ICD-related lncRNAs correlated 

http://timer.cistrome.org/
http://tide.dfci.harvard.edu/
https://www.proteinatlas.org/
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with prognosis, of which 191 with hazard ratios (HRs) < 1 were protective factors and 89 with HRs > 1 were 
risk factors (Table S2). After performing LASSO regression analysis, we chose the most appropriate λ value 
to extract 14 ICD-related lncRNAs (Fig. 2C,D). Finally, we screened a total of 9 noncoexpressed ICD-related 
lncRNAs (CTA.384D8.34, LINC00908, KIAA0125, LINC01117, RP11.488P3.1, RP11.114N19.3, RP11.14N7.2, 
RP11.78A19.4 and RP11.102K13.5) using multivariate Cox analysis (Fig. 2E). Specific information on the 9 risk 
ICD-related lncRNAs is shown in Table S3. We visualized the association of these 9 risk ICD-related lncRNAs 
with IRGs (Fig. 2B).

Development of a prognostic model and internal validation
We constructed a prognostic model using 9 filtered ICD-related lncRNAs, and risk scores were determined for 
every sample in the three cohorts. Risk score = Exp (CTA.384D8.34) × (− 0.557615273) + Exp (LINC00908) × (− 
0.716805923) + Exp (KIAA0125) × (− 0.692196258) + Exp (LINC01117) × (0.967632641) + Exp (RP11.488P3.1
) × (0.374158171) + Exp (RP11.114N19.3) × (− 0.831794158) + Exp (RP11.14N7.2) × (0.501522434) + Exp (RP1
1.78A19.4) × (0.517470278) + Exp (RP11.102K13.5) × (0.460623178). The classification of the high-risk group 
and low-risk group was performed utilizing the middle value for each cohort, as shown for the entire cohort 
grouping in Table 2.

According to K‒M analysis, in all three cohorts, the low-risk group had a longer life expectancy than the 
high-risk group (P < 0.001) (Fig. 3A–C). The reliability of estimating survival rates for 1 year, 3 years, and 5 years 
was evaluated using the AUC values in time-ROC curves (training: 0.741, 0.783, 0.905; testing: 0.656, 0.634, 
0.564; entire: 0.691, 0.702, 0.706) (Fig. 3D–F). Heatmap illustrating the expression of nine ICD-related lncRNAs 
modeled among the three cohorts (Fig. 3G–I). People with the disease in the low-risk group had a better chance 
of surviving than those in the high-risk group, according to risk plots for the three cohorts (Fig. S1A–F). PCA 
was performed with all genes, all lncRNAs, all ICD-related lncRNAs, and risk ICD-related lncRNAs for model 
construction, in which only risk ICD-related lncRNAs could separate the two risk groups better (Fig. S1G–J). A 
clinical correlation heatmap revealed that the expression landscape of the nine risk ICD-related lncRNAs mod-
eled was not related to other clinical features (Fig. S2). In addition, K‒M analysis showed that the constructed 
model was fit to predict the prognosis for all LUAD patients (age ≤ 65, age > 65; female, male; stage I–II, stage 
III–IV; T1–T2, T3–T4; N0, N1–3; M0, M1) (Fig. S3).

Figure 2.  Screening of ICD-related lncRNAs for model construction. (A) The volcano plot of differential 
analysis; (B) Correspondence between IRG and the nine ICD-related lncRNAs; (C,D) 14 ICD-related lncRNAs 
were identified by lasso regression; (E) Correlation of nine ICD-related lncRNAs with prognosis in the construct 
model.
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Constructing a nomogram and anticipating patient survival
Univariate (P < 0.001, HR = 1.631) and multivariate Cox analyses (P < 0.001, HR = 1.567) were performed 
(Fig. 4A,B), and the risk score was shown to be an individual indicator to predict patient prognosis (Table S4). 
In contrast to age and gender, we found that M stage (P = 0.0021), T stage (P = 0.01), and N stage (P = 0.0011) were 
considerably linked with the risk score (Fig. 4C–H). Then, we drew ROC curves and obtained AUC values (risk 
score = 0.727, stage = 0.702, gender = 0.544, age = 0.486), revealing that the risk score showed superior predictive 
value over other clinical indicators (Fig. 5A). A nomogram was constructed on the basis of stage and risk, and 
different patients could be scored by this system to allow prediction of rates of survival at 1 year, 3 years, and 
5 years (Fig. 5B). Then, we chose a patient for successful validation (Fig. S4). Calibration curves with risk showed 
that the prediction curve highly overlapped with the best prediction line of 45° (C-index = 0.7291493), which had 
a better fit than the nomogram without risk (C-index = 0.6799758) (Fig. 5C,D). DCA indicated that the model 
with the risk score had a better clinical benefit than the model without the risk score (Fig. 5E).

