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Research on the construction 
of weaponry indicator system 
and intelligent evaluation methods
Shuai Wang 1,2, Yuhong Du 1,2*, Shuaijie Zhao 1,2, Jinhu Hao 1,2 & Lian Gan 1,2

To decrease subjective interference and improve the construction efficiency of the traditional weapon 
and equipment index system, an index system construction method based on target detection is 
proposed in combination with the equipment test video data. The three-level index system of combat 
effectiveness of a certain type of equipment is established, and various intelligent assessment 
methods are proposed. Firstly, an optimaized IPSO-BP network model is proposed, in which 
dynamic weights are set to improve the particle search network, and adaptive learning factors are 
introduced to optimize the update speed. Secondly, an improved DS evidence-parallel neural network 
assessment method is proposed, setting multiple parallel neural networks with different parameters, 
and improving the angle cosine to weaken the numerical nonlinear attributes in DS evidence fusion 
and increase the model’s assessment operation stability. Thirdly, the three types of view features 
corresponding to the index item images are extracted to train the base classifiers. The integrated CNN 
network based multi-view feature integration assessment model is constructed and the improved 
residual network block is introduced to optimize the network gradient. Comparison with existing 
evaluation methods shows that the proposed methods achieve efficient and intelligent construction 
and evaluation of the indicator system and enrich the evaluation of indicator data.

As the functions of weapons and equipment become more refined and the structure becomes more complex, 
traditional indicator system construction methods may incorporate builders’ subjective will, resulting in incom-
plete and unscientific indicator systems. Compared with intelligent methods, the commonly used subjective 
and objective evaluation methods have lower efficiency and reliability in evaluation work. How to construct a 
scientific and comprehensive effectiveness index system for weapons and equipment, and apply intelligent evalu-
ation methods to its efficient evaluation, is important in combat indicators research1.

Operational effectiveness is a measure of the effective role played by weapons and equipment in fulfilling 
operational tasks under certain conditions2. A reasonable combat effectiveness index system can provide effective 
guidance and guarantee for the research and development of new equipment, assessment of the health of in-
service equipment, and the conduct of combat test activities3. The construction of weapon and equipment combat 
effectiveness index systems is usually based on theoretical research frameworks4, including combat missions5 
and combat concepts6,7, or supplemented by research methods like analytical simulation and data modeling for 
optimization8–10. The above methods focus on the equipment’s tactical technical performance requirements, while 
the indicators’ dimensionality reduction process of which is tedious and limited by the subjectivity of expert 
experience. Image recognition technology is applied to index system construction to improve objectivity and 
accuracy in many fields. Fan et al.11 constructed a fire risk index system for industrial buildings by developing 
image recognition software to process fire-prone items. Zhang et al.12 and Sun et al.13 established multi-source 
image databases and optimized the index system using image data. The current troops have a large number of 
combat test video data, and there have been studies on index systems construction through image data classi-
fication, which provides a feasible reference for the construction of effectiveness index systems of weapons and 
equipment based on image recognition14.

The assessment methods of weapon and equipment effectiveness index system can be divided into subjec-
tive, objective, and intelligent methods15. The first class of methods, including fuzzy hierarchical analysis16 and 
cloud modeling17, is mainly based on questionnaires and expert consultation, where the assessment difficulty 
increases with the complexity. Data-driven objective assessment models are usually based on structural equation 
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modeling(SEM)18, availability dependability capability modeling (ADC)19, weapon system of systems model 
(WSoS)20, and Bayesian network model (BN)21. These methods were developed to improve model credibility and 
computational power but failed to perform a deep and systematic analysis of indicators. The intelligent evalu-
ation method introduces neural networks and integration strategies into the indicator evaluation process and 
lays a good foundation for exploring new intelligent assessment methods. Firstly, a multi-level long-term and 
short-term memory network22 can be constructed to characterize the functional mapping relationship between 
group structure, combat effectiveness, and individual decision-making. Secondly, the assessment model with a 
fully connected deep regression network, selecting fewer hidden layers and increasing the training volume, can 
achieve multi-indicator performance search23,24. Thirdly, the multi-attribute group decision-making method 
can be used to convert heterogeneous opinions into random values, and balance and rank these values for the 
selection and evaluation of missile weapon systems25.In addition, the strategy fusion method can be used to con-
nect different single indicator processing models and increase the indicator system evaluation’s generalization 
performance26. The knowledge-model-based simulation system also provides a good foundation for exploring 
new automated intelligent assessment methods27.

Based on the combat test video data of the Army’s certain type of equipment, this paper selects 3 types of 
effects, 10 capability elements, and 29 index items that affect combat effectiveness. The combat effectiveness 
index system construction method of weapons and equipment based on target detection is proposed. There 
are 22 index items retained to construct the combat effectiveness index system based on corresponding typical 
detected objects’ recognition rates in ten test scenarios. We propose intelligent evaluation algorithms including 
“Optimised IPSO-BP neural network method”, “Improved DS evidence-parallel neural network method”, and 
“Multi-view feature based integrated residual network method” to increase the recognition accuracy and recall 
rate. Compared with different assessment methods, the three intelligent assessment methods realize a fully 
intelligent process from the input of indicator data to the output of assessment results, improving the evaluation 
reliability, rationality, and efficiency simultaneously.

Research method
Indicator system construction based on target detection
According to the research of the U.S. Army’s “Test and Certification Management Guide”28 and Shi et al.29 on 
the definition and classification of the factors affecting the combat effectiveness of weapons and equipment, 
the factors affecting combat effectiveness are divided into three typical categories—firepower application, co-
operation, and command and control factors. Furthermore, it is divided into 10 capability factors, such as rapid 
response capability, in-vehicle cooperation capability, and situational awareness capability, in the process of 
testing weapons and equipment’s combat effectiveness in different environments. A total of 29 indicators, such 
as search range and combat readiness, are selected based on continuous/discrete and other indicator types, and 
typical detected objects corresponding to each indicator item are identified. Referring to Tian et al.30 definition 
of air combat control effectiveness index system’s gaze time index as the duration from the target discovery time 
sampling point to the target acquisition point, the search range index in this paper is defined as the moving 
trajectory of the aiming frame for the hitting target in the visual field. This index’s typical detection object is the 
aiming frame. The combat readiness time indicator is determined to identify the operation panel start heating 
switch button corresponding to the indicator light from bright to dark state, and the typical detection object is 
the indicator light state.

Based on the object representations of quantitative responses such as time and distance and the type repre-
sentations of qualitative responses such as adaptability and condition, the typical indicator images and video data 
to be collected for the effectiveness indicator system construction are determined. The original image and video 
were collected from the driver operation terminal, artillery commander task terminal, relevant operation console 
panel, and simulation experimental platform of a certain army ground weapon equipment during combat test, 
with a total of 5924 images. To ensure the training of the image recognition network model and intelligent and 
optimal recognition, each image in the sample dataset contained one or more typical recognition objects. We 
labeled the original images based on 29 typical recognition objects, with the label named Key Indicators using 
the LabeIMe tool. Images that do not contain key indicator items were screened out, forming the corresponding 
equipment’s combat effectiveness test indicator image dataset, with a total of 4377 images. The training set, test 
set, and validation set were divided into 7:2:1. The constructed partial sample set is shown in Fig. 1. The weapon 
and equipment index systems should not only have clear definitions and meanings of indicators but also empha-
size the repeatability in multiple typical combat environments31. Therefore, 10 test experiment scenarios were 
set up in the test trials. They are A: target search time; B: start-up heating time; C: network connectivity rate; D: 
intelligence formulation efficiency; E: NBC response time; F: firing reaction time; G: continuous firing speed; H: 
average mobile marching speed; I: target indication accuracy; and J: anti-interference capability.

