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A novel in silico scaffold‑hopping 
method for drug repositioning 
in rare and intractable diseases
Mao Tanabe 1, Ryuichi Sakate 1, Jun Nakabayashi 2, Kyosuke Tsumura 2, Shino Ohira 2, 
Kaoru Iwato 2 & Tomonori Kimura 3,4,5*

In the field of rare and intractable diseases, new drug development is difficult and drug repositioning 
(DR) is a key method to improve this situation. In this study, we present a new method for finding DR 
candidates utilizing virtual screening, which integrates amino acid interaction mapping into scaffold-
hopping (AI-AAM). At first, we used a spleen associated tyrosine kinase inhibitor as a reference to 
evaluate the technique, and succeeded in scaffold-hopping maintaining the pharmacological activity. 
Then we applied this method to five drugs and obtained 144 compounds with diverse structures. 
Among these, 31 compounds were known to target the same proteins as their reference compounds 
and 113 compounds were known to target different proteins. We found that AI-AAM dominantly 
selected functionally similar compounds; thus, these selected compounds may represent improved 
alternatives to their reference compounds. Moreover, the latter compounds were presumed to bind 
to the targets of their references as well. This new “compound-target” information provided DR 
candidates that could be utilized for future drug development.

Approximately 7000 rare and intractable diseases (RIDs) have been defined to date, affecting an estimated 300 
million people worldwide1. These diseases largely reduce patients’ quality of life throughout their lives. Though 
the unmet medical needs are very high in this field, new drug development for RIDs is difficult. The reason is that 
the number of affected patients is too small for pharmaceutical companies to invest in targeting these diseases2,3 
and the mechanism of onset of many RIDs still remains to be elucidated. Therefore, attention is focused on drug-
repositioning (DR) methods, finding a candidate drug previously developed for other diseases4–6. When relatively 
little information is available for the disease, phenotypic screening and target-based method are selected from 
existing DR methods5. We considered that a drug which was rather effective in a RID and known to target some 
protein, even when its action mechanism was not thoroughly known, could be replaced by improved alternative 
drug using target-based method. Target-based methods include in vitro and in vivo high-throughput screening of 
drugs and in silico (computational) screening of drugs from libraries7,8. Computational methods, virtual screen-
ing (VS) techniques are becoming increasingly popular as these are continuously being developed, improved, 
and made available. The examples of the state-of-the art reviews are those of Gimeno9, Guputa10 and so on. VS 
techniques are generally classified into two major categories: structure-based virtual screening (SBVS) and ligand-
based virtual screening (LBVS). SBVS encompasses methods that exploit the three-dimensional (3D) structure 
of the target and molecular docking11,12. LBVS can be employed when the target structure of sufficient quality for 
docking simulations is not available and some binders for the target binding pocket are already known13,14. LBVS 
mainly includes methods based on similarity, in which the relationships between compounds in a given library 
and known binding molecules for the target are examined by similarity measurements using suitable molecular 
descriptors15. To find compounds that are structurally diverse but share some biological activity, scaffold-hopping, 
which is a LBVS approach, has been widely attempted16. However, because only a few active ligands are available 
to be used as references, the hit compounds found by LBVS lack novelty17,18. As a wide diversity of hit structures 
is important for improved properties, some hybrid strategies that integrate both SBVS and LBVS techniques have 
been proposed to overcome the weakness of LBVS18,19. In this study, we developed a new methodology called 
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AI-AAM, which enabled obtaining candidates with a wide variety of structures by using only the ligand-based 
virtual scaffold-hopping. Our hypothesis was that the interactions between a ligand and the set of amino acids 
could represent the interaction between a ligand and its target protein. By introducing Amino Acid Mapping 
(AAM), the descriptor of the interactions of a compound with amino acids, to the scaffold-hopping technique, 
we aimed to discover the compounds that have preserved interactions with their targets.

In this report, we aimed to examine the possibility of DR using AI-AAM with 6 compounds as reference. 
An overview of this study is shown in Fig. 1. At first, we selected a SYK inhibitor as reference to evaluate the 
technique experimentally, focusing on the pharmacological activity of a hit with the different scaffold from the 
reference. Then we applied this method to other five reference compounds selected from DDrare, a database of 
Drug Development for Rare Diseases, and examined whether the hit compounds were structurally diverse and 
target the same proteins as reference compounds. Moreover, on the basis of the target information of hit com-
pounds, we investigated the pharmacological functions of hits or inferred the new compound-target connection. 
Last, we discuss the possibility of DR using AI-AAM, based on the results.

