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Verification labels for rovibronic 
quantum‑state energy 
uncertainties
Péter Árendás 1,2*, Tibor Furtenbacher 2,3 & Attila G. Császár 2,3

Transition wavenumbers contained in line-by-line rovibronic databases can be compromised by errors 
of various nature. When left undetected, these errors may result in incorrect quantum-state energies, 
potentially compromising a large number of derived spectroscopic data. Spectroscopic networks 
treat the complete set of line-by-line spectroscopic data as a large graph, and through a least-squares 
refinement the measured line positions are converted into empirical quantum-state energies. 
Spectroscopic networks also offer a highly useful framework to develop mathematical tools helping 
to identify possible errors and conflicts within the dataset. For example, wavenumber errors can be 
detected by checking for violations of the law of energy conservation. This paper describes a new 
graph-theory tool, which results in so-called verification labels for the quantum states. Verification 
labels help to express the vulnerability of a calculated empirical energy value and its uncertainty 
against possible wavenumber errors, providing complementary information to simple statistical 
uncertainties.

It is usual to represent the cumulative results of high-resolution spectroscopic studies of rovibronic transitions in 
the form of line lists1,2. Each assigned line of the list contains descriptive (quantum-number) information about 
the two quantum states the transition connects, along with additional physical quantities, such as wavenum-
ber (position of the center of the line), Einstein-A coefficients (transition intensity), lineshapes, temperature-
dependent self and foreign pressure broadenings and shifts, etc. Moreover, the physical quantities, most notably 
the wavenumber values, should also have accompanying uncertainty values in the line lists, as required both for 
measured and computed data3.

In the modern scientific era information about rovibronic lines has two principal sources: they come either 
from measurements or from first-principles computations. Some may say that rovibronic information can also 
come from effective Hamiltonian (EH) determinations; while this is true, EH parameters are considered here 
to be representations of measured data and not as sources of spectroscopic data. In this paper, we do not distin-
guish transitions based on their origin, everything discussed here applies to both experiment and theory. As a 
significant restriction, in what follows only wavenumber values and their uncertainties are discussed.

The most notable derived information from measured transitions are the energies of the quantum states. 
Using the transition wavenumbers and their uncertainties in a line list, one can calculate quantum-state energy 
values and a corresponding uncertainty. Assuming that the experimental information is correct and accurate, 
energies provide a compact representation of the measurements, complementing the traditional EH approach.

Unfortunately, it often happens that for some lines in the line list, the wavenumber value, its uncertainty, 
or both are incorrect. This can occur due to measurement errors, human mistakes, or various other reasons. 
These errors may be captured by appropriate mathematical tools during the analysis of part of or preferably the 
complete line list, but some errors might avoid detection. These incorrect values influence the calculated energy 
values and their uncertainties much beyond the local environment.

As a result, it is important to augment the uncertainties derived for the quantum state energies with additional 
information, providing extra, complementary verification of the numerical values. In this paper, verification labels 
are introduced to supplement the energy and uncertainty value pairs. The verification label of a quantum-state 
energy expresses the vulnerability of its uncertainty against possible wavenumber errors within the given line list.

The structure of this paper is as follows. The section “Theoretical background” presents the theoretical back-
ground, centered around spectroscopic networks (SN)4, a graph representation of a set, preferably a complete 
set, of spectroscopic data. This connection between spectroscopy and graph theory has already made possible 
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the creation of various mathematical tools aiding the detection, and subsequent correction, of data issues in 
high-resolution molecular spectroscopy5–11. The section “Verification of line lists” elaborates on the relation-
ship between the consistency and the correctness of line-by-line spectroscopic databases. The section “Labeling 
scheme” introduces a new labeling scheme. The verification label of quantum state X is based primarily on the 
verification metric, V(X), and secondarily on a graph property of X, both defined within this section. The sec-
tion “A practical example: the W2020 database of water transitions” demonstrates verification labeling on the 
example of the W2020 line-by-line spectroscopic database12 of the H 162  O molecule. The section “Conclusions” 
contains the conclusions of the paper.

Theoretical background
For convenience, Table 1 highlights the most important symbols and terms used in this section and the rest of 
the paper.