Optimizing IPSO‑BP neural networks
Chen et al.32 found that using BP neural network to evaluate the index system may cause the “local minimum” 
problem by setting the network weights and thresholds in the operation process. The running time is longer 
for the reason that the error is back-propagated in the network. The PSO algorithm is hereby introduced to 
continuously seek the optimal solution. We propose to improve the dynamic IPSO-BP neural network model, 
optimize the initial weights and thresholds, and dynamically adjust the weight ratios of the two algorithms in 
each generation of the model, to achieve the index system intelligent assessment.

The weights and thresholds in the BP gradient descent network corresponding to the global optimal particles 
are introduced in the particle velocity search process, the output error value of the BP neural network is used 
as the suitability function, and the value of the BP neural network with the optimal suitability is imported into 
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the particle velocity calculation. Dynamic coefficient ε is set up to adjust the network occupancy ratio of the two 
algorithms of IPSO and BP gradient descent. The ratio of the current weight change to the last weight change is 
adjusted in each generation of weight update, to achieve global numerical optimization after many iterations. 
The improved particle search formula is as Eq. (1):

From Eq. (1): V and X are the velocity and position of the particle respectively, m and n are the nth dimen-
sions of the mth particle. l is the current number of iterations and a random number within (0, 1) . c1 and c2 are the 
learning factors, pmn and pan are the individual extreme value and the overall optimal fitness values respectively. 
VBp is the optimal fitness particle based on the BP network value.

The formula for the improved weight ω and fitness-containing k learning factor in terms of particle update 
speed is as Eq. (2).

Log curve decay weights33 are introduced in Eq. (2). The inertia change of the weights is decomposed into an 
initial decline to improve the global search ability and the particles’ convergence efficiency; an increase in the 
middle period to expand the model’s spatial search ability and global optimization ability; and a further decline 
in the late period to increase the local optimization to obtain high-precision values.ω is the inertia weight, which 
embodies the influence of the current particle search speed on the evolved particles’ speed, controlling the model 
search performance. ωmax and ωmin are the maximum and minimum inertia weights respectively. A nonlinear 
function with fitness k is introduced to adaptively change the dynamic learning factors34 c1 and c2 to increase the 
weights of the individual extremes in the early stage of the algorithm, and the weights of the whole extremes in 
the later stage. kave and kmin are the maximum and minimum inertia weights respectively.

The flow of the optimized IPSO-BP intelligent evaluation model is shown in Fig. 2. Constructing and normal-
izing the index data set. After initializing the particle’s velocity and position and determining the BP network’s 
parameters and structure, the IPSO algorithm calls the BP neural network to calculate the suitability value in 
the first iteration and calculate the particles’ suitability values in each generation to seek the suitability extremes 
of the particles individually and as a whole. According to Eqs. (1) and (2), the particle velocity and position are 
updated, and it is judged whether the maximum number of iterations or the preset error value is reached. If not, 
the particle velocity and position are continued to be updated using the gradient descent method for training. The 
BP suitability values will be called for weights and thresholds to find the optimal value, and finally, the model’s 
evaluation score can be obtained.
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Figure 1.   Data set of typical identified objects.
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Improving DS evidence‑parallel networks
The statistical results of the optimized IPSO-BP model training data indicate that the model may generate 
significant evaluation errors for the poor stability of a single network. Therefore, a parallel neural network is 
proposed to improve the data processing.

Ei = [Bi1,Bi2, . . . ,BiM ] is the output of the neural network Bi(i = 1,2,…,A),Bij is the jth node output of Bi , 
E+i  = [B+i1,B

+
i2, · · · ,B

+
iM ] is the normalized result of Ei, 1 ≤ a ≤ M , and the formula is as Eq. (3).

If there exists B+ig ∈ E+i  which satisfies all the assessment criteria, then there exists Eq. (4).

After normalization and combining with the processing results of the test sample set, the formula for calculat-
ing the credibility θi(θi ∈ [0, 1]) of the Bi neural network is obtained in Eq. (5).

In Eqs. (6) and (7), εi is the predetermined threshold, Ml is the total number of test sample sets, α1 is the 
number of correct neural network evaluations, β1 is the number of incorrect neural network evaluations, and γ1 
is the number of neural networks refusing to give results. The initial evaluation results are fused after the refine-
ment of the DS evidence theory. Combining the credibility θi of the Bi(i = 1,2,…,A) neural network, a modified 
treatment of the preliminary evaluation results K+

i  is made from Eq. (6).
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Figure 2.   IPSO-BP model run flow chart.
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The assignment of  basic  probabi l ity  values for the generat ion of  the Exhibit  is 
Ui =

(
pi(Q1), pi(Q2), . . . , pi(QM), pi(�)

)
 . Let there be m mutually independent pieces of evidence vi in � . 

Forming a matrix Xm×N based on the BPA of each piece of evidence as a row vector, where N is the number of 
propositions:

BetPvi (Fj) in Eq. (7) is the Pig probability of Fj under the basic trust allocation vi , and |F| denotes the number 
of singletons in F. The BPA of multiple singleton propositions are equally allocated to each of them, and the 
evidence matrix Xm×N

′ is collated by calculating the pig probabilities. Based on pi = (vi(F1), vi(F2), . . . vi(Fm)) , 
let vector pi(i = 1, 2, . . . ,m) be the ith row of matrix X. The distribution of focal elements in the above evidence 
shows that all evidence exists in the first quadrant of the coordinate system, and all results are distributed in 
the interval [0,1] and non-linear if calculated directly using the cosine formula. The method of subtracting an 
average of all dimensions and then performing vector cosine calculation is used to make the results fall in the 
interval [− 1,1], which weakens the non-linear property of the results, as shown in Fig. 3.

Since there are M focal elements in pi , the average value of the subtracted in Eq. (8).

where the mave function is calculated by the number of evidence sources.
Then the improved cosine of the new evidence matrix Xm×N ′ , where exists vectors of Pα , Pβ , α , β ∈ i , from 

Eq. (9).

The cosine matrix is obtained as Eq. (10):
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Figure 3.   Improved cosine algorithm.
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Assuming there exists Qg and Qh if Qg satisfies the decision Eq. (12), the evaluation result is X′ . Otherwise, 
the decision is rejected. In Eq. (12), τ1 ∈ (0, 1) and τ2 ∈ (0, 1) are both thresholds set up for decision-making.

Multi‑view feature based integrated residual network
Combat images contain rich information dimensions, contributing to analyzing and evaluating combat effective-
ness from different dimensions. It is possible to quickly provide feedback on the combat effectiveness of weapons 
and equipment during real-time processing of scene information by automatically recognizing images.

Image data corresponding to the indicators in the index system are extracted from three aspects: color space, 
shape texture, and visualization. The corresponding image multi-view features such as HSV, HI, and CIE view 
are generated. The multi-view features are used as input data for the improved residual CNN neural network 
to build the base classification models HSV_CNN, HI_CNN, and CIE_CNN respectively. The base classifica-
tion models are integrated by different strategies, and metrics such as accuracy, precision, recall, and score are 
selected for evaluation.