Results
The search for compounds using the AI‑AAM technique
AI-AAM was applied to the drugs in the field of RIDs or in clinical trials as reference compounds. Information 
regarding the drugs was obtained from DDrare, a database of drugs and their target information used in clinical 
trials of rare diseases (https://​ddrare.​nibio​hn.​go.​jp/) (Fig. 1a). For the experimental validation of the technique, 
we selected a known SYK inhibitor candidate BIIB-057 as reference on the basis of target information in DDrare. 
This screening also had the meaning “prospective study”, because BIIB-057 had not been approved and we aimed 
to examine whether alternatives could be obtained by scaffold-hopping. Then, for the detailed analysis of the 
characteristics of the screening, we chose 5 compounds (i.e., aldosterone, testosterone, sildenafil, sunitinib and 
celecoxib) from the compounds registered with both DDrare and Directory of Useful Decoys, Enhanced (DUD-
E), as reference (Fig. 1a, b). DUD-E is a database of useful decoys designed to help benchmark molecular docking 
programs20. This analysis was regarded as “retrospective study”, as the reference compounds were approved drugs. 
Based on these 6 compounds, a search for DR candidate compounds was performed using AI-AAM (Fig. 1a). In 
the chemical library, 44,503 compounds were preprocessed successfully and subjected to screening by AI-AAM, 
among which 1251 compounds (neutral compounds, 808; monovalent cations, 443) had target information in 
DrugBank (https://​go.​drugb​ank.​com/) and were used for comparative analysis of target (Fig. 1c). For both the 
reference and candidate compounds, AAM descriptors, which describe the set of interactions between amino 
acids and the compound, were calculated and the compounds with similar AAM descriptors were screened from 
compound libraries and identified as hits (Fig. 1d, see “Calculations of AAM descriptors” in the “Methods” for 
more details). The hits were analyzed and validated in terms of comprehensiveness and specificity.

Experimental validation for a hit compound identified with AI‑AAM
As mentioned above, we selected a known SYK inhibitor candidate BIIB-057 as reference to discover other lead 
compounds. SYK is a non-receptor tyrosine kinase associated with many RIDs and is considered to be a worthy 
drug target. With BIIB-057 as the reference, 18 compounds with similar AAM descriptors were identified, and 
one of them, XC608, which had the highest AAM similarity score to BIIB-075 and a scaffold that differed from 
the reference, was selected to evaluate the levels of inhibitory activity for the target, SYK (Fig. 2a). The IC50 
values for BIIB-057 and XC608 were 3.9 nM and 3.3 nM, respectively. These values are close to each other, sug-
gesting that XC608 inhibits SYK activity as effectively as BIIB-057. The purity of BIIB-057 and XC608 measured 
by High Performance Liquid Chromatography (HPLC) was 100% and 96%, respectively (see Supplementary 
Fig. S1 online). These results indicate that the compounds predicted to have similar pharmacological activity 
to their reference compound by AI-AAM have also experimentally obtained IC50 values, which represent the 
potency of the inhibitor, close to the reference.

Next, kinase profiling of BIIB-057 and XC608 was performed to examine their selectivity. Among 24 kinases 
examined, 2 and 14 were inhibited at least 50% by BIIB-057 and XC608, respectively (Fig. 2b). These results 
suggest that BIIB-057 inhibits SYK and PAK5 selectively, while XC608 inhibits many kinases including SYK 
with a lower selectivity.

These results showed that the screening setting the threshold value of AAM similarity scores for 0.7 provided 
the compounds with different structure and selectivity than the reference, maintaining the pharmacological 
activity.

Comprehensiveness of screening using AI‑AAM
A total of 1275 compounds comprising 25–488 new compounds per reference compound, were obtained as 
hits. When the compounds were limited to those registered in DrugBank, there were 144 compounds identified 
in total, with 2–70 based on each reference (Table 1. For chemical structures of representative compounds, see 
Supplementary S2–S6 on line). The compounds registered in DrugBank have target information, and Table 1 
shows the result of aggregation according to whether their known targets are the same as those of the reference 
compounds.

