www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Research on the construction
of weaponry indicator system
and intelligent evaluation methods

Shuai Wang'?, Yuhong Du?*, Shuaijie Zhao?, Jinhu Hao¥? & Lian Gan'?

To decrease subjective interference and improve the construction efficiency of the traditional weapon
and equipment index system, an index system construction method based on target detection is
proposed in combination with the equipment test video data. The three-level index system of combat
effectiveness of a certain type of equipment is established, and various intelligent assessment
methods are proposed. Firstly, an optimaized IPSO-BP network model is proposed, in which

dynamic weights are set to improve the particle search network, and adaptive learning factors are
introduced to optimize the update speed. Secondly, an improved DS evidence-parallel neural network
assessment method is proposed, setting multiple parallel neural networks with different parameters,
and improving the angle cosine to weaken the numerical nonlinear attributes in DS evidence fusion
and increase the model’s assessment operation stability. Thirdly, the three types of view features
corresponding to the index item images are extracted to train the base classifiers. The integrated CNN
network based multi-view feature integration assessment model is constructed and the improved
residual network block is introduced to optimize the network gradient. Comparison with existing
evaluation methods shows that the proposed methods achieve efficient and intelligent construction
and evaluation of the indicator system and enrich the evaluation of indicator data.

As the functions of weapons and equipment become more refined and the structure becomes more complex,
traditional indicator system construction methods may incorporate builders’ subjective will, resulting in incom-
plete and unscientific indicator systems. Compared with intelligent methods, the commonly used subjective
and objective evaluation methods have lower efficiency and reliability in evaluation work. How to construct a
scientific and comprehensive effectiveness index system for weapons and equipment, and apply intelligent evalu-
ation methods to its efficient evaluation, is important in combat indicators research'.

Operational effectiveness is a measure of the effective role played by weapons and equipment in fulfilling
operational tasks under certain conditions®. A reasonable combat effectiveness index system can provide effective
guidance and guarantee for the research and development of new equipment, assessment of the health of in-
service equipment, and the conduct of combat test activities®. The construction of weapon and equipment combat
effectiveness index systems is usually based on theoretical research frameworks?, including combat missions®
and combat concepts®’, or supplemented by research methods like analytical simulation and data modeling for
optimization®-1%. The above methods focus on the equipment’s tactical technical performance requirements, while
the indicators’ dimensionality reduction process of which is tedious and limited by the subjectivity of expert
experience. Image recognition technology is applied to index system construction to improve objectivity and
accuracy in many fields. Fan et al.! constructed a fire risk index system for industrial buildings by developing
image recognition software to process fire-prone items. Zhang et al.'> and Sun et al.’® established multi-source
image databases and optimized the index system using image data. The current troops have a large number of
combat test video data, and there have been studies on index systems construction through image data classi-
fication, which provides a feasible reference for the construction of effectiveness index systems of weapons and
equipment based on image recognition'*.

The assessment methods of weapon and equipment effectiveness index system can be divided into subjec-
tive, objective, and intelligent methods'. The first class of methods, including fuzzy hierarchical analysis'® and
cloud modeling'’, is mainly based on questionnaires and expert consultation, where the assessment difficulty
increases with the complexity. Data-driven objective assessment models are usually based on structural equation
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modeling(SEM)8, availability dependability capability modeling (ADC)"?, weapon system of systems model
(WS0S)%, and Bayesian network model (BN)?'. These methods were developed to improve model credibility and
computational power but failed to perform a deep and systematic analysis of indicators. The intelligent evalu-
ation method introduces neural networks and integration strategies into the indicator evaluation process and
lays a good foundation for exploring new intelligent assessment methods. Firstly, a multi-level long-term and
short-term memory network?®? can be constructed to characterize the functional mapping relationship between
group structure, combat effectiveness, and individual decision-making. Secondly, the assessment model with a
fully connected deep regression network, selecting fewer hidden layers and increasing the training volume, can
achieve multi-indicator performance search*>?*. Thirdly, the multi-attribute group decision-making method
can be used to convert heterogeneous opinions into random values, and balance and rank these values for the
selection and evaluation of missile weapon systems?®.In addition, the strategy fusion method can be used to con-
nect different single indicator processing models and increase the indicator system evaluation’s generalization
performance?®. The knowledge-model-based simulation system also provides a good foundation for exploring
new automated intelligent assessment methods?’.

Based on the combat test video data of the Army’s certain type of equipment, this paper selects 3 types of
effects, 10 capability elements, and 29 index items that affect combat effectiveness. The combat effectiveness
index system construction method of weapons and equipment based on target detection is proposed. There
are 22 index items retained to construct the combat effectiveness index system based on corresponding typical
detected objects’ recognition rates in ten test scenarios. We propose intelligent evaluation algorithms including
“Optimised IPSO-BP neural network method”, “Improved DS evidence-parallel neural network method”, and
“Multi-view feature based integrated residual network method” to increase the recognition accuracy and recall
rate. Compared with different assessment methods, the three intelligent assessment methods realize a fully
intelligent process from the input of indicator data to the output of assessment results, improving the evaluation
reliability, rationality, and efficiency simultaneously.

Research method

Indicator system construction based on target detection

According to the research of the U.S. Army’s “Test and Certification Management Guide® and Shi et al.* on
the definition and classification of the factors affecting the combat effectiveness of weapons and equipment,
the factors affecting combat effectiveness are divided into three typical categories—firepower application, co-
operation, and command and control factors. Furthermore, it is divided into 10 capability factors, such as rapid
response capability, in-vehicle cooperation capability, and situational awareness capability, in the process of
testing weapons and equipment’s combat effectiveness in different environments. A total of 29 indicators, such
as search range and combat readiness, are selected based on continuous/discrete and other indicator types, and
typical detected objects corresponding to each indicator item are identified. Referring to Tian et al.*® definition
of air combat control effectiveness index system’s gaze time index as the duration from the target discovery time
sampling point to the target acquisition point, the search range index in this paper is defined as the moving
trajectory of the aiming frame for the hitting target in the visual field. This index’s typical detection object is the
aiming frame. The combat readiness time indicator is determined to identify the operation panel start heating
switch button corresponding to the indicator light from bright to dark state, and the typical detection object is
the indicator light state.