The Bagging algorithm randomly changes the training set distribution so that the new training subset is fused 
into the individual learner training to obtain the prediction results. Bagging sample sets are generated and each 
set is passed to the base model to select the SoftMax classifier to obtain the maximum probability distribution 
class. The output of the evaluation results is obtained after combining multiple models’ results for hard voting 
to construct a multi-view Bagging Integrated Network Model (B_CNN) module based on CNN networks. The 
flowchart is shown in Fig. 4.

The Stacking integration algorithm consists of a base classifier for data training and a meta-classifier for 
integrated data output. The data in the base classifier is crossed to produce four training set data and one test 
set data. The validated predictions are used as the training set for the meta-classifier model, and the predictions 
are averaged as the test set. The feature data of multiple models are compared with the sample labels to obtain 
the evaluation results. A multi-view Stacking Integrated Network Model (S_CNN) module based on the CNN 
network is constructed and SVM is used to classify and identify the fused data. The flow chart is shown in Fig. 5.

The multi-view features are cascaded with CNN networks to form a C_CNN module, which expands the 
data dimensionality to 500 dimensions per view and performs deep feature extraction to enhance the use of 
fuzzy image data with good generalization capability. After obtaining different view depth feature values and real 
label cascade, SVM is selected to classify and identify the deep multi-view feature data and output the evalua-
tion results. A CNN-network-based depth extraction evaluation model (C_CNN) module is constructed and 
the flow of the algorithm is as follows:

(11)
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Figure 4.   Flowchart of the bagging strategy module.
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The framework of the improved metric evaluation model for integrated multi-view learning is shown in Fig. 6. 
The evaluation results of the B_CNN, S_CNN, and C_CNN modules in the improved model are soft-voted, and 
the optimal evaluation scores are obtained by calculating the mean evaluation probabilities of different results. 
The improved assessment model can automatically extract feature data, fully fuse multiple types of data, and 
intelligently obtain an objective score without human interference. The improved model contains a total of 14 
hidden layers, and the overall network structure is deeper. As shown in Fig. 7, the improved residual network 
structure is introduced to solve the problem of gradient disappearance and degradation in CNN network training 
and improve the indicator image classification recognition evaluation accuracy.

The output view feature value of the model is as Eq. (12).

In Eq. (12), a is the input view feature value of the model, Z is the input weight value, and W(a,z) is the 
residual mapping function. The input a is calculated after 2 layers of convolution and one activation of the 

(12)y = a+W(a, Z)

Figure 5.   Stacking integration module flowchart.

Input: 

Dataset: HSV={( , ),( , ),…,( , )};HI={( , ),( , ),…,( , )};CIE={( , ),( , ),…,( , )};  

Base classifier model: HSV_CNN, HI_CNN, CIE_CNN;Y={y , y , , y } 

Classifier: SVM, Epoch: N; 

Step1: load HSV, HI, CIE; 

Step2: Dividing the training set: test set = 8:2; 

Step3: Train the base classifier: for i in range(N):HSV_CNN=CNN(HSV);HI_CNN=CNN(HI);CIE_CNN=CNN(HCIE); 

Step4: Extraction of depth features: R_HVS =HSV_CNN(HSV);R_HI =HI_CNN(HI);R_ =CIE_CNN(CIE); 

Step5: Cascading multi-view depth features 

: = concatence(R_HVS , R_HI , R_ ) 

Step6: Integration of authentic labels: = �  

Step7:C_CNN=SVM( ) 

Output: assessment scores

…

Algorithm: Multi view feature deep cascading network
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residual mapping function, and then the constant mapping function input a is added to obtain the output y of 
the residual block. The parameters of each layer of the improved CNN neural network are shown in Table 1.

Experimental process and results
Indicator system construction experiments and results
This article uses the YOLOv4 model for image recognition and uses the CSP-DarkNet53 network as the backbone 
network. To improve its detection range and accuracy, we adopted multi-scale feature extraction technology to 
capture image features at different levels. The learning rate of the main parameter is initially set to 0.00125, and 
continuously changing based on the cosine annealing algorithm, with a decay factor of 0.0001. In addition, the 
momentum coefficient is set to be 0.9 and the batch_size to be 2. After setting experimental parameters in the 
experimental scene, 300 iterations of training are conducted to recognize typical objects.

Take a video in the target search time of test scenario A as an example, the terrain in the video is mountainous, 
and the information in the lower right corner of the picture indicates that the center of the equipment’s white 
aiming frame is aligned with the equipment target at 19:34:55, in which the middle cross cursor is the target to 
be hit. The black stripe on the left side is due to shooting jitters.

The typical object recognition in this scenario is shown in Fig. 8. The detection results for typical objects in 
ten test scenes are shown in Table 2. The detection result of “0” of a certain typical recognition object indicates 
that it is not detected in the scene, while “1” indicates its existence. The experimental results show that the aver-
age recognition accuracy of typical objects is 80.54%. The typical object with the highest recognition rate is the 
frequency hopping digit, which reaches 92.45%. The recognition accuracy of shooting time difference is only 
31.82%, which is 48.72% lower than the average accuracy.

According to the research of Yang et al.35 and Zhu et al.36, the indicator’s recognition rate in images is used 
for indicator screening. Indicators with low recognition rates in images are difficult to obtain and train. In our 
research, indicators with a recognition rate of less than 50% were filtered out with 22 indicators retained. In addi-
tion, the information on excluded indicator items can be obtained by the calculation of retaining indicators. The 
excluded shooting time difference indicator item can be reflected by calculating the indicator item at the time 
point, and the power transmission parameters can be reflected through engine load, etc. Removing seven indica-
tors may ensure the information integrity and indicator exclusivity of the final indicator system. The established 
combat effectiveness index system of a certain type of equipment based on image detection is shown in Table 3.

Indicator system assessment experiments and results
The different model intelligence evaluation experiments conducted for the established weaponry index system 
are all carried out on the same hardware device to ensure that the experimental results can be directly compared. 
The main parameters of the experimental platform are: CPU Intel Core i9-12900HK, graphics card RTX3050Ti, 
main frequency 5.6 GHz, running memory can be expanded to 128G, equipped with 64-bit Windows 10 system, 
programming environment for Matlab 2020a and Pytorch 1.8.0.

Optimizing IPSO‑BP neural network evaluation
The full weights and thresholds of the BP neural network are encoded, a group of particle swarms is randomly 
generated, and each particle in the swarm represents the full initial weight and threshold distribution of a neural 
network. A dimension in each particle represents a weight or threshold, and then the dimension of each particle 
is the number of all weights or thresholds of the neural network. Setting m as the number of neurons in the 

Figure 6.   A framework for intelligent evaluation of multi-view feature integration networks.
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input layer, n as the number of neurons in the hidden layer, and k as the number of neurons in the output layer, 
from Eq. (13).

The size of the particle population in the IPSO algorithm has an impact on the convergence speed and accu-
racy stability of the model. Combined with the number of indicators and the number of layers for constructing 
the indicator system, the number of nodes in each layer of the model neural network is set to be 22 nodes in 
the output input layer, 5 nodes in the implied layer and 1 node in the output layer. According to the calculation 
formula (13), the particle dimension and number are 121 and 85 respectively. Setting the maximum model 
iteration number as 300, the maximum and minimum values of inertia weights as 0.85 and 0.15 respectively, 
and the model learning rate as 0.001.