Correctness of wavenumber entries
Let us index the transitions of a line list L with i, and denote the ‘true’ transition wavenumber, that is the 
line center position, of the ith transition by wi . The unknown wi is estimated by the wavenumber value in 
the line list, denoted by ŵi . The wavenumber ŵi is reported together with a measurement uncertainty ui . Let 
Ŵi = (ŵi − ui , ŵi + ui) be the wavenumber interval of the ith transition. The wavenumber interval should include 
the wi value with a probability of at least 95% , in other words, P(wi ∈ Ŵi) ≥ 0.95 . This is in accordance with the 
convention to report uncertainties with a 2σ uncertainty, where σ denotes the standard deviation. Let us call a 
wavenumber interval Ŵi for which wi /∈ Ŵi an incorrect wavenumber interval.

Since the wi values are not known, it is not straightforward to ascertain whether Ŵi is correct or not. However, 
one could take external information related to Ŵi into consideration and come up with a decision whether to 
consider Ŵi correct or incorrect.

A trivial example for an incorrect wavenumber interval Ŵi is when ŵi + ui < 0 , as wavenumber values must 
be positive reals. Spectroscopic information systems, for example, those based on the MARVEL (Measured 
Active Rotational Vibrational Energy Levels) technique13–15, use several advanced supporting methods to assess 
the correctness of the wavenumber intervals of a line list.

Some of these methods are based on the graph representation of high-resolution rovibronic spectroscopic 
data, called a spectroscopic network16. The new labeling introduced in this paper also relies on this representa-
tion. Thus, let us continue by covering the required theory about spectroscopic networks.

Spectroscopic networks
Spectroscopic networks offer a highly useful representation of line-by-line spectroscopic data, especially when 
they come from a large number of sources of different origin and of different accuracy. The spectroscopic net-
work of a molecule is a graph G(V, E), in which the vertex set V represents the rovibronic quantum states of the 
molecule, and the edge set E corresponds to allowed transitions between the quantum states. Certain physical 
quantities can be utilized as weight functions; most notably, quantum state energies as vertex weights, and tran-
sition intensities and wavenumbers as edge weights. The term ‘spectroscopic network’ is not an exact definition 
of a graph: it has to be specified, based on the given application, which weights to use, or, for example, whether 
it is defined to be a directed or an undirected graph.

Figure 1 depicts a small SN which has only four quantum states and four transitions among the states. The 
blue numbers, outside of the graph, represent transition wavenumbers, while the red numbers, inside of the 
graph, are the respective transition uncertainties, both in units of cm−1 . We will continue referring to Fig. 1 as 
more definitions and SN properties are introduced.

The size of a SN depends on the underlying spectroscopic data set. While one can construct a network with 
only a few quantum states and a few transitions among them, like in Fig. 1, usual applications of SNs are char-
acterized by inputs of large size. For example, the H 216 O line list in the HITRAN spectroscopic information 
system1 has 319,887 lines (transitions) that span 14,130 quantum states. Therefore, one of the main challenges of 
designing graph algorithms for application in spectroscopy comes from the sheer number of vertices and edges. 

Table 1.   Symbols and terms used in “Theoretical background” section.

wi ‘True’ transition wavenumber value (unknown)

ŵi A wavenumber value in a line list, approximating wi

ui The uncertainty value of ŵi in the line list

Ŵi The wavenumber interval ŵi ± ui

w
′
i A wavenumber value based on all Ŵi intervals of the line list. They are selected to yield zero-sum cycles

W
′ The set of the w′

i
 values of a line list

u
′
i

Uncertainty value, based on ui , subject to increase to achieve consistency of the line list

E(X) Energy value of quantum state X

U(X) Uncertainty of quantum state X

PX The set of the edges of the shortest path from the root to X using the u′
i
 edge weights
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For example, in practice, it is not recommended to use the adjacency matrix representation of SNs. Adjacency 
matrixes have size of |V | × |V | , where the large |V| values involved in the typical calculations make even storing 
the matrix challenging, if not impossible. It is advised to use the adjacency list representation instead, that is 
storing the neighbours of each vertex in a list, yielding a much smaller-sized data structure.

Spectroscopic networks can be defined either as directed or undirected graphs. In the directed case, edges 
are directed from the lower-energy quantum state of the transition towards the higher-energy quantum state 
(the transition occurs in absorption). In Fig. 1, for example, the directed edge eAB from A to B corresponds to a 
transition from the lower-energy quantum state A to the higher-energy quantum state B. The quantum state of 
the molecule that is defined to have the zero energy value is the root of the spectroscopic network.

A line list may contain multiple lines of the same transition; for example, if multiple measurements are avail-
able. These are represented by parallel edges in the SN.