Based on the object representations of quantitative responses such as time and distance and the type repre-
sentations of qualitative responses such as adaptability and condition, the typical indicator images and video data
to be collected for the effectiveness indicator system construction are determined. The original image and video
were collected from the driver operation terminal, artillery commander task terminal, relevant operation console
panel, and simulation experimental platform of a certain army ground weapon equipment during combat test,
with a total of 5924 images. To ensure the training of the image recognition network model and intelligent and
optimal recognition, each image in the sample dataset contained one or more typical recognition objects. We
labeled the original images based on 29 typical recognition objects, with the label named Key Indicators using
the LabeIMe tool. Images that do not contain key indicator items were screened out, forming the corresponding
equipment’s combat effectiveness test indicator image dataset, with a total of 4377 images. The training set, test
set, and validation set were divided into 7:2:1. The constructed partial sample set is shown in Fig. 1. The weapon
and equipment index systems should not only have clear definitions and meanings of indicators but also empha-
size the repeatability in multiple typical combat environments®'. Therefore, 10 test experiment scenarios were
set up in the test trials. They are A: target search time; B: start-up heating time; C: network connectivity rate; D:
intelligence formulation efficiency; E: NBC response time; F: firing reaction time; G: continuous firing speed; H:
average mobile marching speed; I: target indication accuracy; and J: anti-interference capability.

Optimizing IPSO-BP neural networks
Chen et al.* found that using BP neural network to evaluate the index system may cause the “local minimum”
problem by setting the network weights and thresholds in the operation process. The running time is longer
for the reason that the error is back-propagated in the network. The PSO algorithm is hereby introduced to
continuously seek the optimal solution. We propose to improve the dynamic IPSO-BP neural network model,
optimize the initial weights and thresholds, and dynamically adjust the weight ratios of the two algorithms in
each generation of the model, to achieve the index system intelligent assessment.

The weights and thresholds in the BP gradient descent network corresponding to the global optimal particles
are introduced in the particle velocity search process, the output error value of the BP neural network is used
as the suitability function, and the value of the BP neural network with the optimal suitability is imported into
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Figure 1. Data set of typical identified objects.

the particle velocity calculation. Dynamic coefficient ¢ is set up to adjust the network occupancy ratio of the two
algorithms of IPSO and BP gradient descent. The ratio of the current weight change to the last weight change is
adjusted in each generation of weight update, to achieve global numerical optimization after many iterations.
The improved particle search formula is as Eq. (1):
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From Eq. (1): V and X are the velocity and position of the particle respectively, m and n are the nth dimen-
sions of the mth particle. / is the current number of iterations and a random number within (0, 1). ¢; and ¢; are the
learning factors, py, and pgy, are the individual extreme value and the overall optimal fitness values respectively.
VB is the optimal fitness particle based on the BP network value.
The formula for the improved weight w and fitness-containing k learning factor in terms of particle update
speed is as Eq. (2).
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Log curve decay weights®® are introduced in Eq. (2). The inertia change of the weights is decomposed into an
initial decline to improve the global search ability and the particles’ convergence efficiency; an increase in the
middle period to expand the model’s spatial search ability and global optimization ability; and a further decline
in the late period to increase the local optimization to obtain high-precision values.w is the inertia weight, which
embodies the influence of the current particle search speed on the evolved particles’ speed, controlling the model
search performance. wyqx and @iy are the maximum and minimum inertia weights respectively. A nonlinear
function with fitness k is introduced to adaptively change the dynamic learning factors® ¢; and c; to increase the
weights of the individual extremes in the early stage of the algorithm, and the weights of the whole extremes in
the later stage. kqve and ki, are the maximum and minimum inertia weights respectively.

The flow of the optimized IPSO-BP intelligent evaluation model is shown in Fig. 2. Constructing and normal-
izing the index data set. After initializing the particle’s velocity and position and determining the BP network’s
parameters and structure, the IPSO algorithm calls the BP neural network to calculate the suitability value in
the first iteration and calculate the particles’ suitability values in each generation to seek the suitability extremes
of the particles individually and as a whole. According to Eqgs. (1) and (2), the particle velocity and position are
updated, and it is judged whether the maximum number of iterations or the preset error value is reached. If not,
the particle velocity and position are continued to be updated using the gradient descent method for training. The
BP suitability values will be called for weights and thresholds to find the optimal value, and finally, the model’s
evaluation score can be obtained.
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Figure 2. IPSO-BP model run flow chart.

Improving DS evidence-parallel networks
The statistical results of the optimized IPSO-BP model training data indicate that the model may generate
significant evaluation errors for the poor stability of a single network. Therefore, a parallel neural network is
proposed to improve the data processing.

Ei = [Bi1,Bi2, . .., Bim] is the output of the neural network B;(i= 1,2,...,A),Bij is the jth node output of B;,

E;L: [B?{, BE, ,Bj]'\,l] is the normalized result of E;, 1 < a < M, and the formula is as Eq. (3).
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If there exists B;g € El+ which satisfies all the assessment criteria, then there exists Eq. (4).
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After normalization and combining with the processing results of the test sample set, the formula for calculat-
ing the credibility 0;(6; € [0, 1]) of the B; neural network is obtained in Eq. (5).
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In Egs. (6) and (7), ¢; is the predetermined threshold, M; is the total number of test sample sets, «; is the
number of correct neural network evaluations, 81 is the number of incorrect neural network evaluations, and y;
is the number of neural networks refusing to give results. The initial evaluation results are fused after the refine-
ment of the DS evidence theory. Combining the credibility 6; of the Bj(i=1,2,...,A) neural network, a modified
treatment of the preliminary evaluation results K;" is made from Eq. (6).
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The assignment of basic probability values for the generation of the Exhibit is
U = (pi(Ql),pi(Qz), e ,p,-(QM),p,-(('ﬂ)). Let there be m mutually independent pieces of evidence v; in ©®.
Forming a matrix X,y based on the BPA of each piece of evidence as a row vector, where N is the number of
propositions:

1
BetP,, (F)) = » (ﬁ)vi(F), Few )
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BetP,, (F;) in Eq. (7) is the Pig probability of Fj under the basic trust allocation v;, and |F| denotes the number
of singletons in F. The BPA of multiple singleton propositions are equally allocated to each of them, and the
evidence matrix X,,« N’ is collated by calculating the pig probabilities. Based on p; = (vi(F1), vi(F2), . . . vi(Fp)),
let vector p;(i = 1,2,...,m)be the ith row of matrix X. The distribution of focal elements in the above evidence
shows that all evidence exists in the first quadrant of the coordinate system, and all results are distributed in
the interval [0,1] and non-linear if calculated directly using the cosine formula. The method of subtracting an
average of all dimensions and then performing vector cosine calculation is used to make the results fall in the
interval [-1,1], which weakens the non-linear property of the results, as shown in Fig. 3.

Since there are M focal elements in p;, the average value of the subtracted in Eq. (8).

1
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where the m,,, function is calculated by the number of evidence sources.
Then the improved cosine of the new evidence matrix X, n/ , where exists vectors of Py, Pg, @, B € i, from
Eq. (9).
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The cosine matrix is obtained as Eq. (10):
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The fusion of each Exhibit Uj(i=1,2,...,A) yields an improved evidence fusion result of

X = (px(Q1), (px(Q2); .. ., (px(Qm)» (px(G))). The improved decision criterion formula is from Eq. (11).
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Figure 4. Flowchart of the bagging strategy module.