We estimated how comprehensively AI-AAM identified the compounds whose known targets were the same 
proteins as the reference compounds. After all compounds that were known to target the same proteins as the ref-
erences were counted, we examined how many of these compounds were obtained as hits using AI-AAM (Table 1 
“Extraction rate”). For aldosterone, testosterone, and sildenafil, the extraction rate was greater than 60%. For 
sunitinib, the extraction rate was 33.3% when the target was limited to KIT only, whereas it was 50% when it was 
defined as the percentage of the hits to any of the 8 targets including KIT. The reason for the calculation limited 

https://ddrare.nibiohn.go.jp/
https://go.drugbank.com/
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Figure 1.   Schematic representation of this study. (a) A lead compound, based on the target information of 
DDrare, and five drugs contained in both Directory of Useful Decoys, Enhanced (DUD-E) and DDrare were 
selected as reference compounds. Chemical libraries were then explored by scaffold-hopping using AI-AAM. 
Identified compounds are candidates for drug repositioning for rare and intractable diseases. (b) The structural 
formulae of six reference compounds. (c) The range of the search for novel hit compounds. The neutral 
compounds and the monovalent cations including the five reference compounds constitute a part of the Namiki 
compound library set for repositioning (Namiki Shoji Co., Ltd.), which has 48,942 types in total. The number of 
the compounds preprocessed successfully was 44,503. Among these compounds, those that are also registered 
in the DrugBank and written in SMILES notation were selected. The number of these compounds is 1251 that 
consisted of 808 neutral and 443 monovalent cation compounds. Within the limits of these compounds, the 
search for novel hits was performed. (d) Schematic representation of virtual screening by AI-AAM.
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Figure 2.   Comparison between BIIB-057, the reference, and XC608, the hit, in inhibitory activity for kinases. 
(a) SYK kinase activity dose–response curves using BIIB-057 and XC608. The kinase activity IC50 values for 
BIIB-057 and XC608 are 3.9 nM and 3.3 nM, respectively. (b) Kinase profiling of BIIB-057 and XC608 using 
mobility shift assay (ATP concentration: Km value of each kinase, Concentration of each compound: 50 nM).

Table 1.   The reference compounds and the hit compounds, with the extraction rate and the enrichment factor 
(EF) value of the hit compounds known to target the same protein as its reference. a CSF1R, FLT3, PDGFR, 
RET, FLT1, KDR, FLT4, KIT.

Reference compound Hit compounds by AI-AAM (n) Reported compounds targeting the same protein (n) 
(A) Extraction rate (B/A) (%) EF valueName Target Same target (B) Different target

Aldosterone NR3C2 7 37 11 63.6 86.5

Testosterone AR 18 52 24 75.0 36.3

Sildenafil PDE5A 2 11 3 66.7 33.3

Sunitinib
KIT 2 13 6 33.3

Any target of sunitiniba 10 5 20 50.0 8.3

Celecoxib PTGS2 2 0 18 11.1 95.2
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to KIT was that the binding conformation of sunitinib was based on the complex with KIT (See “Preparation of 
compound conformation” in the “Methods”). As a whole, screening by using AI-AAM on the basis of 5 refer-
ences detected 11–75% of known compounds whose targets were the same as those of the reference compounds.

Then, we calculated the enrichment factor (EF) (see “The enrichment factor” in the “Methods” for more 
details). The random hit rates were approximately 0.01–0.25%, while the predicted hit rates were 1–8%. The 
predicted hit rates were apparently lower than the “extraction rates” shown in Table 1 because the denominators 
contained not only compounds that target the same proteins as references, but also those that target different 
proteins or have no target-molecule information. As shown in Table 1, the hit rate was improved by approximately 
10–100 times (see Supplementary Fig. S7 online).

Binding free energies between compounds and target proteins
For both the reference compounds and the hit compounds, the free energy of compound binding to their 
target was compared. For each reference compound, we chose a compound with the highest AAM similarity 
among the hits whose known targets were the same as or different from those of the reference, and designated 
them “cmpd. (same target)” or “cmpd. (different target)” respectively. Then we calculated the compound-target 
binding free energy by Fragment Molecular Orbital (FMO) method. As a result, the compound-target binding 
energies of “cmpd. (same target)” were almost equal to those of “cmpd. (different target)” for all systems. On the 
other hand, there was a 10–20 kcal/mol energy difference between the reference compounds and “cmpd. (same 
target)” (see Supplementary Fig. S8 and Table S1 online). One of the reasons for the difference might be that 
the structures of the target proteins were determined using reference compound—target cocrystal structures 
and it was optimized for the reference compound. Or, it might be simply because “cmpds. (same target)” had 
lower activity than the reference compounds. In any case, these findings suggest that the binding energies of hits 
whose known targets were different from those of the reference were not higher than those of the hits targeting 
the same proteins as the reference.