The error function of the IPSO-BP model is set to Eq. (14).

yn and ŷn in Eq. (14) are the desired and actual scoring values of the IPSO-BP model respectively.
According to the processing results of the numerical value and the collected index item data information, 

statistics related to the index effectiveness index of the parameter effect data are generated to evaluate the experi-
ment. The combat effectiveness index sampling data is shown in Table 4.

From Fig. 9a, it can be seen that the IPSO-BP network produces a decrease in prediction scores at the 30th 
and 100th generations, and both prediction scores and expectation scores rise gently after 100 generations. The 
overall curve of the improved model is flatter, with smaller prediction errors. From the random data sampling 
curves in Fig. 9b,c, the weights and thresholds of the optimized IPSO-BP network are constantly corrected by 
the cooperative and competitive optimization of the searching method between the particle swarms, so that its 
convergence speed is faster, and the searching efficiency and accuracy are effectively improved.

By setting the error function formula (14) and training to get the average error, the sampling data is calculated 
as shown in Fig. 9d. Each generation of the model will get the corresponding predicted value and the actual 
value, the predicted value of each generation will be subtracted from the average error and then the weighted 
average and the actual value to get the evaluation score of each generation of the indicator system. Through the 
evaluation score statistics of 300 generations, the optimal evaluation score of the indicator system constructed 
in this paper is 82.43 points.

Improved DS evidence‑parallel network evaluation
The evaluation index space Z = {Y1, Y2, . . . , Y22} is established, and the evaluation result identification frame-
work is � = {F1, F2, F3, F4 , F5}. The results of the system evaluation are divided into five levels ( W1, W2 , W3, 
W4, W5 ). The proposition is noted as Fi (i = 1, 2, 3, 4,5) , indicating that the current level of the index system 
to be evaluated is Wi . The node number of the neural network’s input layer Bi(i = 1,2,…,9) is determined as 22 
according to Z and � . The nodes of the hidden layer are set as 6, 9, 10, 12, 14, 15, 17, 18 and 21. The number of 
nodes in the output layer is 5(Cn1, Cn2,Cn3 , Cn4 , Cn5 ). The neural network after completing the training the test 
sample set data are evaluated and the credibility of each neural network is calculated separately. The results of 
each part are shown in Table 5.

As can be seen from Table 5, if only one BP neural network is used to evaluate the index system, the evalua-
tion result can be determined directly from B+i  as X ′ . B2 and B7 give an evaluation grade of w3 and B3 refuses to 
give an evaluation result. The evaluation of each neural network is uneven with low confidence. Therefore, the 
data is fused using an improved DS evidence theory to reduce uncertainty and improve identification accuracy. 
Firstly, the output of the neural network Ki(i = 1, 2, · · · , 9) is normalized. The confidence level θi is corrected to 
generate evidence Ui to assign basic assignment probabilities to each proposition in the recognition framework, 
as shown in Table 6.

Data fusion of the above nine pieces of evidence using the improved DS evidence theory yielded the results: 
F = (pi(F1),pi(F2),pi(F3),pi(F4),pi(F5),pi(�) = (0.0229,0.9618,0.0124,0.0019,0.0008, 0.0002). The thresholds in 
the decision quotient are all set to 0.2, resulting in a final output evaluation result of X = W2 with a score of 86.16 
points.

Multi‑view feature based integrated residual network evaluation
The number of iterations was set to 300 and the results of the training and test sets are shown in Fig. 10. As can 
be seen from Fig. 10a, the loss values in the training set are in a steep drop through the first 60 iterations, start 
to oscillate and converge by 80 iterations, and level off at 150 iterations. The model without the residual block 
spikes in loss around 120, 170, and 180 iterations and fluctuates unevenly. The model with the residual block 
added converges faster, with smoother fluctuations in the loss values at the later stages and better robustness 
and generalization. As can be seen from Fig. 10b, the model’s accuracy in the test set increases rapidly with the 
number of iterations, with the accuracy approaching 100% at 90 iterations. The overall structure is more stable 
with the addition of the residual block, with a maximum accuracy of 98.43%.

The experiments’ learning rate was set to 0.00001, the optimization function was the Adam algorithm, the 
Dropout value of the fully connected layer was set to 0.5, and the Epoch was 30. The SVM kernel function is a 
radial basis function with a penalty coefficient of 79 and a kernel function coefficient of 10.4. The training and 
test sets were divided into 8:2, and the input image size was 78 pixels × 78 pixels. The experimental results of 

(13)l = mn+ nk+ k+ n

(14)e =
1

F

I∑

n=1

(
yn − ŷn

)2
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Figure 7.   Improved residual network model.

Table 1.   Improved network parameters for each layer.

Number of network layers Network type Convolution kernel size/pixel Output size/pixels

1 Convolutional layer 1 7× 7 72× 72× 16

2 Convolutional layer 2 7× 7 66× 66× 32

3 Convolutional layer 3 7× 7 60× 60× 32

4 Pooling layer 1 2× 2 30× 30× 32

5 Convolutional layer 4 3× 3 28× 28× 128

6 Convolutional layer 5 3× 3 26× 26× 128

7 Convolutional layer 6 3× 3 24× 24× 128

8 Pooling layer 2 2× 2 12× 12× 128

9 Residual blocks 1 3× 3

3× 3
12× 12× 128

10 Convolutional layer 7 3× 3 10× 10× 256

11 Convolutional layer 8 3× 3 8× 8× 256

12 Convolutional layer 9 3× 3 6× 6× 256

13 Pooling layer 3 2× 2 3× 3× 256

14 Residual blocks 2 3× 3

3× 3
3× 3× 256

15 Fully connected layer 1× 1 1× 1× 2304

16 Fully connected layer 1× 1 1× 1× 1024

Figure 8.   Test scenario A typical recognition object.
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each module constructed in the integrated evaluation model are obtained as shown in Table 7, and the score of 
the multi-view feature integrated residual network is 95.11 points.

The recognition accuracy of the classification models HVS_CNN, HI_CNN, and CIE_CNN are 87.22%, 
84.28%, and 79.94% respectively. The single view analysis shows that the extraction of color spatial features from 
image data is more effective than shape and visual features. The scores for evaluating the index system based on 
color spatial features are also 3.77% and 8.63% higher than those for evaluating shape and visual features respec-
tively. The data of each index such as accuracy, recall, and score under multi-view are better than the single-view 
model. Its accuracy is 6.2%, 4.66%, and 2.25% higher than B_CNN, S_CNN, and C_CNN models. Its score is 6.2, 
4.66, and 2.25 points higher than the B_CNN, S_CNN and C_CNN models respectively. The accuracy training 
and loss function variation of each recognition network is shown in Fig. 11. Each recognition network is stable 
during the validation process, but the integrated network shows significantly smoother and has better values.

Table 2.   Test scene recognition experimental results.