P(Qg) = max{p(Q;). Q; < 6}
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Assuming there exists Q, and Qy, if Qy satisfies the decision Eq. (12), the evaluation result is X'. Otherwise,
the decision is rejected. In Eq. (12), 71 € (0,1)and 7, € (0, 1) are both thresholds set up for decision-making.

Multi-view feature based integrated residuval network

Combat images contain rich information dimensions, contributing to analyzing and evaluating combat effective-
ness from different dimensions. It is possible to quickly provide feedback on the combat effectiveness of weapons
and equipment during real-time processing of scene information by automatically recognizing images.

Image data corresponding to the indicators in the index system are extracted from three aspects: color space,
shape texture, and visualization. The corresponding image multi-view features such as HSV, HI, and CIE view
are generated. The multi-view features are used as input data for the improved residual CNN neural network
to build the base classification models HSV_CNN, HI_CNN, and CIE_CNN respectively. The base classifica-
tion models are integrated by different strategies, and metrics such as accuracy, precision, recall, and score are
selected for evaluation.

The Bagging algorithm randomly changes the training set distribution so that the new training subset is fused
into the individual learner training to obtain the prediction results. Bagging sample sets are generated and each
set is passed to the base model to select the SoftMax classifier to obtain the maximum probability distribution
class. The output of the evaluation results is obtained after combining multiple models’ results for hard voting
to construct a multi-view Bagging Integrated Network Model (B_CNN) module based on CNN networks. The
flowchart is shown in Fig. 4.

The Stacking integration algorithm consists of a base classifier for data training and a meta-classifier for
integrated data output. The data in the base classifier is crossed to produce four training set data and one test
set data. The validated predictions are used as the training set for the meta-classifier model, and the predictions
are averaged as the test set. The feature data of multiple models are compared with the sample labels to obtain
the evaluation results. A multi-view Stacking Integrated Network Model (S_CNN) module based on the CNN
network is constructed and SVM is used to classify and identify the fused data. The flow chart is shown in Fig. 5.

The multi-view features are cascaded with CNN networks to form a C_CNN module, which expands the
data dimensionality to 500 dimensions per view and performs deep feature extraction to enhance the use of
fuzzy image data with good generalization capability. After obtaining different view depth feature values and real
label cascade, SVM is selected to classify and identify the deep multi-view feature data and output the evalua-
tion results. A CNN-network-based depth extraction evaluation model (C_CNN) module is constructed and
the flow of the algorithm is as follows:
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Figure 5. Stacking integration module flowchart.
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Base classifier model: HSV_CNN, HI_CNN, CIE_CNN;Y={y4,y,,"*,Vn}

Classifier: SVM, Epoch: N;

Stepl: load HSV, HI, CIE;

Step2: Dividing the training set: test set = 8:2;

Step3: Train the base classifier: for i in range(N):HSV_CNN=CNN(HSV);HI CNN=CNN(HI);CIE_CNN=CNN(HCIE);
Step4: Extraction of depth features: R_HVSgee,=HSV_CNN(HSV);R_Hlgeep,=HI CNN(HI);R _CIE4ee,=CIE_CNN(CIE);
Step5: Cascading multi-view depth features

‘Reoncatenate= concatence(R_HVSeep, R_Hlgeepn, R_CIEgeep)

Step6: Integration of authentic labels:R q5caqe = Reoncatenate VY

Step7:C_CNN=SVM(R cqscade)

Output: assessment scores

Algorithm: Multi view feature deep cascading network

The framework of the improved metric evaluation model for integrated multi-view learning is shown in Fig. 6.
The evaluation results of the B_CNN, S_CNN, and C_CNN modules in the improved model are soft-voted, and
the optimal evaluation scores are obtained by calculating the mean evaluation probabilities of different results.
The improved assessment model can automatically extract feature data, fully fuse multiple types of data, and
intelligently obtain an objective score without human interference. The improved model contains a total of 14
hidden layers, and the overall network structure is deeper. As shown in Fig. 7, the improved residual network
structure is introduced to solve the problem of gradient disappearance and degradation in CNN network training
and improve the indicator image classification recognition evaluation accuracy.

The output view feature value of the model is as Eq. (12).

y=a+W(@,72) (12)

In Eq. (12), a is the input view feature value of the model, Z is the input weight value, and W(a,z) is the
residual mapping function. The input a is calculated after 2 layers of convolution and one activation of the
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Figure 6. A framework for intelligent evaluation of multi-view feature integration networks.

residual mapping function, and then the constant mapping function input a is added to obtain the output y of
the residual block. The parameters of each layer of the improved CNN neural network are shown in Table 1.

Experimental process and results

Indicator system construction experiments and results

This article uses the YOLOv4 model for image recognition and uses the CSP-DarkNet53 network as the backbone
network. To improve its detection range and accuracy, we adopted multi-scale feature extraction technology to
capture image features at different levels. The learning rate of the main parameter is initially set to 0.00125, and
continuously changing based on the cosine annealing algorithm, with a decay factor of 0.0001. In addition, the
momentum coefficient is set to be 0.9 and the batch_size to be 2. After setting experimental parameters in the
experimental scene, 300 iterations of training are conducted to recognize typical objects.

Take a video in the target search time of test scenario A as an example, the terrain in the video is mountainous,
and the information in the lower right corner of the picture indicates that the center of the equipment’s white
aiming frame is aligned with the equipment target at 19:34:55, in which the middle cross cursor is the target to
be hit. The black stripe on the left side is due to shooting jitters.

The typical object recognition in this scenario is shown in Fig. 8. The detection results for typical objects in
ten test scenes are shown in Table 2. The detection result of “0” of a certain typical recognition object indicates
that it is not detected in the scene, while “1” indicates its existence. The experimental results show that the aver-
age recognition accuracy of typical objects is 80.54%. The typical object with the highest recognition rate is the
frequency hopping digit, which reaches 92.45%. The recognition accuracy of shooting time difference is only
31.82%, which is 48.72% lower than the average accuracy.

According to the research of Yang et al.** and Zhu et al.*, the indicator’s recognition rate in images is used
for indicator screening. Indicators with low recognition rates in images are difficult to obtain and train. In our
research, indicators with a recognition rate of less than 50% were filtered out with 22 indicators retained. In addi-
tion, the information on excluded indicator items can be obtained by the calculation of retaining indicators. The
excluded shooting time difference indicator item can be reflected by calculating the indicator item at the time
point, and the power transmission parameters can be reflected through engine load, etc. Removing seven indica-
tors may ensure the information integrity and indicator exclusivity of the final indicator system. The established
combat effectiveness index system of a certain type of equipment based on image detection is shown in Table 3.