For a graph G(V, E), a path P ⊆ E of length k − 1 is an edge set {e1, e2, ..., ek−1} ⊆ E for which there exists a 
vertex set {v1, ..., vk} ⊆ V  such that for 1 ≤ i ≤ k the endpoints of ei are vi and vi+1 . In this paper, the direction 
of the edges in a path is defined to be irrelevant; in Fig. 1, there are two paths from A to D: one is {eAD} and the 
other is {eAB, eBC , eDC} . If edge weights are considered, then a shortest path between two vertices is the edge set 
with the smallest sum of their weights. For example, the shortest path in Fig. 1 between vertices A and C, using 
the uncertainties as weights, is A → B → C , with a weight sum of 0.001 1.

A cycle C ⊆ E is a path if v1 = vk and k > 2 . If the edge ei does not participate in any cycles in the graph, then 
it is called a bridge9.

A graph is 2-edge-connected if there exists at least two edge-disjoint paths between any two of its vertices (i.e., 
at least two paths such that there is no edge that appears in both paths). For a graph G(V, E) with a root vertex, 
let us denote the maximal 2-edge-connected subgraph that contains the root by G′(V ′,E′) . Note that V ′ ⊆ V  , 
E′ ⊆ E , the edge set E′ does not contain any bridges, and any edge in E′ participates in at least one cycle in G′.

Almost without exception, SNs based on experimental data are bipartite graphs, a result of the standard 
rovibronic selection rules governing transitions among the quantum states5. According to this, the number of 
edges of any cycle of the SN must be even. More explicitly, the smallest cycle in a spectroscopic network formed 
by dipole-allowed one-photon transitions has four edges (explaining the choice for Fig. 1).

Law of energy conservation
An important property of a directed spectroscopic network is that the sum of the wi wavenumbers along each 
cycle of the graph, with the weights that are travelled backwards counted as negative, is equal to zero. This prop-
erty of the cycles of SNs is guaranteed by the quantum nature of the transitions, embodied in the law of energy 
conservation8,11.

Recall that in a line list we do not have the unknown wi values, only the Ŵi wavenumber intervals, and the 
wavenumber interval is incorrect when wi /∈ Ŵi . Thus, the use of the law of energy conservation in this envi-
ronment is as follows: one should be able to select a wavenumber from each Ŵi interval such that using these 
wavenumbers, the aforementioned sum along all cycles is zero. If such a wavenumber selection is not possible, 
then the line list contains at least one incorrect wavenumber. The reverse, however, is not true: even if such a 
wavenumber selection exists, there could be still incorrect wavenumbers present in the line list.

The law of energy conservation plays a pivotal role in investigations revealing incorrect wavenumber intervals 
in a line list. It allows to compare wavenumber intervals of multiple lines to each other, providing an excellent 
external information source for deciding about the correctness of a wavenumber interval.

To formalize this concept, let a wavenumber selection function, f (L) = W ′ , where L is a line list, define a 
set of wavenumbers W ′ = {w′

1,w
′
2, ...} for all edges of the spectroscopic network such that for all cycles in the 

graph, using the w′
i wavenumbers as edge weights, and with the weights that are travelled backwards counted as 

negative, is equal to zero. Additionally, for any wavenumber selection function, W ′ , it is required that w′
i = w′

j if 

Figure 1.   Example of a small spectroscopic network (SN), with four quantum states, A, B, C, and D, and four 
transitions between the states. The blue (outside) numbers represent transition wavenumbers, while the red 
(inside) numbers represent the corresponding transition uncertainties. As usual in rovibrational spectroscopy, 
the unit is cm−1.
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ei and ej are parallel edges (i.e., their endpoints are the same). Note that the variable of the function f is not the 
set of all Ŵi wavenumber intervals in the line list but the line list itself; this definition allows the use of any kind 
of information contained in the line list in the selection of the w′

i values.
If there exists a wavenumber selection W ′ such that ∀w′

i ∈ W ′ : w′
i ∈ Ŵi , that is, if all selected wavenumbers 

lie in their corresponding wavenumber intervals, both the wavenumber selection and the line list are called con-
sistent. Otherwise, if for a line list no consistent wavenumber selection exists, the line list is called inconsistent.

There is a consistent underlying line list behind Fig. 1, Table 2 proves this by showing a particular wavenumber 
selection. Note that if a line list is consistent, then practically there is an infinite number of consistent wavenum-
ber selections. Therefore, additional preferences must be taken into consideration when selecting wavenumber 
values. Within the usual, time-proven MARVEL protocol14,15, for example, the w′

i wavenumbers are determined 
by minimizing 

∑

i |
w′
i−ŵi

ui
|2.