Structure of the compounds identified using AI‑AAM
The structural similarity of hits to the reference compounds was examined. In a graph representing AAM simi-
larity on the vertical axis and Tanimoto coefficient on the horizontal axis, the hits were plotted (Fig. 3). For the 
compounds identified using aldosterone as a reference, Tanimoto coefficients were within the range of 0.1–0.6 
(Fig. 3a). These values are rather low, which means that the hits include those with low structural similarity to 
the reference. Even for compounds whose known targets are the same as those of the reference compounds, 
Tanimoto coefficients are not always large. Moreover, most of the hits identified using sunitinib as a reference 
had a Tanimoto coefficient of less than 0.2 (Fig. 3b). In this way, the hits with low similarity could generally 
be identified, although there were some differences in the range of the Tanimoto coefficient depending on the 
reference compounds.

Figure 3.   Tanimoto coefficients of hits and non-hits. Hits and non-hits based on aldosterone (a target: NR3C2) 
or sunitinib (b target: KIT). The threshold value of AAM similarity as the boundary of hits and non-hits is 0.7. 
The hits include many compounds that target different proteins than the reference as well as those which target 
the same proteins as the reference. Although the non-hits whose targets are the same protein as the references 
are also included, those known to target different proteins than the references are not shown.
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Specificity of screening using AI‑AAM
As shown in Table 1, there were compounds whose known targets were the same as those of the reference com-
pound among the hits, but more compounds known to target proteins different from the reference were identified 
as hits. Moreover, the compound-target binding energies of the compounds of the former and the latter, with 
the highest AAM similarity among the hits respectively, were approximately equal to each other for all systems, 
suggesting that the latter also bind to the targets of their reference compounds (Fig. 4a). For example, among 
44 hits identified with aldosterone as the reference, only 7 compounds were known to target NR3C2, the same 
protein targeted by the reference (Fig. 4b). In regards to the compounds screened on the basis of sunitinib, only 
10 out of 15 hits were known to target any of the targets of sunitinib (Fig. 4b).

An analysis to investigate the reason why the known targets of many hit compounds were different from 
those of the reference compounds was conducted. Among the compounds known to bind to the same targets as 
the reference compounds, some have the same biological function as the references, while others function in a 
different manner. We assumed that, as AI-AAM identified the compounds with the same function as the refer-
ences, the comprehensiveness was underestimated. To verify this hypothesis, the functions of hits and non-hits 
were analyzed (Fig. 5, Supplementary Table S2 online).

As shown in Fig. 5a21, aldosterone is an agonist for nuclear receptor subfamily 3 group C member 2 (NR3C2, 
also known as MR). Eleven compounds are known to bind to NR3C2 in addition to aldosterone: 3 agonists and 
8 antagonists. Seven hits were identified with aldosterone as the reference: 3 agonists and 4 antagonists. By using 
AI-AAM, agonists with the same function as the reference were obtained at a rate of 100%, while antagonists 
were identified at a rate of 50%.

Testosterone is an agonist for androgen receptor (AR) (Fig. 5b)22. In addition to testosterone, 24 compounds 
are known to bind to AR: 14 agonists, 9 antagonists and a modulator. The number of hits identified applying AI-
AAM based on testosterone was 18, 14 of which were agonists. The agonists, which have the same function as the 
reference, were obtained at a rate of 100%, while antagonists were identified at a rate of 44.4%. All 6 compounds 
that were not identified by using AI-AAM, even though these were known to target AR, were antagonists and a 
modulator. Chi-square test of independence shows a statistically significant relationship (p = 0.00162**) between 
the pharmacological action type (agonist or antagonist) and the hit rate (see Supplementary Table S3 online).