Indicator system assessment experiments and results
The different model intelligence evaluation experiments conducted for the established weaponry index system
are all carried out on the same hardware device to ensure that the experimental results can be directly compared.
The main parameters of the experimental platform are: CPU Intel Core i9-12900HK, graphics card RTX3050Ti,
main frequency 5.6 GHz, running memory can be expanded to 128G, equipped with 64-bit Windows 10 system,
programming environment for Matlab 2020a and Pytorch 1.8.0.

Optimizing IPSO-BP neural network evaluation

The full weights and thresholds of the BP neural network are encoded, a group of particle swarms is randomly
generated, and each particle in the swarm represents the full initial weight and threshold distribution of a neural
network. A dimension in each particle represents a weight or threshold, and then the dimension of each particle
is the number of all weights or thresholds of the neural network. Setting m as the number of neurons in the
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input layer, n as the number of neurons in the hidden layer, and k as the number of neurons in the output layer,
from Eq. (13).

l=mn+nk+k+n (13)

The size of the particle population in the IPSO algorithm has an impact on the convergence speed and accu-
racy stability of the model. Combined with the number of indicators and the number of layers for constructing
the indicator system, the number of nodes in each layer of the model neural network is set to be 22 nodes in
the output input layer, 5 nodes in the implied layer and 1 node in the output layer. According to the calculation
formula (13), the particle dimension and number are 121 and 85 respectively. Setting the maximum model
iteration number as 300, the maximum and minimum values of inertia weights as 0.85 and 0.15 respectively,
and the model learning rate as 0.001.

The error function of the IPSO-BP model is set to Eq. (14).

I
1 ~
€= F § (Yn_Yn)z (14)

n=1

ynand y, in Eq. (14) are the desired and actual scoring values of the IPSO-BP model respectively.

According to the processing results of the numerical value and the collected index item data information,
statistics related to the index effectiveness index of the parameter effect data are generated to evaluate the experi-
ment. The combat effectiveness index sampling data is shown in Table 4.

From Fig. 9a, it can be seen that the IPSO-BP network produces a decrease in prediction scores at the 30th
and 100th generations, and both prediction scores and expectation scores rise gently after 100 generations. The
overall curve of the improved model is flatter, with smaller prediction errors. From the random data sampling
curves in Fig. 9b,c, the weights and thresholds of the optimized IPSO-BP network are constantly corrected by
the cooperative and competitive optimization of the searching method between the particle swarms, so that its
convergence speed is faster, and the searching efficiency and accuracy are effectively improved.

By setting the error function formula (14) and training to get the average error, the sampling data is calculated
as shown in Fig. 9d. Each generation of the model will get the corresponding predicted value and the actual
value, the predicted value of each generation will be subtracted from the average error and then the weighted
average and the actual value to get the evaluation score of each generation of the indicator system. Through the
evaluation score statistics of 300 generations, the optimal evaluation score of the indicator system constructed
in this paper is 82.43 points.

Improved DS evidence-parallel network evaluation

The evaluation index space Z = {Y}, Y, ..., Y2y} is established, and the evaluation result identification frame-
work is ® ={F), Fy, F3, F4, Fs}. The results of the system evaluation are divided into five levels (W), W3, W3,
Wy, Ws). The proposition is noted as F; (i=1, 2, 3, 4,5) , indicating that the current level of the index system
to be evaluated is W;. The node number of the neural network’s input layer Bi(i=1,2,...,9) is determined as 22
according to Z and ©. The nodes of the hidden layer are set as 6, 9, 10, 12, 14, 15, 17, 18 and 21. The number of
nodes in the output layer is 5(Cp1, Cn2,Cn3, Cna, Cns). The neural network after completing the training the test
sample set data are evaluated and the credibility of each neural network is calculated separately. The results of
each part are shown in Table 5.

As can be seen from Table 5, if only one BP neural network is used to evaluate the index system, the evalua-
tion result can be determined directly from BiJr as X'. B, and By give an evaluation grade of w3 and Bj refuses to
give an evaluation result. The evaluation of each neural network is uneven with low confidence. Therefore, the
data is fused using an improved DS evidence theory to reduce uncertainty and improve identification accuracy.
Firstly, the output of the neural network K;(i = 1,2, - - ,9) is normalized. The confidence level 6; is corrected to
generate evidence U; to assign basic assignment probabilities to each proposition in the recognition framework,
as shown in Table 6.

Data fusion of the above nine pieces of evidence using the improved DS evidence theory yielded the results:
F=(p;(F1), pi(F2), pi(F3), pi(Fs), pi (Fs), pi(®) = (0.0229,0.9618,0.0124,0.0019,0.0008, 0.0002). The thresholds in
the decision quotient are all set to 0.2, resulting in a final output evaluation result of X =W, with a score of 86.16
points.

Multi-view feature based integrated residual network evaluation

The number of iterations was set to 300 and the results of the training and test sets are shown in Fig. 10. As can
be seen from Fig. 10a, the loss values in the training set are in a steep drop through the first 60 iterations, start
to oscillate and converge by 80 iterations, and level off at 150 iterations. The model without the residual block
spikes in loss around 120, 170, and 180 iterations and fluctuates unevenly. The model with the residual block
added converges faster, with smoother fluctuations in the loss values at the later stages and better robustness
and generalization. As can be seen from Fig. 10b, the model’s accuracy in the test set increases rapidly with the
number of iterations, with the accuracy approaching 100% at 90 iterations. The overall structure is more stable
with the addition of the residual block, with a maximum accuracy of 98.43%.

The experiments’ learning rate was set to 0.00001, the optimization function was the Adam algorithm, the
Dropout value of the fully connected layer was set to 0.5, and the Epoch was 30. The SVM kernel function is a
radial basis function with a penalty coeflicient of 79 and a kernel function coefficient of 10.4. The training and
test sets were divided into 8:2, and the input image size was 78 pixels x 78 pixels. The experimental results of
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Figure 7. Improved residual network model.

1 Convolutional layer 1 |7 x 7 72 x 72 x 16
2 Convolutional layer 2 |7 x 7 66 X 66 X 32
3 Convolutional layer 3 |7 x 7 60 x 60 x 32
4 Pooling layer 1 2x2 30 x 30 x 32
5 Convolutional layer4 |3 x 3 28 x 28 x 128
6 Convolutional layer 5 |3 x 3 26 x 26 x 128
7 Convolutional layer 6 |3 x 3 24 x 24 x 128
8 Pooling layer 2 2x2 12 x 12 x 128
9 Residual blocks 1 3x3 12 x 12 x 128
3x3

10 Convolutional layer 7 | 3 x 3 10 x 10 x 256
11 Convolutional layer 8 |3 x 3 8 x 8 x 256
12 Convolutional layer 9 |3 x 3 6 X 6 X 256
13 Pooling layer 3 2x2 3 x 3 x 256
14 Residual blocks 2 g = ; 3 3 X 256
15 Fully connected layer |1 x 1 1x 1 x2304
16 Fully connected layer |1 x 1 1x1x1024

Table 1. Improved network parameters for each layer.