The verification labeling method introduced in this paper requires a consistent line list as its input. Therefore, 
although the method is demonstrated on a MARVEL-based spectroscopic data set, we disregard how the data 
was processed by MARVEL, and how the exact MARVEL energies were calculated.

Calculation of the energy values
Hereafter, let us consider the set {(w′

1, u
′
1), (w

′
2, u

′
2), ...} . This set does not contain any parallel edges, and the u′i 

uncertainties are either the original ui uncertainties, or some of them might have been increased to make the 
line list consistent.

If we have a wavenumber selection W ′ , then the sum of the wavenumbers w′
i on the edges ei of a path from 

the root to another vertex X, with wavenumbers of edges travelled in the reverse direction counted as negative, 
gives the estimation for the energy value E(X). Note that E(X) is a function of the quantum state X; not to be 
confused with E, that is without any variables, which denotes an edge set. The estimated energy value does not 
depend on the path: any path from the root to X gives the same energy value for E(X).

Similar to the uncertainties of the wavenumbers, the calculated quantum-state energies also need to be aug-
mented with well-defined uncertainties. Let PX ⊆ E be the shortest path from the root to quantum state X using 
the u′i uncertainties as edge weights. Let us define the uncertainty of the energy value of X as

Utilizing the wavenumber selection of Tables 2 and 3 shows the energy values and the corresponding uncer-
tainties for the SN of Fig. 1, where the root quantum state is vertex A. Note that the energy value estimation 
depends on the w′

i values, but the uncertainties are independent of them.

Verification of line lists
Consistency does not imply correctness
If a line list is consistent, one might, albeit mistakenly, assume that it implies that all wavenumber intervals in 
the line list are correct. This is not true. Let us demonstrate in a simple example that consistency does not imply 
correctness.

The line list corresponding to Fig. 1 has already been shown to be consistent. There, the wavenumber of the 
A → B transition is ŵAB = 10.000 0 , with an uncertainty of uAB = 0.000 1 . If we assume that they form a correct 
wavenumber interval, we have wAB ∈ (10± 0.000 1).

(1)U(X) =
∑

∀i:ei∈PX

u′i .

Table 2.   A wavenumber selection, proving the consistency of the underlying line list of the spectroscopic 
network of Fig. 1. Note that in each row ui ≥ |ŵi − w

′
i
| . Similar to Fig. 1, the unit is cm−1.

edge ŵi ui w
′
i
    |ŵi − w

′
i
|

A → B 10.000 0 0.000 1 10.000 0 0

B → C 8.000 0.001 8.000   0

A → D 15.000 0 0.005 15.000 0 0

D → C 3.001 0 0.01 3.000 0 0.001

Table 3.   Energy values and uncertainties for Fig. 1, based on the wavenumber selection of Table 2 and 
assuming the role of the root quantum state for vertex A. Similar to Fig. 1, the unit is cm−1.

X Shortest uncertainty path E(X) U(X)

A (root) – 0 0

B A → B 10.000 0 0.000 1

C A → B → C 18.000 0 0.001 1

D A → D 15.000 0 0.005
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Let us denote the line list of Fig. 1 by Lorig . Let Lmod be the line list we obtain from Lorig after changing a wave-
number value: let ŵAB = 10.01 . Observe that we have increased the original ŵAB value by a number that is much 
larger than the corresponding uncertainty: 0.01 > uAB . However, and this is the source of a lot of problems, the 
modified line list is still consistent, as proven by the wavenumber selection in Table 4. We obtain a contradiction 
if we assume that the wavenumber intervals of the consistent Lmod line list are also correct: wAB ∈ (10± 0.000 1) 
and wAB ∈ (10.01± 0.000 1) cannot be true simultaneously.

Moreover, as illustrated in Table 5, this error propagates to the energy values. Most notably, observe that 
the uncertainty of B is U(B) = 0.000 1 , but the difference between the energy value of B in the two cases is two 
orders of magnitude larger.

This artificial increase of ŵAB is similar to the typical wavenumber error that originates in measurement errors 
or human typing mistakes. Therefore, it is necessary to develop a mathematical tool that helps to detect, assess, 
and handle this phenomenon in line-by-line spectroscopic datasets.