Figure 4.   The targets of reference and hit compounds. (a) The reference and hit compounds and their target 
proteins. There are two types of hit-target interaction cases; cases where the known targets of the hit compounds 
are the same as those of the reference compounds and cases where the known targets of the reference and hit 
compounds differ. In the latter cases the targets of the reference compounds are presumed to be the unknown 
targets of hit compounds. (b) (Left) Hit compounds screened on the basis of aldosterone. Classification is 
based on the known targets: NR3C2 and others. (Right) Hit compounds screened on the basis of sunitinib. 
Classification is based on the known targets: KIT, other targets of sunitinib, and others.
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Figure 5.   Pharmacological actions of reference compounds and the classification of hits and non-hits based 
on whether or not their function is the same as the reference. (a) Aldosterone targets NR3C2 as an agonist. 
NR3C2 is a ligand-activated nuclear transcription factor. NR3C2s in the inactive state reside primarily in the 
cytoplasm and are then transported to the nucleus, dimerize and form a transcription complex with DNA 
hormone response elements to initiate transcription of genes. The NR3C2 has affinity for both its primary 
physiological agonists and antagonists developed to treat diseases. (b) Testosterone targets the AR as an agonist. 
As with NR3C2, AR is nuclear transcription factor. Upon binding to endogenous ligands such as testosterone, 
AR translocates to the nucleus and regulate the transcription of genes. Apart from the endogenous ligands 
(agonists), exogenous ligands such as environmental chemicals and pharmaceuticals can also interact with AR 
as agonists or antagonists. (c) Sildenafi targets PDE5A. NO mediates its biological effects by activating sGC and 
increasing cGMP synthesis. As cGMP is degraded by PDE5A, its levels are maintained by inhibition of PDE5A 
by, for example, sildenafil. (d) Sunitinib is a type I tyrosine kinase inhibitor (TKI). Several kinases responsible 
for cell growth and proliferation are hyperactivated in various tumors. TKIs are the largest group of kinase-
inhibiting small molecules. Most of the compounds, including sunitinib, act by blocking the ATP-binding site 
of the target molecule and the binding modes are classified as type I and type II depending on whether the 
compounds bind competitively with ATP using the ‘DFG-in’ (type I) conformation or the ‘DFG-out’ (type II) 
conformation. (e) Celecoxib targets COX-2 (gene symbol: PTGS2). NSAIDs (non-steroidal anti-inflammatory 
drugs) inhibit the enzyme cyclooxygenase (COX), which mediates the conversion of arachidonic acid to 
inflammatory prostaglandins. COX enzyme can exist in two forms: COX-1, the constitutive isoform; or COX-2, 
the inducible isoform. Selective COX-2 inhibitors are a subclass of NSAIDs that have a much greater affinity 
for the COX-2 enzyme, whereas non-selective NSAIDs inhibit both COX-1 and COX-2. (f) The ratios of the 
compounds with functions that are same as or different from reference compounds to hits or non-hits, which is 
based on the summary of the compounds identified using each of 4 compounds (i.e., aldosterone, testosterone, 
sunitinib and celecoxib).
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Although phosphodiesterase 5A (PDE5A) inhibitors (Fig. 5c)23 identified using sildenafil as a reference were 
not classified according to their functions, their hit rate was originally high. Tyrosine kinase inhibitors (Fig. 5d)24 
such as sunitinib could be classified into type I and type II25,26. Although type I inhibitors, with the same function 
as sunitinib, were identified more often than type II, this was not statistically significant.

Non-steroidal anti-inflammatory drugs (NSAIDs), such as celecoxib, inhibit cyclooxygenase (COX) and 
are classified into selective COX-2 inhibitors and non-selective NSAIDs (Fig. 5e)27,28. In addition to celecoxib, 
there are 7 compounds known to be selective for COX-2 (approved nomenclature for gene symbol: PTGS2). 
The number of non-selective NSAIDs was 10. Two hits identified using AI-AAM and celecoxib as the refer-
ence were selective inhibitors, and no non-selective NSAIDs were screened. Non-hit compounds included a 
cyclooxygenase-inhibiting nitric-oxide (NO) donator (CINOD) in addition to selective COX-2 inhibitors and 
non-selective NSAIDs. Moreover, there was a significant difference between the averages of AAM similarity of 
selective COX-2 inhibitors and non-selective NSAIDs regardless of hit or non-hit status (t-test, p = 0.0137*, see 
Supplementary Fig. S9 online).

The summary of hit and non-hit compounds identified using each of these 4 compounds (i.e., aldosterone, tes-
tosterone, sunitinib and celecoxib) as reference is shown in Table 2 and Fig. 5f. All compounds in this table target 
the same proteins as their reference compounds. Each hit and non-hit was further classified based on whether 
or not it had the same pharmacological mechanism of action as the reference. Chi-square test of independence 
showed a statistically significant relationship between two categorical variables: the result of screening (i.e., 
hits or non-hits) and function (p = 0.000065**). The screening using AI-AAM was highly selective of function.