Typical identification objects

Testing test scenarios

Recognition rate(%) Typical indicatorsA B C D E F G H I J

Aiming frame 1 0 0 0 0 1 1 0 0 0 90.08 √

Target Targets 1 0 0 0 0 1 1 0 0 0 91.04 √

Point in time 1 0 0 0 0 1 0 0 0 0 83.12 √

Shooting jitters 1 0 0 0 0 1 1 0 0 0 90.82 √

Dust disturbance 1 0 0 0 0 1 1 0 0 0 77.36 √

Targeting the dividing line 0 0 0 0 0 0 1 0 0 0 47.83

Shooting time difference 0 0 0 0 0 1 0 0 0 0 31.82

Number of ammunition 1 0 0 0 0 0 1 0 0 0 89.81 √

Target destruction 0 0 0 0 0 1 1 0 0 0 84.62 √

Indicator light on and off 0 1 0 0 1 0 0 0 0 0 90.95 √

Indicator colours 0 1 0 0 1 0 0 0 0 0 87.19 √

Three-proof alarm text 0 1 0 0 1 0 0 0 0 0 86.32 √

Switch status 0 1 0 0 1 0 0 1 0 0 89.09 √

Video time 0 0 0 0 1 0 0 0 0 0 25.64

Engine load 0 1 0 0 0 0 0 1 0 0 87.91 √

Power parameters 0 1 0 0 0 0 0 0 0 0 35.64

Instrument panel parameters 0 1 0 0 1 0 0 1 0 0 90.21 √

Driving parameters 0 0 0 0 0 0 0 1 0 0 22.45

Vehicle nodes 0 0 1 1 0 0 0 0 1 0 87.31 √

Equipment status 0 0 1 0 0 0 0 0 1 1 92.21 √

System time 0 0 1 1 0 0 0 0 0 0 84.11 √

Fixed area text 0 0 1 1 0 0 0 0 0 0 77.78 √

Types of alarms 0 0 1 1 0 0 0 0 0 1 87.37 √

Map coordinates 0 0 1 1 0 0 0 0 1 1 92.28 √

Temperatures 0 0 0 0 0 0 0 0 0 0 33.08

Wind speed 0 0 1 0 0 0 0 0 1 0 84.43 √

Light and dark 0 0 0 0 0 0 0 0 0 0 35.14

Alarm threats 0 0 0 1 0 0 0 0 1 1 90.45 √

Frequency Hopping Digital 0 0 1 1 0 0 0 0 1 1 92.45 √
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Analysis
Three algorithms are proposed in this paper: optimized IPSO-BP neural network, improved DS evidence-parallel 
network, and multi-view feature based integrated residual network. The three algorithms’ average evaluation 
score is 87.9 and the average running time is 34.17 s, all greatly improve the evaluation efficiency and accuracy 
while enriching the types of evaluation indexes. The comparison of results indicates the characteristics of the 
three intelligent algorithms. The optimized IPSO-BP neural network is the fastest, which is 3.89 s faster than the 
average, but has the lowest evaluation score, which is 5.47 points lower than the average score. The improved 
DS evidence-parallel network runs 5.64 s slower than the average time but has a higher evaluation score of 3.73 
than the optimized IPSO-BP neural network. The situation where a single network produces a large error value 

(a) PSO-BP training curve                      (b) IPSO-BP assessment curve 

(c) IPSO-BP assessment curve                          (d)Model prediction error

Figure 9.   Comparison of model training, individual predictions and errors.
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is effectively solved in this algorithm. The multi-view feature based integrated residual network achieves the 
maximum score of 95.11, 15.38% higher than that of the optimized IPSO-BP neural network. Its running speed 
is 18.56% faster than that of the improved DS evidence-parallel neural network.

A total of six algorithms are selected for comparison analysis: subjective assessment of fuzzy hierarchical 
analysis and cloud model, objective assessment of SEM model and Bayesian network, and intelligent assessment 
of DNN neural network and Stacking integration. The comparison analysis results are shown in Table 8. The 
average evaluation score of the nine algorithms is 82.07 and the average running time is 34.23 s. The following 
results are drawn through Further analysis. (1) The evaluation scores of the nine algorithms evaluation algorithms 
are all above 75 points. According to the division of expert experience in subjective evaluation algorithms, above 
75 points indicates excellent. It proves that the combat indicator system based on image recognition established 
in this paper is scientific and reasonable and has professional reliability. (2) The subjective assessment methods 
run faster. The fuzzy hierarchical analysis method is 15.99 s faster than the average time, but the assessment 
score is lower. The cloud model score is 6.88 points below the average score. (3) Objective assessment methods 
have higher assessment scores. The assessment score of the improved SEM model method is higher than the 
average score by 0.16, and the running time of the Bayesian network method is faster than the average time by 
4.75 s. However, the computational volume is larger and the data model is not easy to build. (4) The DNN neural 
network and Stacking integration algorithm among the intelligent assessment algorithms both run at the slowest 
speed due to the model’s complexity. However, the assessment scores are higher than the subjective and objective 
methods, indicating that they need to be improved in running time and parameter selection. (5) The optimized 
IPSO-BP neural network algorithm ranks fourth among the nine algorithms in terms of both assessment score 
and running time. The evaluation score is higher than the subjective and objective evaluation algorithms, and 
the score is 9.62% higher than the subjective cloud model algorithm. The running time is 47.08% faster than the 
smart Stacking integration algorithm. (6) Improved DS evidence-parallel network ranked second among nine 
algorithms in terms of evaluation scores, with an improvement of 4.98% over the average score. In comparison 
with the same type of DNN neural network algorithm, running the network with 1 less layer and running 9.39% 
faster at the same time the evaluation score is 6.88 points higher. (7) Multi-view feature based integrated residual 
network evaluation score and running speed are better than the average score and average running speed of the 
nine algorithms, with an improvement of 15.89% and 5.58%, respectively.

In summary, the IPSO-BP neural network method has a faster running time and is suitable for real-time rapid 
assessment. However, the stability of the model operation is poor, and there will be large error scores during 
the operation, which requires high requirements for model training. The parallel structure in the improved DS 
evidence-parallel network method is more scalable and improves the speed of data processing. It is suitable for 
complex equipment and large data volume index evaluation, but the setting of different network parameters of the 
model is more cumbersome. The Multi-view feature based integrated residual network method directly converts 
image data into numerical values, automatically selects the optimal feature values in each view, and integrates the 
feature information of different views for comprehensive assessment. Though the algorithm is complicated to test 
when selecting view feature types and setting integrated model parameters, it performs the highest score, good 
model generalization, and robustness while enriching the types of weapon and equipment evaluation indexes.

Conclusion
This paper advances the method for constructing the combat effectiveness indicator system of weaponry based on 
image recognition for the first time and further proposes different intelligent assessment algorithms. On the one 
hand, by combining key combat effectiveness indicators with ten specific combat scenarios, a combat effectiveness 
indicator system consisting of 22 image indicators is proposed. On the other hand, three intelligent assessment 
methods, namely, optimized IPSO-BP network, improved DS evidence-parallel neural network, and Multi-
view feature based integrated residual network, are proposed for the index system assessment. Experimental 
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Table 6.   Improved recognition results after data fusion.