Wavenumber error detection
Can we increase or decrease wavenumber values of a consistent line list arbitrarily without losing consistency? 
Fortunately, for transitions that take part in at least one cycle, the law of energy conservation does provide 
a bound. To illustrate this, note that we cannot increase ŵAB , for example, by 100 (i.e., one hundred cm−1 ): 
ŵAB = 110.000 would make it impossible to select wavenumber values from the four wavenumber intervals to 
obtain the zero sum along the cycle.

Therefore, as the law of energy conservation interconnects the transitions of the line list based on cycles, one 
can use this to predict the maximum artificial increase for each line that does not violate this law. Unfortunately, 
this cannot be applied for the bridges of the spectroscopic network: here, ŵi can be increased by any positive real 
number without breaking consistency.

The d
i
 threshold of transitions

First, let us discuss wavenumber errors. For this, let us define the threshold of the ith transition ei , denoted by di , 
to be the greatest number for which the line list {(w′

1, u
′
1), ..., (w

′
i ± (u′i + di), u

′
i), ...(w

′
m, u

′
m)} is consistent. Since 

consistency is based on cycles, let us restrict this definition to the non-bridge edges of the SN.
The di values can be calculated deterministically with arbitrary accuracy, though with an enormous calcula-

tion runtime, by running the wavenumber selection over and over, varying the di candidate values. As this route 
is unfeasible, let us define a d̂i upper bound for each di as follows:

for which {(0, u′1), ..., (u
′
i + x, u′i), ...(0, u

′
m)} is consistent.

Observe that d̂i ≥ di by definition. For the the ith transition in the line list, its d̂i value expresses that an 
arbitrary increase or decrease that is larger than d̂i will be detected when checking the consistency of the line list.

Note that an arbitrary increase or decrease that is much smaller than d̂i might also be detected when cheking 
consistency. Capturing these errors depends both on the line list itself and the wavenumber selection function 
used. Here, the mathematical statement is that errors that are larger than d̂i will be detected at all times.

This d̂i value can be calculated efficiently. Let us denote the shortest path between the endpoints of ei in the 
graph G(V ,E \ {ei}) , using u′i edge weights, by S(ei) . This can be done, for example, using Dijkstra’s algorithm17 

(2)d̂i = max
x

{(0, u′1), ..., (u
′
i + x, u′i), ...(0, u

′
m)},

Table 4.   Wavenumbers ŵi and uncertainties ui of the line list Lmod , and a wavenumber selection (the ŵ′
i
 values) 

that proves the consistency of Lmod.

edge ŵi    ui   w
′
i
    |ŵi − w

′
i
|

A → B 10.010 0 0.000 1 10.010 0 0

B → C 8.000 0.001 8.000 0

A → D 15.000 0 0.005 15.000 0 0

D → C 3.001 0 0.01 3.010 0 0.009

Table 5.   Energy values and the corresponding uncertainties based on the line list Lmod. The ‘difference’ 
column contains the |Eorig(X)− Emod(X)| values.

X Eorig(X) Emod(X) difference U(X)

A (root) 0 0 0 0

B 10.000 0 10.010 0 0.01 0.000 1

C 18.000 0 18.010 0 0.01 0.001 1

D 15.000 0 15.000 0 0.005
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(the name Dijkstra is the reason for the notation of di ). Note that, by definition, it is an edge set: S(ei) ⊆ E . Then, 
d̂i is the length of S(ei):

For example, let us consider the estimation of dAB in Fig. 1 (note that Table 2 already proves the consistency 
of the underlying line list). Here, we have d̂AB = 0.015 1 , because S(eAB) = {eAD , eDC , eBC}.

Note that (a) the estimation of di depends on the line list; therefore, it is a property inherited from the underly-
ing transitions of the SN, and (b) the d̂i values can already be used as standalone pieces of information, describing 
the line list’s own capability in detecting incorrect wavenumbers. Moreover, one can also calculate d̂XY before 
adding the very first X–Y transition to the line list, offering a priori information.

Now, one can ask what happens when we calculate the uncertainty of an energy value according to the linear 
formula, Eq. (1)? We take a sum of u′i uncertainties, but each non-bridge edge ei has already a d̂i value. The next 
subsection transfers the concept of the d̂i values to the quantum states.

The V(X) verification of quantum states
We would like to extend the idea presented in the section “The di threshold of transitions” from transition 
wavenumbers to quantum-state energies. Briefly, if the U(X) uncertainty of quantum state X is calculated by 
taking the sum of some ui uncertainties (see the section “Calculation of the energy values”), then let us use the 
corresponding d̂i values to express the vulnerability of U(X) against incorrect wavenumbers in a new V(X) value.