Possibility of novel drug‑target interactions suggested by AI‑AAM
As mentioned above, there were compounds among the hits whose known targets were the same as those of the 
reference compound, while many compounds without information regarding whether they bind to the same 
protein as the references were also identified as hits (Table 1). We examined what kind of molecules were the 
targets when hits were known to target different proteins than the reference compound. As shown in Fig. 6, hits 
were classified on the basis of the biological functions of their known targets (i.e., nuclear receptor, enzyme, 
GPCR, and ion channel). The target information was obtained from DrugBank, and the target proteins were 
classified according to KEGG BRITE29.

The number of hits identified using AI-AAM with aldosterone as the reference was 44, with 37 known to 
target proteins other than NR3C2 (DrugBank, KEGG) (Fig. 6a). However, many of the known targets of the 37 
compounds belonged to the same nuclear receptor family as NR3C2.

The number of hits screened with testosterone as the reference was 70, 52 of which were known to target 
different proteins other than AR (Fig. 6b). Most of these targets belonged to the same nuclear receptor family 
as AR, the targets of testosterone.

Sildenafil is known to target a hydrolase, PDE5A. Although 61% of the 13 hits obtained with sildenafil as the 
reference were known to target enzymes including hydrolases, the known targets of the remaining 31% and 8% 
of hits were GPCRs and ion channels, respectively (Fig. 6c). The known targets of sunitinib are some tyrosine 
kinases, and 67% of the 15 hits identified with sunitinib as reference were known to target the same tyrosine 
kinases as sunitinib. However, 20% and 13% of the hits were known to target other tyrosine kinases and GPCRs, 
respectively (Fig. 6d).

These results, together with those of other studies, indicate that many compounds identified through hits 
target multiple proteins of both the same and different families (see Discussion for more details).

Discussion
In drug discovery, it is needed to obtain the improved compounds with excellent function and reduced side 
effects. To promote drug development for RIDs, we developed a new method of virtual screening, integrating 
AAM into scaffold-hopping, a LBVS technique. By applying this method to 5 compounds in DDrare, many hit 
compounds with diverse structures and the same affinity for a given target were obtained. As the EF values are 
equal to or greater than those of many SBVS techniques30–32, AI-AAM can be considered as the LBVS method to 
find the various compounds that target the same protein as the references with equal efficiency to SBVS methods. 
Moreover, our results show that XC608 identified with BIIB-057 as the reference has pharmacological activity 
equal to the reference. As well, for the compounds screened based on 5 compounds in DDrare, those with the 
same function as the reference tended to dominate the hits. This tendency was statistically significant regarding 
the compounds based on testosterone (target: AR) and celecoxib (target: PTGS2) (see Supplementary Table S3 
and Fig. S9 online). Singam et al.33 reported that agonists and antagonists of AR exhibit distinct binding modes: 
agonists form an H-bond with either Thr877 or Asn705, while this interaction is absent for antagonists. Other 
studies28,34 have reported that three amino acid differences between the COX-2 and COX-1 (gene symbol: PTGS1) 
active sites have major implications for the selectivity profile of inhibitors. In this way, pharmacological action is 

Table 2.   Contingency table for function data with row and column totals.

Same function Different function SUM

Hits 22 9 31

Non-hits 6 24 30

SUM 28 33 61
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presumed to be closely related to the binding site of the target, especially some amino acids, and the differences 
in the function of the drugs are likely related to AAM similarity, as AI-AAM mainly considers the interaction 
between the candidate compound and each of the 20 amino acids. In other words, our results suggest that AI-
AAM describes the interaction accurately, focusing on the essential qualities of interaction. In this way, if their 
known targets are the same as those of the reference compounds, the compounds likely are similar in function 
to the reference compounds, unlike those searched only on the basis of the target information in the databases. 
Moreover, even for such compounds, the structures are not always similar to the reference compounds, con-
tributing to the expanded pharmacological space and the possibility of drug improvement by “hopping” from 
one scaffold to another16.