Target Targets 0.64

Figure 8. Test scenario A typical recognition object.
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Testing test scenarios

Typical identification objects (A |B |C |D |E |F |G |H |I |J | Recognitionrate(%) | Typicalindicators
Aiming frame 1 /0|0 |0 |0 |1 |1 |0 |0 |0 |90.08 v
Target Targets 1 (0 |0 |O |O |1 |1 |O |O |O |91.04 y
Point in time 1 /0 |0 |0 |O |1 (O |O |O |O |8312 y
Shooting jitters 1 /0 |0 |0 |O |1 |1 0 |0 |0 |90.82 V
Dust disturbance 1 {0 |0 |0 |0 |1 |1 |0 |0 |0 [77.36 v
Targeting the dividing line 0 |0 |0 |0 |O |O |1 |O |O [0 |47.83

Shooting time difference 0 [0 |0 |0 |O |1 |O [0 |0 |0 |31.82

Number of ammunition 1 /0 (0 |0 |0 |O |1 |O |O |O |8981 V
Target destruction 0 |0 |0 |0 |O |1 |1 |O |O [0 |84.62 \/
Indicator light on and off 0 |1 |0 |0 |1 [0 |0 [0 |0 [0 |90.95 v
Indicator colours 0 |1 |0 |0 1 /0 |0 |O |O |O |87.19 y
Three-proof alarm text 0 |1 |0 |0 |1 |O |0 |O |O |0 |86.32 V
Switch status o (1 (0 (O (1 |0 |0 |1 0 |0 [89.09 v
Video time 0o (0 (0 (O (1 (O |O (O |0 |O [2564

Engine load 0 (1 (0o |o |o |o |0 |1 [0 |0 [8791 v
Power parameters 0o (I (0 (O (O (O |O [0 [0 |O [3564

Instrument panel parameters 0 |1 |0 |O 1 |0 |0 |1 0 |0 [90.21 Y
Driving parameters 0 (0 (0 (O (0O |0 |O (1 |0 |O (2245

Vehicle nodes 0 |0 |1 |1 |0 |0 |0 |0 |1 |0 |8731 V
Equipment status 0 |0 (L O |0 |0 (O (O |1 |1 |9221 V
System time 0o |0 |1 |1 |0 |0 |0 |O |0 |0 |84.11 v
Fixed area text 0 |0 |1 |1 |o |o |0 [0 |0 [0 |77.78 v
Types of alarms 0 |0 |1 |1 |0 |0 |O |0 |O |1 |87.37 \/
Map coordinates 0 |0 |1 1 0 |0 |0 |O 1 |1 (9228 Y
Temperatures 0 |0 |0 |0 |0 |0 |O |0 |0 |O |33.08

Wind speed 0 |0 |1 |0 |0 |0 |0 |0 |1 |0 |84.43 V
Light and dark 0 |0 |0 |0 |0 |O |0 |0 |O |0 |3514

Alarm threats 0O (0 |0 (I |0 |0 |0 |O |1 |1 |9045 v
Frequency Hopping Digital 0o |0 |1 |1 |0 |0 (0 |0 |1 |1 |9245 V

Table 2. Test scene recognition experimental results.

each module constructed in the integrated evaluation model are obtained as shown in Table 7, and the score of
the multi-view feature integrated residual network is 95.11 points.

The recognition accuracy of the classification models HVS_CNN, HI_CNN, and CIE_CNN are 87.22%,
84.28%, and 79.94% respectively. The single view analysis shows that the extraction of color spatial features from
image data is more effective than shape and visual features. The scores for evaluating the index system based on
color spatial features are also 3.77% and 8.63% higher than those for evaluating shape and visual features respec-
tively. The data of each index such as accuracy, recall, and score under multi-view are better than the single-view
model. Its accuracy is 6.2%, 4.66%, and 2.25% higher than B_CNN, S_CNN, and C_CNN models. Its score is 6.2,
4.66, and 2.25 points higher than the B_CNN, S_CNN and C_CNN models respectively. The accuracy training
and loss function variation of each recognition network is shown in Fig. 11. Each recognition network is stable
during the validation process, but the integrated network shows significantly smoother and has better values.
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Figure 9. Comparison of model training, individual predictions and errors.

Analysis

Three Zlgorithms are proposed in this paper: optimized IPSO-BP neural network, improved DS evidence-parallel
network, and multi-view feature based integrated residual network. The three algorithms’ average evaluation
score is 87.9 and the average running time is 34.17 s, all greatly improve the evaluation efficiency and accuracy
while enriching the types of evaluation indexes. The comparison of results indicates the characteristics of the
three intelligent algorithms. The optimized IPSO-BP neural network is the fastest, which is 3.89 s faster than the
average, but has the lowest evaluation score, which is 5.47 points lower than the average score. The improved
DS evidence-parallel network runs 5.64 s slower than the average time but has a higher evaluation score of 3.73
than the optimized IPSO-BP neural network. The situation where a single network produces a large error value
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is effectively solved in this algorithm. The multi-view feature based integrated residual network achieves the
maximum score of 95.11, 15.38% higher than that of the optimized IPSO-BP neural network. Its running speed
is 18.56% faster than that of the improved DS evidence-parallel neural network.

A total of six algorithms are selected for comparison analysis: subjective assessment of fuzzy hierarchical
analysis and cloud model, objective assessment of SEM model and Bayesian network, and intelligent assessment
of DNN neural network and Stacking integration. The comparison analysis results are shown in Table 8. The
average evaluation score of the nine algorithms is 82.07 and the average running time is 34.23 s. The following
results are drawn through Further analysis. (1) The evaluation scores of the nine algorithms evaluation algorithms
are all above 75 points. According to the division of expert experience in subjective evaluation algorithms, above
75 points indicates excellent. It proves that the combat indicator system based on image recognition established
in this paper is scientific and reasonable and has professional reliability. (2) The subjective assessment methods
run faster. The fuzzy hierarchical analysis method is 15.99 s faster than the average time, but the assessment
score is lower. The cloud model score is 6.88 points below the average score. (3) Objective assessment methods
have higher assessment scores. The assessment score of the improved SEM model method is higher than the
average score by 0.16, and the running time of the Bayesian network method is faster than the average time by
4.75 s. However, the computational volume is larger and the data model is not easy to build. (4) The DNN neural
network and Stacking integration algorithm among the intelligent assessment algorithms both run at the slowest
speed due to the model's complexity. However, the assessment scores are higher than the subjective and objective
methods, indicating that they need to be improved in running time and parameter selection. (5) The optimized
IPSO-BP neural network algorithm ranks fourth among the nine algorithms in terms of both assessment score
and running time. The evaluation score is higher than the subjective and objective evaluation algorithms, and
the score is 9.62% higher than the subjective cloud model algorithm. The running time is 47.08% faster than the
smart Stacking integration algorithm. (6) Improved DS evidence-parallel network ranked second among nine
algorithms in terms of evaluation scores, with an improvement of 4.98% over the average score. In comparison
with the same type of DNN neural network algorithm, running the network with 1 less layer and running 9.39%
faster at the same time the evaluation score is 6.88 points higher. (7) Multi-view feature based integrated residual
network evaluation score and running speed are better than the average score and average running speed of the
nine algorithms, with an improvement of 15.89% and 5.58%, respectively.