Neural network Credibility θi Evidence (pi(F1 ), pi(F2 ), pi(F3 ), pi(F4 ), pi(F5 ), pi(�)

B1 0.8621 U1 (0.0000, 0.6614, 0.1976, 0.0524, 0.0059, 0.0827)

B2 0.6814 U1 (0.1825, 0.1923, 0.0000, 0.3183, 0.0964, 0.2105)

B3 0.7235 U1 (0.1461, 0.4029, 0.2436, 0.0000, 0.0318, 0.1756)

B4 0.7463 U1 (0.1721, 0.4417, 0.0108, 0.0000, 0.0928, 0.2826)

B5 0.4922 U1 (0.1825, 0.2923, 0.1176, 0.2571, 0.0000, 0.1505)

B6 0.8142 U1 (0.0000, 0.3761, 0.0814, 0.0569, 0.1781, 0.3075)

B7 0.6619 U1 (0.1112, 0.4009, 0.0926, 0.1080, 0.0000, 0.2873)

B8 0.7867 U1 (0.1722, 0.0990, 0.0000, 0.4343, 0.0618, 0.2327)

B9 0.9021 U1 (0.3841, 0.0000, 0.1015, 0.0913, 0.2614, 0.1617)

(a)Training set loss values                    (b)Test set accuary

Figure 10.   Changes in loss values and accuracy during training.

Table 7.   Results of different model scores.

Data Model Accuracy (%) Precision (%) Recall (%) Score

Single-view

HSV_CNN 87.22 87.54 86.29 86.94

HI_CNN 84.28 859 83.69 83.78

CIE_CNN 79.94 80.11 80.22 80.03

Multi-view

B_CNN 88.54 89.27 89.02 88.91

S_CNN 90.27 90.97 90.43 90.45

C_CNN 92.45 93.17 93.04 92.86

Framework 95.26 95.09 95.43 95.11
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results show that all three improved assessment methods can realize the full intelligent assessment process from 
indicator data input to result output. Among them, the IPSO-BP network model belongs to the single network 
optimization assessment method and has the highest intelligent assessment efficiency. In addition, the method 
has lower performance requirements for the operation platform and can be widely used in portable platforms 
for field operations. The improved DS evidence-parallel neural network algorithm sets multiple neural networks, 
which can effectively reduce the interference of outliers in the evaluation of indicators. The adaptability of the 
model can be improved by adjusting the parameters of each neural network. However, it takes a long time to 
evaluate. The multi-view feature based integrated residual network model realizes the evaluation process from 
image input to result output. The accuracy and recall of this method are above 95%, and the model intelligent 
evaluation is optimal.

There are three main limitations to this study. Firstly, the experimental results of the IPSO-BP model are 
greatly influenced by the quality and quantity of input data, and the application of this method has high require-
ments for data acquisition and processing. Secondly, running the DS evidence-parallel neural network model 
in an environment with limited computing resources may be a challenge. Other models and methods can be 
considered in the future, and compatibility between models can be adjusted to further optimize the intelligent 
evaluation method of the indicator system.

Figure 11.   Precision training with loss function curves.



19

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19370  | https://doi.org/10.1038/s41598-023-46660-5

www.nature.com/scientificreports/

Ta
bl

e 
8.

  C
om

pa
ris

on
 o

f t
he

 re
su

lts
 o

f t
he

 v
ar

io
us

 a
ss

es
sm

en
t m

et
ho

ds
.

Ty
pe

Ev
al

ua
tio

n 
al

go
ri

th
m

s
D

es
cr

ip
tio

n 
of

 fe
at

ur
es

Sc
or

e
Sp

ee
d 

(s
)

va
nt

ag
e

dr
aw

ba
ck

s

Su
bj

ec
tiv

e 
as

se
ss

m
en

t

Fu
zz

y 
hi

er
ar

ch
ic

al
 a

na
ly

sis
37

C
re

at
e 

a 
fu

zz
y 

an
al

ys
is 

m
at

rix
 b

as
ed

 o
n 

th
e 

affi
lia

-
tio

n 
of

 in
di

ca
to

rs
76

.0
2

18
.2

4
Th

e 
m

od
el

 c
an

 h
an

dl
e 

fu
zz

y 
in

di
ca

to
r d

at
a,

 h
as

 a
 

sim
pl

e 
st

ru
ct

ur
e 

th
at

 is
 e

as
y 

to
 a

dj
us

t, 
an

d 
ru

ns
 fa

st
D

at
a 

ac
qu

isi
tio

n 
an

d 
ex

pe
rt

 p
ar

tic
ip

at
io

n 
ar

e 
de

m
an

di
ng

 a
nd

 c
an

 in
tr

od
uc

e 
su

bj
ec

tiv
e 

fa
ct

or
s 

an
d 

er
ro

rs

C
lo

ud
 M

od
el

in
g38

Es
ta

bl
ish

in
g 

fiv
e 

cl
ou

d 
m

od
el

s a
nd

 th
re

e 
cl

ou
d 

di
gi

ta
l f

ea
tu

re
s

75
.1

9
21

.3
7

Be
tte

r a
bl

e 
to

 d
ea

l w
ith

 n
on

-li
ne

ar
 re

la
tio

ns
hi

ps
 

be
tw

ee
n 

in
di

ca
to

rs
 a

nd
 d

at
a 

th
at

 a
re

 d
iffi

cu
lt 

to
 

qu
an

tif
y 

an
d 

de
sc

rib
e

Th
e 

m
et

ho
d 

ca
nn

ot
 b

e 
us

ed
 if

 th
e 

pr
ob

le
m

 c
an

no
t 

be
 m

od
el

le
d.