Functional analysis
We performed enrichment analysis using five different pathway libraries in GSEA, and the results were similar. 
The high-risk group showed particular upregulation of pathways that are engaged in DNA replication and 
metabolism. For example, in the KEGG database, cellular pathways such as DNA replication, cell cycle and citrate 
cycle TCA cycle were significantly enriched in the high-risk group. In the low-risk group, the pathways that were 
engaged in immunity and inflammation were particularly upregulated. For example, in the WP database, cellular 
pathways such as the T-cell receptor signaling pathway, T-cell activation sarscov2 and Th17 cell differentiation 
pathway were significantly enriched in the low-risk group (Fig. 6A–F).

Table 1.  Clinical information of 477 LUAD samples in the TCGA database. LUAD lung adenocarcinoma, 
TCGA  The Cancer Genome Atlas, T tumor, N node, M metastasis.

Feature

Train cohort Test cohort
Entire 
cohort

(n = 239) (n = 238) (n = 477)

n % n % n %

Status

 Alive 151 63.18 151 63.45 302 63.31

 Dead 88 36.82 87 36.55 175 36.69

Age

 < = 65 109 45.61 121 50.84 230 48.22

 > 65 130 54.39 117 49.16 247 51.78

Gender

 Female 118 49.37 141 59.24 259 54.30

 Male 121 50.63 97 40.76 218 45.70

Stage

 Stage I 122 51.05 136 57.14 258 54.09

 Stage II 68 28.45 48 20.17 116 24.32

 Stage III 37 15.48 41 17.23 78 16.35

 Stage IV 12 5.02 13 5.46 25 5.24

T stage

 T1 74 30.96 89 37.39 163 34.17

 T2 133 55.65 118 49.58 251 52.62

 T3 23 9.62 20 8.40 43 9.01

 T4 8 3.35 9 3.78 17 3.56

 Unknown 1 0.42 2 0.84 3 0.63

M stage

 M0 157 65.69 159 66.81 316 66.25

 M1 11 4.60 13 5.46 24 5.03

 Unknown 71 29.71 66 27.73 137 28.72

N stage

 N0 149 62.34 160 67.23 309 64.78

 N1 55 23.01 35 14.71 90 18.87

 N2 32 13.39 35 14.71 67 14.05

 N3 0 0.00 2 0.84 2 0.42

 Unknown 3 1.26 6 2.52 9 1.89
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Tumor immune microenvironment analysis
High-risk group members presented a relatively lower average stromal score (P = 0.0081), a lower immune score 
(P < 0.001), and a lower ESTIMATE score (P < 0.001) than low-risk group members (Fig. 7A–C). The low-risk 
group presented a state of moderate activity and had more immune cells and immune functional pathways 
(Fig. 7E,F). Tumor purity is the proportion of tumor cells to all cells in the sample. A lower estimate score 
indicates a lower proportion of stromal and immune cells in the tumor and, conversely, a higher proportion of 
tumor cells, and in the study, we can conclude that the high-risk group suffered from high tumor purity and low 
immune-related marker expression (Fig. 7D). Higher concentrations of most immune cells corresponded to lower 
risk scores based on seven different immune algorithms, in which the CIBERSORT algorithm resulted in P < 0.05 
immune cells (Fig. S5A). The majority of eosinophils, activated memory CD4 T cells, M0 macrophages and M2 
macrophages had a higher proportion in the high-risk group. The majority of memory B cells, plasma cells, 
resting memory CD4 T cells and regulatory Tregs had a higher proportion in the low-risk group (Fig. S5B–I).