We only have d̂i values for non-bridge edges; thus, let us restrict the calculation of V(X) to the maximal 
2-edge-connected subgraph of the spectroscopic network which contains the root quantum state. Recall that 
the vertex set of this component is denoted by V ′.

Let us define the verification V(X) of quantum state X ∈ V ′ as follows:

Briefly, V(X) is equal to U(X) plus the uncertainties along each S(ei) path ∀i : ei ∈ PX . Observe that we count 
each u′i either zero or one time: if ∃ ei ∈ PX : ei ∈ S(ej), i �= j , then ei appears only once in the sum that defines 
V(X). The rightmost column of Table 3 shows the verifications of the energy values of Fig. 1.

Small‑uncertainty 4‑edge‑cycle density along P
X

We can add a second layer when describing the vulnerability of E(X) by further inspecting its uncertainty-
defining shortest path PX . Intuitively, if each ei ∈ PX participates in a large number of 4-edge-cycles (the shortest 
possible cycle in a bipartite SN) that all have small combined uncertainties, then X is less vulnerable to errors, 
than with only a few cycles, or with cycles formed by edges with large uncertainties.

To capture this phenomenon, let c(ei) denote the number of 4-edge-cycles in which ei participates, where the 
sum of the other three uncertainties is smaller than 10 · d̂i . Then, let k(X) = minei∈PX c(ei).

An efficient method to find 4-edge-cycles in a large graph is shown in Ref.18. The k(X) value now holds infor-
mation about the density of small-uncertainty 4-edge-cycles along PX ; thus, it can also be used in the labeling.

Labeling scheme
Based on the section “Verification of line lists”, we can construct a labeling scheme of the quantum states, express-
ing the vulnerability of their energy value and its uncertainty against wavenumber errors occurring in the line 
list. First, considering the typical range of uncertainty values, given in cm−1 , let us introduce labels based on 
the V(X) verification values according to Table 6. Based on the section “Small-uncertainty 4-edge-cycle density 
along PX”, the second step is to pick a reasonable empirical threshold for k(X), then assign a ‘+’ symbol after the 
A–F label of the quantum state X if k(X) is greater than this threshold.

The MARVEL spectroscopic information system uses Gaussian uncertainty propagation19 when calculating 
energy value uncertainties. This formula for the uncertainty of X, where the subscript refers to the squaring of 
the uncertainties, is

(3)d̂i =
∑

∀j:ej∈S(ei)

u′j .

(4)
V(X) =

∑

∀i: ei∈PX

d̂i +
∑

∀i: ei∈PX ,
�∃j �=i: ei∈S(ej)

u′i .

Table 6.   Labels and the corresponding V(X) magnitudes.

Label of X V(X) magnitude (cm−1)

A 10
−7 or smaller

B 10
−6

C 10
−5

D 10
−4

E 10
−3

F 10
−2 or greater
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with the PX path that minimizes this value. Note that this path may be different from the PX of the linear U(X) 
formula. However, because of the monotonicity of the square root function, it is enough to find the PX path for 
U2(X) to run Dijkstra’s algorithm using not u′i but (u′i)2 edge weights.

To make the V(X) verification comparable to these values, let us define

and

with the PX path that minimizes U2(X).
We use the same labeling when using V2(X) as the one that has been introduced for V(X) in Table 6.

A practical example: the W2020 database of water transitions
Hereby we discuss the verification labels corresponding to an empirical line-by-line database of water transitions, 
called W202012, developed by two of the present co-authors. In order to get our data in line with the usual con-
ventions of molecular spectroscopy, we opted to use the uncertainty and verification formulas that use Gaussian 
uncertainty propagation, see Eqs. (5) and (6). We decided to assign a ‘+’ symbol after the A-F labels of quantum 
state X (see Table 6), if k(X) ≥ 3.

Table 7 shows the distribution of the verification labels corresponding to the H 162  O entries of the W2020 
line list12. Out of the 19,282 quantum states that define the line list, 57 are not reachable from the root (they are 
in what we call ‘floating components’), and an additional 2401 nodes can only be reached through at least one 
bridge. Thus, V2(X) and U2(X) values were calculated for 19, 282− 57− 2401− 1 = 16, 823 quantum states (the 
root is also omitted).