 H
ig

h 
de

m
an

ds
 o

n 
m

od
el

 p
ar

am
et

er
s, 

da
ta

, a
nd

 a
lg

or
ith

m
s

O
bj

ec
tiv

e 
as

se
ss

m
en

t

SE
M

 m
od

el
lin

g18
22

 u
nd

er
ly

in
g 

in
di

ca
to

rs
 a

nd
 st

ru
ct

ur
al

 e
qu

at
io

n 
η
=

B
η
+

F
η
+

 c
al

cu
la

tio
ns

82
.2

3
35

.6
9

C
om

pl
ex

 sy
st

em
s a

re
 a

ss
es

se
d 

w
el

l t
hr

ou
gh

 th
e 

st
an

da
rd

isa
tio

n 
of

 in
di

ca
to

rs
 to

 an
al

ys
e t

he
 re

la
tio

n-
sh

ip
 o

f d
iff

er
en

t v
ar

ia
bl

es

Re
qu

ire
s l

ar
ge

 sa
m

pl
e 

siz
es

 a
nd

 sp
ec

ia
lis

ed
 st

at
ist

ic
s, 

po
or

ly
 e

xp
la

in
ed

 c
au

sa
l r

el
at

io
ns

hi
ps

 b
et

w
ee

n 
in

di
ca

to
rs

Ba
ye

sia
n 

N
et

w
or

k21
Ba

ye
sia

n 
in

fe
re

nc
e 

to
 d

et
er

m
in

e 
th

e 
affi

lia
tio

n-
pr

ob
ab

ili
ty

 tr
an

sf
or

m
at

io
n 

fo
rm

ul
a

78
.9

6
29

.4
8

C
ap

tu
re

s p
ro

ba
bi

lis
tic

 re
la

tio
ns

hi
ps

 b
et

w
ee

n 
in

di
ca

-
to

r v
ar

ia
bl

es
 a

nd
 g

ra
ph

ic
al

ly
 d

isp
la

ys
 re

su
lts

 b
as

ed
 

on
 p

rio
r p

ro
ba

bi
lit

ie
s

In
ab

ili
ty

 to
 d

ea
l w

ith
 d

yn
am

ic
 v

ar
ia

bl
e r

el
at

io
ns

hi
ps

, 
hi

gh
 re

qu
ire

m
en

ts
 fo

r m
od

el
lin

g 
an

d 
da

ta
 v

ol
um

e

In
te

lli
ge

nt
 A

ss
es

sm
en

t

D
N

N
 N

eu
ra

l N
et

w
or

k23
In

de
pe

nd
en

t f
ac

to
r m

,n
um

be
r o

f m
od

el
 la

ye
rs

 1
0,

 
ep

oc
h 

an
d 

ba
tc

h_
10

 o
f 3

00
 a

nd
 1

00
 re

sp
ec

tiv
el

y
79

.2
8

43
.5

5
H

an
dl

e 
hi

gh
-d

im
en

sio
na

l d
at

a 
w

ith
 st

ro
ng

 fe
at

ur
e 

ex
tr

ac
tio

n 
an

d 
le

ar
ni

ng
 c

ap
ab

ili
tie

s
Th

e 
m

od
el

 st
ru

ct
ur

e 
an

d 
pa

ra
m

et
er

s a
re

 n
um

er
ou

s 
an

d 
de

pe
nd

en
t o

n 
in

iti
al

 p
ar

am
et

er
 se

tti
ng

s, 
w

ith
 

ov
er

-fi
tti

ng
 p

ro
bl

em
s

IP
SO

-B
P 

N
et

w
or

k
Se

e 
re

se
ar

ch
 m

et
ho

d 
of

 th
is 

pa
pe

r
82

.4
3

30
.2

8
W

ith
 g

lo
ba

l a
nd

 lo
ca

l s
ea

rc
h 

ca
pa

bi
lit

y, 
it 

ca
n 

so
lv

e 
lo

ca
l o

pt
im

al
 p

ro
bl

em
s w

ith
 g

oo
d 

co
nv

er
ge

nc
e, 

st
ab

ili
ty

 a
nd

 g
en

er
al

ity

Th
e 

m
od

el
 w

ill
 h

av
e 

a 
la

rg
e 

er
ro

r i
n 

th
e 

re
su

lts
 o

f a
 

pa
rt

ic
ul

ar
 g

en
er

at
io

n 
of

 o
pt

im
isa

tio
n 

se
ar

ch
, w

ith
 a

 
ce

rt
ai

n 
am

ou
nt

 o
f r

an
do

m
ne

ss

Im
pr

ov
in

g 
D

S-
Pa

ra
lle

l N
et

w
or

ks
Se

e 
re

se
ar

ch
 m

et
ho

d 
of

 th
is 

pa
pe

r
86

.1
6

39
.8

1
M

or
e 

da
ta

 a
nd

 p
ar

am
et

er
s c

an
 b

e 
pr

oc
es

se
d 

at
 th

e 
sa

m
e 

tim
e 

w
ith

 h
ig

h 
sc

al
ab

ili
ty

H
ig

he
r r

eq
ui

re
m

en
ts

 fo
r c

om
pu

te
r h

ar
dw

ar
e 

an
d 

m
or

e 
co

m
pl

ex
 a

lg
or

ith
m

 d
es

ig
n

St
ac

ki
ng

 in
te

gr
at

io
n26

A
dd

 n
ew

 fe
at

ur
e 

ve
ct

or
 a

nd
 p

er
fo

rm
 P

C
A

 d
im

en
-

sio
na

lit
y 

re
du

ct
io

n,
 le

ar
ni

ng
 ra

te
 0

.0
8,

 n
_c

lu
st

er
s =

 3
83

.2
9

57
.2

2
Ba

se
 m

od
el

s c
an

 b
e 

se
le

ct
ed

 a
nd

 co
m

bi
ne

d 
ac

co
rd

-
in

g 
to

 th
e 

ch
ar

ac
te

ris
tic

s a
nd

 n
ee

ds
 o

f t
he

 p
ro

bl
em

, 
w

ith
 h

ig
h 

pr
ed

ic
tio

n 
ac

cu
ra

cy
H

ig
h 

m
od

el
 tr

ai
ni

ng
 co

m
pl

ex
ity

, p
oo

r i
nt

er
pr

et
ab

il-
ity

 a
nd

 ri
sk

 o
f o

ve
r-

fit
tin

g

M
ul

ti-
vi

ew
 fe

at
ur

e 
in

te
gr

at
io

n
Se

e 
re

se
ar

ch
 m

et
ho

d 
of

 th
is 

pa
pe

r
95

.1
1

32
.4

2
Pr

ov
id

e 
m

or
e 

co
m

pr
eh

en
siv

e 
in

fo
rm

at
io

n 
to

 
ch

ar
ac

te
ris

e 
th

e 
da

ta
, w

ith
 g

oo
d 

m
od

el
 ro

bu
st

ne
ss

, 
co

nv
er

ge
nc

e 
an

d 
pr

ed
ic

ta
bi

lit
y

In
te

gr
at

io
n 

of
 m

od
el

 fe
at

ur
es

 is
 d

iffi
cu

lt 
an

d 
co

m
pu

-
ta

tio
na

l c
om

pl
ex

ity
 is

 h
ig

h



20

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19370  | https://doi.org/10.1038/s41598-023-46660-5

www.nature.com/scientificreports/

Data availability
All data generated or analyzed during this study are included in this published article, the corresponding author 
would like to provide more data on reasonable request.

Received: 10 August 2023; Accepted: 3 November 2023

References
	 1.	 Shao, X. & Chen, Q. Complication evaluation of methods of naval battlefield electromagnetic environment based on combat 

effectiveness. Aerospace Mech. Eng. 565, 233–237 (2014).
	 2.	 Gao, Y. et al. Search and rescue system-of-systems influence degree evaluation of aviation equipment based on simulation. Sci. 

Rep. 12(1), 22384 (2022).
	 3.	 Gao, F., Zhang, A. & Bi, W. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval 

data. J. Intell. Fuzzy Syst. 39(5), 6687–6701 (2020).
	 4.	 Li, J., Ge, B., Jiang, J., Yang, K. & Chen, Y. High-end weapon equipment portfolio selection based on a heterogeneous network 

model. J. Global Optim. 78(4), 743–761 (2020).
	 5.	 Christensen, C. & Salmon, J. Principles for small-unit sUAS tactical deployment from a combat-simulating agent-based model 

analysis. Exp. Syst. Appl. 190, 116156 (2022).
	 6.	 Yu, Q., Song, J., Yu, X., Cheng, K. & Chen, G. To solve the problems of combat mission predictions based on multi-instance genetic 

fuzzy systems. J. Supercomput. 78(12), 14626–14647 (2022).
	 7.	 Jang, J. et al. Mission impact analysis by measuring the effect on physical combat operations associated with cyber asset damage. 

IEEE Access 11, 45113–45128 (2023).
	 8.	 Li, L., Lu, Y., Zhang, Z. & He, H. System construction and modeling of command and control system index based on information 

superiority. Syst. Eng. Electron. 40(3), 577–582 (2018) (in Chinese).
	 9.	 Zhao, Q., Ding, J., Li, J. & Hu, W. Mission-Oriented scheme generation method for weapon system of systems. IEEE Access. 8, 

70981–70996 (2020).
	10.	 Shi, L., Pei, Y., Yun, Q. & Ge, Y. Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system 

in cooperation combat. Chin. J. Aeronaut. 36(4), 442–454 (2023).
	11.	 Fan, C. et al. Study on the remote fire risk assessment method of industrial buildings based on image recognition technology. 