In summary, the IPSO-BP neural network method has a faster running time and is suitable for real-time rapid
assessment. However, the stability of the model operation is poor, and there will be large error scores during
the operation, which requires high requirements for model training. The parallel structure in the improved DS
evidence-parallel network method is more scalable and improves the speed of data processing. It is suitable for
complex equipment and large data volume index evaluation, but the setting of different network parameters of the
model is more cumbersome. The Multi-view feature based integrated residual network method directly converts
image data into numerical values, automatically selects the optimal feature values in each view, and integrates the
feature information of different views for comprehensive assessment. Though the algorithm is complicated to test
when selecting view feature types and setting integrated model parameters, it performs the highest score, good
model generalization, and robustness while enriching the types of weapon and equipment evaluation indexes.

Conclusion

This paper advances the method for constructing the combat effectiveness indicator system of weaponry based on
image recognition for the first time and further proposes different intelligent assessment algorithms. On the one
hand, by combining key combat effectiveness indicators with ten specific combat scenarios, a combat effectiveness
indicator system consisting of 22 image indicators is proposed. On the other hand, three intelligent assessment
methods, namely, optimized IPSO-BP network, improved DS evidence-parallel neural network, and Multi-
view feature based integrated residual network, are proposed for the index system assessment. Experimental
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Neural network Credibility §; | Evidence | (pi(F1), pi(F2), pi(F3), pi(F4), pi(Fs), pi(©®)

B, 0.8621 Ui (0.0000, 0.6614, 0.1976, 0.0524, 0.0059, 0.0827)
B, 0.6814 Uy (0.1825, 0.1923, 0.0000, 0.3183, 0.0964, 0.2105)
B; 0.7235 Up (0.1461, 0.4029, 0.2436, 0.0000, 0.0318, 0.1756)
By 0.7463 Ui (0.1721, 0.4417, 0.0108, 0.0000, 0.0928, 0.2826)
Bs 0.4922 Uy (0.1825, 0.2923, 0.1176, 0.2571, 0.0000, 0.1505)
B¢ 0.8142 Uy (0.0000, 0.3761, 0.0814, 0.0569, 0.1781, 0.3075)
By 0.6619 Up (0.1112, 0.4009, 0.0926, 0.1080, 0.0000, 0.2873)
Bg 0.7867 Uy (0.1722, 0.0990, 0.0000, 0.4343, 0.0618, 0.2327)
By 0.9021 Uy (0.3841, 0.0000, 0.1015, 0.0913, 0.2614, 0.1617)

Table 6. Improved recognition results after data fusion.
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Figure 10. Changes in loss values and accuracy during training.
Data Model Accuracy (%) | Precision (%) | Recall (%) | Score
HSV_CNN |87.22 87.54 86.29 86.94
Single-view | HL_CNN | 84.28 859 83.69 83.78
CIE_.CNN | 79.94 80.11 80.22 80.03
B_CNN 88.54 89.27 89.02 88.91
S_CNN 90.27 90.97 90.43 90.45
Multi-view
C_CNN 92.45 93.17 93.04 92.86
Framework | 95.26 95.09 95.43 95.11
Table 7. Results of different model scores.
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Figure 11. Precision training with loss function curves.

results show that all three improved assessment methods can realize the full intelligent assessment process from
indicator data input to result output. Among them, the IPSO-BP network model belongs to the single network
optimization assessment method and has the highest intelligent assessment efficiency. In addition, the method
has lower performance requirements for the operation platform and can be widely used in portable platforms
for field operations. The improved DS evidence-parallel neural network algorithm sets multiple neural networks,
which can effectively reduce the interference of outliers in the evaluation of indicators. The adaptability of the
model can be improved by adjusting the parameters of each neural network. However, it takes a long time to
evaluate. The multi-view feature based integrated residual network model realizes the evaluation process from
image input to result output. The accuracy and recall of this method are above 95%, and the model intelligent
evaluation is optimal.

There are three main limitations to this study. Firstly, the experimental results of the IPSO-BP model are
greatly influenced by the quality and quantity of input data, and the application of this method has high require-
ments for data acquisition and processing. Secondly, running the DS evidence-parallel neural network model
in an environment with limited computing resources may be a challenge. Other models and methods can be
considered in the future, and compatibility between models can be adjusted to further optimize the intelligent
evaluation method of the indicator system.