Note that the uncertainties of the 2401 quantum states which can be reached only through at least one 
bridge can still be calculated using transition wavenumbers of the line list, i.e., U(X) and U2(X) both require 
just the presence of one path. It is just their verification V(X) and V2(X) that is not defined, due to the lack of 
the necessary presence of at least two edge disjoint paths leading to them from the root. To calculate the energy 
value of the 57 quantum states in the floating components external sources are required, most notably, EH or 
first-principles energy-level data.

The first observation related to Table 7 is that very few energy levels have the labels A or B. This is understand-
able, as there are only a relatively small number of very accurate measurements, with uncertainties on the order 
of a few kHz, in the W2020 database for H 162  O and the number of energy levels which participate in a cycle of 
high accuracy measurements is even smaller.

Second, the situation of the quantum states with a lower-quality verification label should be addressed. It must 
be emphasized that an ‘F’-labeled state can still have a correct wavenumber interval, it just cannot be verified 
more accurately using the other transitions in the line list.

The third important observation is that the most frequently occuring accuracy in the W2020 database is ∼ 
10−3 cm−1 . This is the accuracy of results obtained with the technique of Fourier-transform infrared spectroscopy, 
used for the largest number of transition measurements.

(5)U2(X) =

√

∑

∀i:ei∈PX

(u′i)
2,

(6)d̂i,2 =
∑

∀j:ej∈S(ei)

(u′j)
2,

(7)
V2(X) =

√

∑

∀i: ei∈PX

d̂i,2 +
∑

∀i: ei∈PX ,
�∃j �=i: ei∈S(ej)

(u′i)
2
,

Table 7.   Distribution of verification labels corresponding to the H 16
2

 O entries of the W2020 line list. The ‘N/A’ 
row represents the quantum states with no label assigned: these quantum states are not in the maximal 2-edge-
connected component that contains the root; thus, they are not subject to this labeling (see the section “The 
V(X) verification of quantum states”). Additionally, the root also received a N/A label. Note that a quantum 
state X received a ‘+’ in its label if k(X) ≥ 3.

Label Number of quantum states (incl. with ‘+’) k(X) ≥ 3

A 32 0

B 46 0

C 552 5

D 2725 22

E 8663 128

F 4805 68

N/A 2459 −
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The quantum states with the smallest and largest V2(X) values are shown in Tables 8 and 9, respectively. Note 
that the phenomenon that multiple U2 and V2 values are equal might happen quite easily; for example, in Fig. 1, 
quantum states B, C, and D all have the same V or V2 value.

The results in Table 8 show the effectiveness of the Spectroscopic-Network-Assisted Precision Spectroscopy 
(SNAPS) procedure19,20, used for the design of measurements yielding line center positions with just a few kHz 
accuracy in the near infrared region (in fact around 7000 cm−1).

Table 10 shows the quantum states with the smallest and largest V2(X)/U2(X) ratios. The largest ratios show 
that not all of the transitions measured via the SNAPS procedure are part of cycles formed by transition with 
high (kHz) accuracy. While an effort was made to create cycles when the measurements reported in Ref.19 were 
designed, the high cost of these kHz-accuracy line center position measurements prevented to obtain an even 
larger number of cycles.

Finally, Fig. 2 shows the U2(X) and V2(X) values, sorted in the ascending order of the V2(X) values. It can be 
seen immediately from this figure that the V2(X) values are always larger than the corresponding U2(X) values. 
Most of the time the U2(X) value is close to the V2(X) value, showing that the U2(X) value is a good approxima-
tion of the uncertainty of the empirical energy level. Nevertheless, there are several cases where U2(X) is much 
smaller than V2(X) . This typically occurs when a part of a path of very accurate transitions is surrounded by large 
uncertainty transitions in the spectroscopic network. The path itself can still produce a small U2(X) value, but 
it cannot be verified as accurately, due to the lack of transitions of similarly good uncertainty surrounding the 
entirety of the path. Thus, these energies might still be accurate, but even a single transition with a wavenumber 
error may cause a large inaccuracy for them in this line list.

Table 8.   Quantum states with the smallest V2(X) values in the W202012 line list of H 16
2

O. Three of the entries 
have the overall smallest value of 2.24× 10−7 , then another 9 quantum states have the second smallest V2(X) 
value, 6.30× 10−7.