Somatic mutation analysis
We mapped the first 20 genes with the most frequent mutations in the two risk groups, and the most commonly 
altered gene in both groups was TP53 (Fig. 8A,B). We found that the top 5 genes with the highest mutation 
rates in the two risk groups were TP53, TTN, MUC16, CSMD3, and RYR2. Mutations in these five genes may 
be closely related to LUAD progression. In comparison to the low-risk group, the TMB was substantially higher 
in the high-risk group (P = 0.00018), indicating that these patients may experience a worse result and respond 
more favorably to immunotherapy (Fig. 8C).

Table 2.  Clinical features of LUAD patients in two risk groups. LUAD lung adenocarcinoma.

Feature

High-risk 
group

Low-risk 
group

(n = 238) (n = 239)

n % n %

Status

 Alive 124 52.10 178 74.48

 Dead 114 47.90 61 25.52

Age

 < = 65 123 51.68 107 44.77

 > 65 115 48.32 132 55.23

Gender

 Female 120 50.42 139 58.16

 Male 118 49.58 100 41.84

Stage

 Stage I 108 45.38 150 62.76

 Stage II 66 27.73 50 20.92

 Stage III 47 19.75 31 12.97

 Stage IV 17 7.14 8 3.35

T stage

 T1 70 29.41 93 38.91

 T2 130 54.62 121 50.63

 T3 26 10.92 17 7.11

 T4 9 3.78 8 3.35

 Unknown 3 1.26 0 0.00

M stage

 M0 159 66.81 157 65.69

 M1 16 6.72 8 3.35

 Unknown 63 26.47 74 30.96

N stage

 N0 137 57.56 172 71.97

 N1 54 22.69 36 15.06

 N2 42 17.65 25 10.46

 N3 0 0.00 2 0.84

 Unknown 5 2.10 4 1.67
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Immunotherapy and chemotherapy
The TIDE results showed notably lower scores in the high-risk group than in the low-risk group (P < 0.001), sug-
gesting that the high-risk group was more amenable to immunological treatment (Fig. 8D). Eleven anticancer 
medicines were effective in the high-risk group, primarily by blocking the EGFR and ERK-MAPK signaling 
pathways (Table S5). The low-risk group was susceptible to 116 anticancer agents, mainly by inhibiting the PI3K/
mTOR signaling pathway and DNA replication (Table S6). In both groups, there were no differences in sensitivity 
to 68 chemotherapeutic agents (Table S7).

Biological validation
The HPA database was used to compare the protein expression of ICD-related genes in normal tissues and LUAD 
tissues by cellular immunohistochemical staining. The protein expression of the genes is shown in Fig. S6A. The 
primer sequences of nine ICD-related lncRNAs modeled for RT-qPCR are shown in Table S8. The RT-qPCR 
results showed that the nine ICD-related lncRNAs used to construct the model were differentially expressed in 
the two risk groups, which was consistent with our study (Fig. S6B).

Discussion
One of the principal reasons for human mortality is  cancer27. More than 350 deaths are caused by LC daily. LUAD 
is the main type of LC, and its incidence remains  high1. Traditional TNM staging still has significant limitations 
for assessing patient prognosis and selecting treatment  options4. New predictive tools need to be  discovered28. 
Selective induction of cancer cell death is the most effective way to fight  cancer29. When tumor cells are stimulated 
externally, the conversion of nonimmunogenicity to immunogenicity mediates the induction of ICD by the body 
to generate an antitumor immune  response8. The high-risk group showed active pathways that are associated with 
DNA replication and metabolism. The immune system of patients in the high-risk group remained suppressed. 
The comparatively high TMB and low TIDE scores in the high-risk group suggest that these patients might be 
more susceptible to anti-PD1 and anti-CTLA4 treatments. The two risk groups had dissimilar susceptibilities 
to distinct chemotherapeutic agents.