Scientific Reports |

(2023) 13:19370 | https://doi.org/10.1038/541598-023-46660-5 nature portfolio



www.nature.com/scientificreports/

"SPOYJOUW JUSTUSSISSE SNOLIBA 3} JO SINSAI 3} Jo uostredwo)) °g Jqe],

ySry st Lyxorduroo feuoney

Ayqesorpaxd pue 2ousdroauod

-ndwos pue JMOIp §1 9ML3} [PPOU J0 UOHRIT ‘s52U)SNQOI [9pot POOT IIM ‘BJEP Y} ISLIAOBILYD wee | 11se 1aded sty Jo poyow yoreasar 29 uoneISajur 21njeay MITA-NNIA
0} UOTJRULIOJUT JATSU2IdUIOD 2I0W IPIAOI]
Sur £ Koemooe uonorpard ySry yim _ o 3 . £
1J1J-12A0 JO YSLI pue A1 | X . | ¢=s199snp U ‘00 2381 SuTUIed] ‘WONONPAI A)I[RUOTS
-1iqesaxdayur zood Ayrxarduwros Sururen ppowr ySi wa1qo1d a1 Jo spadu pue sINSHETEY ) 0) Buy LS| 6TE8 -udwIp YD WIojrad pue 103594 2I1NjEI] MU PPY spttoneIdanT Buppeis
I : el furen I et -pI02E PAUIqUIOD PUE PI}II[IS 3q ULD S[PPOUT ISBY : e} e
udisap wrrode xadwod arour Ayriqereos y3ry yim awr) awes X .
pue arempirey randwod 10§ syudwaambar 1oySi | 2y je passadoid aq ued s1djouwrered pue ejep IO 18'6€ | 9198 saded sy Jo poypows Yoreasa1 235 | SLIOMIN [Al[esed-s Sutsoxdwy | Juatussassy By
SSOUUIOPUEI JO JUNOWE UTe}Idd Ayrerauag pue Lyiqers
© y3m “yoreas uonestundo Jo uonersuad remonred uadaAu05 pood yym swafqoad rewndo [esof 8T0¢ | €hT8 1aded sty Jo poyowr yoreasar 22 SI0MIIN d-0SdI
© JO $J[NSI ) UT JOLId 33Ie[ B 2ARY] [[IM [9pOW YT, | 2A[0S Ued J1 Aypiqeded ypreas [ed0] pue [eqo[3 I
swafqoid Bumy-ias0 saniqiqedes Sururea] pue uonoeIXd Appanoadsar 00T pue 00¢ Jo 01 yoIeq pue yooda
i s3umas saaurered enrut uo yuapuodap pue arnjedy Suons ﬁms. Swn Eco-.w:oﬁﬁ.:wﬁ .w%cmm SSEY | 8TL | waﬁ [opour jo raquinucur 10joey juspuadapuy eHOMIN [HMIN NNA
snoJawnu a1e s1jourered pue 2In3ONIS [PPOW YT, : : : :
awmnjoA ejep pue Surapow 10y sjuswarmbar yry sanqeqozd toid uo enuLIoj uoneurojsuer) Ayyiqeqord
‘sdrysuorjea1 a[qeriea w:bmﬁ% M [e3p o bimmﬁ paseq synsax sdejdsip A[eorydes3 pue sajqeiea 10y 8¥'6T | 96'8L -uoneIye 3y} uEEkaﬁ 0} 2oUdIAJUI uersakeq PHOMION etsafeq
: : : : : i -ea1pur udam)aq sdiysuoneas onsijiqeqord sarmden e : s p
JUSWISSISSE 2AT}I(qO
SI0JedIpUT sa[qeLreA JuaIdyIp jo diys suoneoEs -+ + bg = U
uaamyaq sdrysuornefa resnes pautedxs Ajrood |-uorje[a1 ay) asA[eue o) SI0JEIIPUI JO UOTESIPIEPUE)S 695 | €TT8 : Surepowr WHS
i uonenba [ernjonns pue siojesrput Sulk[ropun gz 8
so1)sTIe)s pastfedads pue sazis aydures agre[ saxmbay 9} Y3noIy) [fom passasse aTe sura)sAs xaydwon)
swiyiLIode pue ‘ejep aqusap pue Anuenb sormyeoy [eSip
s1ojowrered [ppow uo spuewap YSIH ‘pa[Ppour aq 0} J[NOLYIP AI€ Jey) LJep PUe SIOJedIPUT UdIMIdq /€T2| 6152 PO 231 putE S[PPO PO 241 mcEw:@_&wAm 4eSUIPPOIA PO[D
jouued waqoId Y3 JT pasn aq JOUULD POYIIUIL Y], sdIYSUOTIE[21 JLIUI[-UOU (1M [EIP O} I[qe 1912 .
JUSTUSSISSE JAT)OI(qNS
$10119 pue Jsej suni pue ysnfpe o) Asea st jeyy arnoniys apduwrs . . $I0JeDIpUT JO UOT}
$101¢] 2a120{qns 2onponut uw) pue dupuerop © sey] ‘e)ep J0jedIpur Azznj A[puey ued [9pour Y], vesL ) 0oL -eI[Ije 3Y) UO paseq XLijew sisk[eue zznJ e 9)ear) eSisAfeue eonpreran d2zng
are uonedronred 110dxa pue uonisiboe ejeq e : : :
syoeqmerp aejue | (s) paads | ax0dg saanjedy yo uondrsaq sury)LioSe uonenyeay ad4y,

nature portfolio

https://doi.org/10.1038/s41598-023-46660-5

19370

(2023) 13

Scientific Reports |



www.nature.com/scientificreports/

Data availability
All data generated or analyzed during this study are included in this published article, the corresponding author
would like to provide more data on reasonable request.

Received: 10 August 2023; Accepted: 3 November 2023
Published online: 08 November 2023

References

1.

Shao, X. & Chen, Q. Complication evaluation of methods of naval battlefield electromagnetic environment based on combat
effectiveness. Aerospace Mech. Eng. 565, 233-237 (2014).