Quantum state U2(X) V2(X)

1 0 1 1 0 1 1.03× 10
−7

2.24× 10
−7

2 0 0 1 1 1 1.40× 10
−7

2.24× 10
−7

0 0 0 2 2 0 1.44× 10
−7

2.24× 10
−7

2 0 0 3 1 3 1.75× 10
−7

6.30× 10
−7

2 0 0 3 3 1 1.83× 10
−7

6.30× 10
−7

0 0 0 4 0 4 2.02× 10
−7

6.30× 10
−7

0 0 0 4 2 2 2.19× 10
−7

6.30× 10
−7

0 2 1 5 4 1 2.46× 10
−7

6.30× 10
−7

0 0 0 6 0 6 2.69× 10
−7

6.30× 10
−7

0 0 0 5 1 5 3.99× 10
−7

6.30× 10
−7

2 0 0 4 4 0 4.16× 10
−7

6.30× 10
−7

0 0 0 5 3 3 4.29× 10
−7

6.30× 10
−7

Table 9.   Quantum states with the largest V2(X) values in the W202012 line list. A total of 12 quantum states 
have the largest V2(X) value, 0.073 511 9.

Quantum state U2(X) V2(X)

11 1 3 1 1 1 0.042 438 2 0.073 511 9

11 1 3 2 1 1 0.042 438 2 0.073 511 9

14 2 1 1 1 1 0.042 438 2 0.073 511 9

14 2 1 2 1 1 0.042 438 2 0.073 511 9

15 1 1 1 1 1 0.042 438 2 0.073 511 9

15 1 1 2 1 1 0.042 438 2 0.073 511 9

15 2 0 1 0 1 0.042 438 2 0.073 511 9

16 0 1 1 1 1 0.042 438 2 0.073 511 9

16 0 1 2 1 1 0.042 438 2 0.073 511 9

16 1 0 1 0 1 0.042 438 2 0.073 511 9

16 1 0 2 2 1 0.042 438 2 0.073 511 9

17 0 0 1 0 1 0.042 438 2 0.073 511 9
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Conclusions
It is found quite frequently that line-by-line spectroscopic databanks contain wavenumber errors, even after 
rigorous data cleansing and the usual careful analysis of the experimental line positions. These errors propagate 
directly into the empirical energies of the quantum states, leading most often to incorrect energy uncertainty 
intervals. The present paper advocates a method that helps to assess the effect wavenumber errors have on empiri-
cal energy values. The method developed relies on the spectroscopic network representation of the rovibronic 
line list.

Line lists should contain transition information that adheres to the law of energy conservation. The main idea 
of this paper is that each transition has a certain (unknown) threshold di in the network, and any error larger than 
this threshold is detected after checking the violation of the law of energy conservation. An efficient estimation 
of d̂i can be achieved by using Dijktra’s algorithm in the spectroscopic network.

By merging these thresholds an estimation can be made for the effect of undetected wavenumber errors in 
the line list. In this paper, it is called the V(X) verification of the quantum-state uncertainty. The V(X) value is to 
be used alongside the energy value E(X) and its uncertainty U(X) of quantum state X. If a quantum state X has 
a small uncertainty U(X) and also a small verification V(X), then one can trust much more the correctness of 
the energy value than in the case when V(X) is significantly higher than U(X). In the latter case, the uncertainty 
might still be accurate, but a single transition with a large wavenumber error can make it inaccurate.

Based on these verification values, a labeling scheme was introduced. This paper also shows the application 
of this labeling method to the W2020 dataset of the H 216 O molecule.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. The codes used in this study can be found at https://​respe​cth.​elte.​hu/​verif​icati​onLab​els.​php.
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Table 10.   Quantum states with the largest and smallest V2(X)/U2(X) values in the W202012 line list.

Quantum state U2(X) V2(X) V2(X)/U2(X)

1 0 1 25 1 25 0.010 191 0.011 162 9 1.095

1 0 1 25 0 25 0.010 24 0.011 407 1 1.114

2 0 1 25 1 25 0.020 093 3 0.022 931 9 1.141

2 0 1 25 0 25 0.020 093 3 0.023 051 5 1.147

0 1 1 20 7 13 0.010 056 5 0.011 643 4 1.158

. . . .

2 0 0 1 0 1 2.70× 10
−7 0.000 300 17 1111.577

0 1 3 5 1 5 8.76× 10
−7 0.001 000 05 1141.254

0 1 3 4 0 4 8.50× 10
−7 0.001 001 31 1177.979

0 1 3 3 1 3 8.50× 10
−7 0.001 063 05 1250.266

0 1 3 6 0 6 8.87× 10
−7 0.001 365 96 1540.047

Figure 2.   U2(X) and V2(X) values in the W2020 line list, sorted in ascending order of the V2(X) values.

https://respecth.elte.hu/verificationLabels.php
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