Figure 3.  Internal validation of prognostic models. (A–C) Kaplan–Meier analysis; (D–F) Time-ROC curves; 
(G–I) Heatmap of 9 risk-ICD-related lncRNAs expressions.
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The construction of prognostic models using ICD-related lncRNAs and the prediction of cancer patient 
prognosis have been employed for a variety of tumor types, including HGGs, HNSC and  GC11–13. Our findings 
were consistent with these previous studies, with the high-risk group experiencing a poorer outcome and the 
nomogram used to assess patient prognosis having a better predictive value, suggesting that prognostic features 
constructed based on ICD-related lncRNAs are a good predictive tool for assessing patient prognosis. There-
fore, to construct a similar prognostic model, we identified nine ICD-related lncRNAs via Pearson analysis, 
univariate Cox analysis, LASSO regression, and multivariate Cox analysis. To accurately forecast the survival 
rate, we created a nomogram that was successfully validated. Our model has great scientific validity, and two 
ICD-related lncRNAs affecting tumor mechanisms were investigated. Signal transducer and activator of tran-
scription is negatively regulated when LINC00908 is knocked down, encouraging the growth of  tumors30. Based 
on our constructed model, the high-risk group had low LINC00908 expression and a worse prognosis, consist-
ent with previous findings. KIAA0125 overexpression has also been shown to inhibit tumor cell proliferation, 
metastasis and infiltration through Wnt/β-linked protein  signaling31, which is consistent with our study, where 
high KIAA0125 expression in the low-risk group inhibited tumor proliferation and metastasis, leading to a bet-
ter prognosis. Subsequently, we explored the molecular mechanisms involved in the progression of tumors by 
enrichment analysis, and to understand the efficacy of immunotherapy in LUAD patients, we performed tumor 
microenvironmental analysis, tumor mutation burden, and TIDE. Finally, we predicted the sensitivity of LUAD 
patients to various chemotherapeutic agents, which provides a basis for the clinical search for appropriate drugs.

GSEA was conducted in the two risk groups to identify potential pathways, and immunological and inflam-
matory-associated pathways were notably enriched in the low-risk group, which indicated a close correlation 
between the development of LUAD and immunity. A large percentage of neoplastic cells may be killed when 
ICD is activated in the low-risk group, improving  prognosis8. Pathways related to metabolism and DNA rep-
lication were more abundant in the high-risk group, among which the pentose phosphate pathway (PPP) not 
only synthesizes pentose phosphate to provide nucleic acids as a raw material for cancer cell proliferation but 
also generates nicotinamide adenine dinucleotide phosphate (NADPH), which is necessary for redox reactions 

Figure 4.  Verify that risk score is an independent predictive indicator. (A) Univariate cox regression analysis; 
(B) Multivariate cox regression analysis; (C–H) Correlation of different clinical characteristics with risk score, 
including age, gender, stage, T, N, M.
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Figure 5.  Constructing Nomogram and verifying its feasibility. (A) ROC curves based on different clinical 
factors; (B) Construct a nomogram to predict LUAD prognosis; (C) Calibration curve for nomogram with stage 
and risk score; (D) Calibration curve for nomogram without risk score; (E) Decision clinical curve.

Figure 6.  Enrichment analysis: (A) KEGG; (B) BIOCARTA; (C) PID; (D) GO; (E) REACTOME; (F) 
WIKIPATHWAYS.
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in the metabolism of various substances. Activation of the PPP allows cancer cells to metabolize nutrients and 
actively proliferate, promoting tumor progression. Some tumor suppressors, such as TP53, are also associated 
with PPP regulation, and in this study, we astonishingly observed that TP53 showed the highest mutation level 
in the high-risk group. Moreover, TP53 deletion has been shown to reduce the ability of TP53 to prevent can-
cer cells from absorbing glucose, contributing to overactivation of the PPP and resulting in a poor  outcome32. 
The high-risk group is immunosuppressed, and the immunosuppressive state of most tumors can significantly 
limit ICD-driven immunity to clear tumor cells. In addition, poor immune cell infiltration, including antigen-
presenting cells and their precursor cells, means that dead tumor cells are less likely to be effectively processed 
and drive ICD, which leads to a poor  prognosis8.