2. Gao, Y. et al. Search and rescue system-of-systems influence degree evaluation of aviation equipment based on simulation. Sci.
Rep. 12(1), 22384 (2022).
3. Gao, E, Zhang, A. & Bi, W. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval
data. J. Intell. Fuzzy Syst. 39(5), 6687-6701 (2020).
4. Li, J., Ge, B,, Jiang, J., Yang, K. & Chen, Y. High-end weapon equipment portfolio selection based on a heterogeneous network
model. J. Global Optim. 78(4), 743-761 (2020).
5. Christensen, C. & Salmon, J. Principles for small-unit sUAS tactical deployment from a combat-simulating agent-based model
analysis. Exp. Syst. Appl. 190, 116156 (2022).
6. Yu, Q. Song, J., Yu, X, Cheng, K. & Chen, G. To solve the problems of combat mission predictions based on multi-instance genetic
fuzzy systems. J. Supercomput. 78(12), 14626-14647 (2022).
7. Jang, J. et al. Mission impact analysis by measuring the effect on physical combat operations associated with cyber asset damage.
IEEE Access 11, 45113-45128 (2023).
8. Li, L., Lu, Y., Zhang, Z. & He, H. System construction and modeling of command and control system index based on information
superiority. Syst. Eng. Electron. 40(3), 577-582 (2018) (in Chinese).
9. Zhao, Q, Ding, J., Li, J. & Hu, W. Mission-Oriented scheme generation method for weapon system of systems. IEEE Access. 8,
70981-70996 (2020).
10. Shi, L., Pei, Y., Yun, Q. & Ge, Y. Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system
in cooperation combat. Chin. J. Aeronaut. 36(4), 442-454 (2023).
11. Fan, C. et al. Study on the remote fire risk assessment method of industrial buildings based on image recognition technology.
China Civ. Eng. ]. https://doi.org/10.1595/j.tmgcxb.22101075 (2023) (in Chinese).
12. Zhang, Y, Lu, H,, Luo, S., Sun, Z. & Qu, W. Human-Scale sustainability assessment of urban intersections based upon multi-source
big data. Sustainability 9(7), 1148 (2017).
13. Sun, Z. et al. Diagnosis of nitrogen nutrition in flue-cured tobacco based on UAV visible spectrum platform. Spectrosc. Spectral
Anal. 41(2), 586-591 (2021).
14. Vargas, V. et al. Deep learning based hierarchical classifier for weapon stock aesthetic quality control assessment. Comput. Ind.
144, 103786 (2023).
15. Zuo, M. System reliability and system resilience. Front. Eng. Manag. 8(4), 615-619 (2021).
16. Luo, R., Huang, S., Zhao, Y. & Song, Y. Threat assessment method of low altitude slow small(LSS) targets based on information
entropy and AHP. Entropy 23(10), 1292 (2021).
17. Qi, Z. et al. Research on effectiveness evaluation method of weapon system based on cloud model. J. Phys. Conf. Ser. https://doi.
0rg/10.1088/1742-6596/1965/1/012005 (2021).
18. Shen, B., Miao, J., Li, X. & Jia, G. Evaluation model of land force weapon equipment system combat capability based on improved
SEM. Acta Armamentarii 42(11), 2503-2512 (2021) (in Chinese).
19. Wang, X, Xu, J. & Chen, Y. Combat effectiveness evaluation of air-crystal C*ISR early warning detection system based on improved
ADC. Fifth symposium on novel optoelectronic detection technology and application. 11023. (2019).
20. Chen, Z. et al. Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration. Reliab. Eng.
Syst. Saf. 237, 109409 (2023).
21. Wang, J. et al. Operational effectiveness evaluation of UAV cluster based on bayesian networks. J. Phys. Conf. Ser. https://doi.org/
10.1088/1742-6596/2282/1/012001 (2022).
22. Ding, W,, Ming, Z., Wang, G. & Yan, Y. Dynamic prediction model based on multi-level LSTM network for multi-agent attack and
defense effectiveness. Acta Armamentarii 44(1), 176-192 (2023) (in Chinese).
23. Li, N, Li, Y., Gong, G. & Huang, X. Intelligent effectiveness evaluation and optimization on weapon systems of based on deep
learning. J. Syst. Simul. 32(8), 1425-1435 (2020) (in Chinese).
24. Zhang, F. et al. Ensemble learning based on policy optimization neural networks for capability assessment. Sensors 21(17), 5802
(2021).
25. Li, W,, Yi, P. & Li, L. Superiority-comparision-based transformation, consensus, and ranking methods for heterogeneous multi-
attribute group decision-making. Exp. Syst. Appl. https://doi.org/10.1016/j.eswa.2022.119018 (2023).
26. Li, C., Miao, J. & Shen, B. Operational effectiveness prediction of equipment system based on improved stacking-ensemble-learning
method. Acta Armamentarii https://doi.org/10.12382/bgxb.2022.0797 (2022) (in Chinese).
27. Kim, D,, Jeong, D. & Seo, Y. Automated composition and execution of web-based simulation systems through knowledge designing
and reasoning. Adv. Eng. Inf. 48, 101263 (2021).
28. Francis, P. Defense Acquisitions: Status of the safety, performance and reliability of the expeditionary fire support system. Govern-
ment Accountability Office Washington DC. (2008).
29. Shi, C, Tian, L., Xu, Z., Zhi, R. & Chen, J. Effectiveness evaluation method of emergency communication and sensing equipment
based on PSO-BP. Syst. Eng. Electron. 44(11), 3455-3462 (2022) (in Chinese).
30. Tian, C., Song, M., Xue, R. & Tian, J. Air combat control capability evaluation based on eye index and entropy weighted TOPSIS.
Syst. Eng. Electron. 45(6), 17431754 (2023) (in Chinese).
31. Taddeo, M. & Blanchard, A. A comparative analysis of the definitions of autonomous weapons systems. Sci. Eng. Ethics 28(5), 37
(2022).
32. Chen, L., Wang, L. & Zhang, C. Teaching quality evaluation of animal science specialty based on IPSO-BP neural network model.
Comput. Intell. Neurosci. 2022, 3138885 (2022).
33. Chen, B. & Zou, H. Self-conclusion and self-adaptive variation particle swarm optimization. Comput. Eng. Appl. 58(8), 67-75
(2022) (in Chinese).
34. Du, W,, Ma, J. & Yin, W. Orderly charging strategy of electric vehicle based on improved PSO algorithm. Energy. 271, 127088
(2023).
35. Yang, Y., Wang, X, Pan, M., Li, P. & Tsai, Y. Evaluation on algorithm reliability and efficiency for an image flame detection technol-
ogy. J. Therm. Anal. Calorim. 148(11), 5063-5070 (2023).
36. Zhu, H., Nan, X,, Yang, F. & Bao, Z. Utilizing the green view index to improve the urban street greenery index system: A statistical
study using road patterns and vegetation structures as entry points. Landscape Urban Plann. 237, 104780 (2023).
Scientific Reports |  (2023) 13:19370 | https://doi.org/10.1038/s41598-023-46660-5 nature portfolio


https://doi.org/10.1595/j.tmgcxb.22101075
https://doi.org/10.1088/1742-6596/1965/1/012005
https://doi.org/10.1088/1742-6596/1965/1/012005
https://doi.org/10.1088/1742-6596/2282/1/012001
https://doi.org/10.1088/1742-6596/2282/1/012001
https://doi.org/10.1016/j.eswa.2022.119018
https://doi.org/10.12382/bgxb.2022.0797

www.nature.com/scientificreports/

37. Yu, S, Ding, H. & Zeng, Y. Evaluating water-yield property of karst aquifer based on the AHP and CV. Sci. Rep. 12(1), 3308 (2022).
38. Han, B. et al. Safety risk assessment of loss tunnel construction under complex environment based on game theory-cloud model.
Sci. Rep. 13(1), 12249 (2023).

Acknowledgements
This research is supported by the Tianjin science and technology plan project (Grant No. 22YFYSHZ00040) and
the key research projects within the military (Grant No. LJ20202A070636).

Author contributions
S.W.wrote the main manuscript text. S.Z., ].H. and L.G.proposed revision suggestion,Y.D.provided writing guid-
ance.All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Scientific Reports|  (2023) 13:19370 | https://doi.org/10.1038/s41598-023-46660-5 nature portfolio


www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Research on the construction of weaponry indicator system and intelligent evaluation methods
	Research method
	Indicator system construction based on target detection
	Optimizing IPSO-BP neural networks
	Improving DS evidence-parallel networks
	Multi-view feature based integrated residual network

	Experimental process and results
	Indicator system construction experiments and results
	Indicator system assessment experiments and results
	Optimizing IPSO-BP neural network evaluation
	Improved DS evidence-parallel network evaluation
	Multi-view feature based integrated residual network evaluation

	Analysis
	Conclusion
	References
	Acknowledgements