China Civ. Eng. J. https://​doi.​org/​10.​1595/j.​tmgcxb.​22101​075 (2023) (in Chinese).
	12.	 Zhang, Y., Lu, H., Luo, S., Sun, Z. & Qu, W. Human-Scale sustainability assessment of urban intersections based upon multi-source 

big data. Sustainability 9(7), 1148 (2017).
	13.	 Sun, Z. et al. Diagnosis of nitrogen nutrition in flue-cured tobacco based on UAV visible spectrum platform. Spectrosc. Spectral 

Anal. 41(2), 586–591 (2021).
	14.	 Vargas, V. et al. Deep learning based hierarchical classifier for weapon stock aesthetic quality control assessment. Comput. Ind. 

144, 103786 (2023).
	15.	 Zuo, M. System reliability and system resilience. Front. Eng. Manag. 8(4), 615–619 (2021).
	16.	 Luo, R., Huang, S., Zhao, Y. & Song, Y. Threat assessment method of low altitude slow small(LSS) targets based on information 

entropy and AHP. Entropy 23(10), 1292 (2021).
	17.	 Qi, Z. et al. Research on effectiveness evaluation method of weapon system based on cloud model. J. Phys. Conf. Ser. https://​doi.​

org/​10.​1088/​1742-​6596/​1965/1/​012005 (2021).
	18.	 Shen, B., Miao, J., Li, X. & Jia, G. Evaluation model of land force weapon equipment system combat capability based on improved 

SEM. Acta Armamentarii 42(11), 2503–2512 (2021) (in Chinese).
	19.	 Wang, X., Xu, J. & Chen, Y. Combat effectiveness evaluation of air-crystal C4ISR early warning detection system based on improved 

ADC. Fifth symposium on novel optoelectronic detection technology and application. 11023. (2019).
	20.	 Chen, Z. et al. Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration. Reliab. Eng. 

Syst. Saf. 237, 109409 (2023).
	21.	 Wang, J. et al. Operational effectiveness evaluation of UAV cluster based on bayesian networks. J. Phys. Conf. Ser. https://​doi.​org/​

10.​1088/​1742-​6596/​2282/1/​012001 (2022).
	22.	 Ding, W., Ming, Z., Wang, G. & Yan, Y. Dynamic prediction model based on multi-level LSTM network for multi-agent attack and 

defense effectiveness. Acta Armamentarii 44(1), 176–192 (2023) (in Chinese).
	23.	 Li, N., Li, Y., Gong, G. & Huang, X. Intelligent effectiveness evaluation and optimization on weapon systems of based on deep 

learning. J. Syst. Simul. 32(8), 1425–1435 (2020) (in Chinese).
	24.	 Zhang, F. et al. Ensemble learning based on policy optimization neural networks for capability assessment. Sensors 21(17), 5802 

(2021).
	25.	 Li, W., Yi, P. & Li, L. Superiority-comparision-based transformation, consensus, and ranking methods for heterogeneous multi-

attribute group decision-making. Exp. Syst. Appl. https://​doi.​org/​10.​1016/j.​eswa.​2022.​119018 (2023).
	26.	 Li, C., Miao, J. & Shen, B. Operational effectiveness prediction of equipment system based on improved stacking-ensemble-learning 

method. Acta Armamentarii https://​doi.​org/​10.​12382/​bgxb.​2022.​0797 (2022) (in Chinese).
	27.	 Kim, D., Jeong, D. & Seo, Y. Automated composition and execution of web-based simulation systems through knowledge designing 

and reasoning. Adv. Eng. Inf. 48, 101263 (2021).
	28.	 Francis, P. Defense Acquisitions: Status of the safety, performance and reliability of the expeditionary fire support system. Govern-

ment Accountability Office Washington DC. (2008).
	29.	 Shi, C., Tian, L., Xu, Z., Zhi, R. & Chen, J. Effectiveness evaluation method of emergency communication and sensing equipment 

based on PSO-BP. Syst. Eng. Electron. 44(11), 3455–3462 (2022) (in Chinese).
	30.	 Tian, C., Song, M., Xue, R. & Tian, J. Air combat control capability evaluation based on eye index and entropy weighted TOPSIS. 

Syst. Eng. Electron. 45(6), 1743–1754 (2023) (in Chinese).
	31.	 Taddeo, M. & Blanchard, A. A comparative analysis of the definitions of autonomous weapons systems. Sci. Eng. Ethics 28(5), 37 

(2022).
	32.	 Chen, L., Wang, L. & Zhang, C. Teaching quality evaluation of animal science specialty based on IPSO-BP neural network model. 

Comput. Intell. Neurosci. 2022, 3138885 (2022).
	33.	 Chen, B. & Zou, H. Self-conclusion and self-adaptive variation particle swarm optimization. Comput. Eng. Appl. 58(8), 67–75 

(2022) (in Chinese).
	34.	 Du, W., Ma, J. & Yin, W. Orderly charging strategy of electric vehicle based on improved PSO algorithm. Energy. 271, 127088 

(2023).
	35.	 Yang, Y., Wang, X., Pan, M., Li, P. & Tsai, Y. Evaluation on algorithm reliability and efficiency for an image flame detection technol-

ogy. J. Therm. Anal. Calorim. 148(11), 5063–5070 (2023).
	36.	 Zhu, H., Nan, X., Yang, F. & Bao, Z. Utilizing the green view index to improve the urban street greenery index system: A statistical 

study using road patterns and vegetation structures as entry points. Landscape Urban Plann. 237, 104780 (2023).

https://doi.org/10.1595/j.tmgcxb.22101075
https://doi.org/10.1088/1742-6596/1965/1/012005
https://doi.org/10.1088/1742-6596/1965/1/012005
https://doi.org/10.1088/1742-6596/2282/1/012001
https://doi.org/10.1088/1742-6596/2282/1/012001
https://doi.org/10.1016/j.eswa.2022.119018
https://doi.org/10.12382/bgxb.2022.0797


21

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19370  | https://doi.org/10.1038/s41598-023-46660-5

www.nature.com/scientificreports/

	37.	 Yu, S., Ding, H. & Zeng, Y. Evaluating water-yield property of karst aquifer based on the AHP and CV. Sci. Rep. 12(1), 3308 (2022).
	38.	 Han, B. et al. Safety risk assessment of loss tunnel construction under complex environment based on game theory-cloud model. 

Sci. Rep. 13(1), 12249 (2023).

Acknowledgements
This research is supported by the Tianjin science and technology plan project (Grant No. 22YFYSHZ00040) and 
the key research projects within the military (Grant No. LJ20202A070636).

Author contributions
S.W.wrote the main manuscript text. S.Z., J.H. and L.G.proposed revision suggestion,Y.D.provided writing guid-
ance.All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Research on the construction of weaponry indicator system and intelligent evaluation methods
	Research method
	Indicator system construction based on target detection
	Optimizing IPSO-BP neural networks
	Improving DS evidence-parallel networks
	Multi-view feature based integrated residual network

	Experimental process and results
	Indicator system construction experiments and results
	Indicator system assessment experiments and results
	Optimizing IPSO-BP neural network evaluation
	Improved DS evidence-parallel network evaluation
	Multi-view feature based integrated residual network evaluation

	Analysis
	Conclusion
	References
	Acknowledgements