A higher TMB indicates a higher possibility of neoantigens and a higher immune reaction  rate33. In the 
high-risk group, the TMB was higher and the TIDE scores were lower. According to these findings, the high-risk 
group seems to be more responsive to immunological therapies, including anti-PD1 and anti-CTLA4 agents. In 
contrast, the TIDE scores remained higher in the low-risk group, indicating a higher likelihood of immunologi-
cal escape. Patients with early-stage lung cancer rely mainly on surgical resection, and in patients with advanced 
lung adenocarcinoma, EGFR inhibitors usually have good  benefits34. In our study, the high-risk group was found 
to be sensitive to EGFR inhibitors, such as erlotinib, lapatinib, and gefitinib, which are already being used as the 
principal treatments for LC.

We present the following innovative ideas in our study. First, we are the first to develop a prognostic model 
using ICD-related lncRNAs to predict the outcome of patients with LUAD. Second, our risk model has a better 
prediction effect than alternative clinical indicators. Moreover, we compared a nomogram constructed using only 
the traditional stage to a nomogram that included the risk model and found that the latter had a better prediction 
capacity. Third, we found that Lu et al. developed a pattern of necroptosis-related lncRNAs to predict overall 
survival in  LUAD35. We performed somatic mutation analysis, immunotherapy analysis, and drug sensitivity 
analysis, which they did not perform. Furthermore, the AUC value of their constructed model (0.723) was smaller 
than that of ours (0.727). Therefore, our model is more useful in assessing the prognosis of LUAD patients and 

Figure 7.  Tumor immune microenvironment analysis. (A–C) Comparing the differences in stromal score, 
immune score, and estimate score between two risk groups; (D) Differential infiltration of tumor immune 
microenvironment in two risk groups; (E,F) Boxplot displaying the expression of 16 immune cells and 13 
immune function pathways in two risk groups based on ssGSEA algorithm.
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selecting treatments. Although our results have good scientific validity, there are still shortcomings. First, we 
only chose the TCGA database for the analysis, without external validation. Second, the specific mechanisms of 
action of the ICD-related lncRNAs in LUAD investigated in our study are still not clear and need to be explored 
in subsequent experiments. The advancement of interaction prediction research in various fields of computational 
biology would provide valuable insights into genetic markers and related diseases, such as the NDALMA model 
and GCNCRF model for predicting interactions between lncRNAs and  miRNAs36,37, the GFPA model and the 
scAAGA model for processing single-cell  data38,39, the MDA-AENMF model and the GCNAT model for forecast-
ing potential relationships between metabolites and  disease40,41, and the DMFGAM model for developing related 
 drugs42. In follow-up studies, we can make predictions by developing or using similar models to investigate the 
mechanism of action of lncRNAs in LUAD and the clinical development of related drugs. Third, this thesis only 
considered the role of ICD in LUAD, but there are many other types of cell death within the cell. Similar to what 
Li et al. found, whether our screened lncRNAs also bind to different substances (e.g., miRNAs, proteins) to drive 
droplet assembly and mediate different types of cell death modes needs to be  explored43,44. This may help us to 
have a more in-depth understanding of disease mechanisms and therapeutic targets.

Conclusion
Based on 9 ICD-related lncRNAs, we developed a predictive model and a nomogram that has great value in 
assessing prognosis and directing clinical therapy in LUAD patients. The presence of DNA replication and 
metabolism-related pathways and an immunosuppressed state in the high-risk group likely results in a poorer 
outcome. The risk model is also valuable in guiding the choice of antineoplastic agents for LUAD patients. The 
RT-qPCR results also further confirmed the accuracy of this model. Due to the above shortcomings, this study 
still requires basic research to further confirm the specific mechanisms, and the selection of clinically relevant 
drugs must be verified through clinical practice.

Figure 8.  Somatic mutation analysis and immunotherapy. (A,B) Top 20 genes with the highest mutation 
frequency in tumor cells of the two risk groups; (C) Comparison of TMB between two risk groups; (D) 
Comparison of TIDE scores between two risk groups.
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Data availability
The data sets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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