However, for the hits identified using 5 compounds as the reference, more compounds had known targets that 
differed from the targets of the reference compounds than those that targeted the same protein as the reference 
compounds. This suggests that the former also binds to the targets of reference compounds. The results of the 
calculation of the compound-target free energy also underscore the inference. Even if the known targets of the 
hits are different from those of the reference compounds, in many cases these belong to the same gene family. 
For example, all NR3C1 (GR), NR3C2, NR3C3 (PGR), and AR belong to the nuclear receptor family and have 
the same composition of functional domains, one of which, the steroid-binding domain (LBD), has sequence 

Figure 6.   Hit compounds classified on the basis of the biological functions of their known targets. Hit 
compounds screened on the basis of each reference compound (a aldosterone, b testosterone, c sildenafil, d 
sunitinib). Classification is based on the biological functions of their known targets. Pink letters represent the 
same targets as the reference compounds.
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conservation to a certain degree35. Therefore, there may be some compounds active against multiple proteins of 
this family. However, the compounds that were inferred to interact with proteins of a different family were also 
not negligible. For example, the results showed that 2 of 15 hit compounds identified with sunitinib (target: recep-
tor tyrosine kinases) as the reference were known to target aminergic GPCRs (i.e., DRD2, HTR2A, HTR1A, and 
HRH4); for 9 of 17 hits with BIIB-057 (target: SYK) as the reference, the known targets were GPCRs including 
aminergic GPCRs (i.e., HRH1, HTR1D, HTR1B, DRD2) (see Supplementary Fig. S10 online)36. This corresponds 
to Paolini’s report that a quarter of all of the compounds with multitarget activity (known as promiscuous com-
pounds) are active across different gene families and aminergic GPCRs and protein kinases exhibit the greatest 
intra- as well as inter-gene family promiscuity37. Taken together, these results indicate the possibility of novel 
interaction between compounds and proteins, leading to multi-target information. The percentage of promiscu-
ous compounds to the whole is reported to be approximately 20%38,39. However, we believe that there are still 
many unknown interactions, as many ChEMBL data regarding the activity of compounds against targets are 
not yet reflected in the target information of databases such as DrugBank40,41. The kinase assay in our study also 
showed that XC608 targets many kinases other than SYK, although the target of XC608, identified with BIIB-
057 as the reference, was inferred to be merely SYK using AI-AAM, and it was validated by the experiment. It 
is probably another example to show the successful scaffold-hopping that the compounds with various sets of 
targets were screened on the basis of each reference compound.

In our previous study42, we invented a score Rgene for disease pairs sharing drug targets in RIDs, which rep-
resent a common mechanism of drug action underling drug repositionability. If a hit becomes known to share 
a target with the reference compound, the value of Rgene will rise. This means that the degree of drug reposition-
ability between the indications of a hit and its reference are higher than that before the application of AI-AAM. 
The known target of a hit, prednisolone, screened with testosterone (target: AR) as reference is not AR, but 
NR3C1 (GR). However, one of the indications of prednisolone is muscular dystrophy, which is also known to be 
that of testosterone. Although AR is expressed at high levels in muscle43,44, in the reports about corticosteroids 
for the treatment of Duchenne muscular dystrophy (DMD), this was not mentioned and the authors reported 
that the precise mechanism by which corticosteroids increase strength in DMD is not known45,46. To confirm 
the possibility that prednisolone has pharmacological effects via the target of the reference compound, there is a 
need for further studies, but this may be an example of retrospective validation of this technique for DR. Recent 
approaches linked to network biology, the so-called ‘Network Pharmacology” are moving away from the current 
‘one disease-one target-one drug paradigm of drug discovery’ that is becoming increasingly inefficient47. These 
approaches simultaneously target two or more proteins within disease-associated protein-networks48–50. The 
multi-target information that can be accumulated by our method will serve to clarify the mechanisms of action 
of drugs and, consequently, the disease mechanisms.

Methods
Reference compounds
For experimental validation of the technique
DDrare, a database of Drug Development for Rare diseases, was searched to identify proteins that are related 
to systemic lupus erythematosus (SLE), and SYK was finally selected as the target protein of the study. SLE is 
known as a RID, and there is a high need for new drugs to treat it. SYK is a non-receptor tyrosine kinase and was 
found to be related to many RIDs including SLE. Starting from a known SYK inhibitor candidate BIIB-05751, we 
aimed to discover other lead compounds.

For detailed analysis
DUD-E database, a database of 22,886 active compounds and their affinities against 102 targets52, was searched to 
find compounds that are also included in DDrare, and nine compounds were found. Four of them were removed 
because they were not covered by AI-AAM, such as a nucleic acid analogue (interaction with nucleic acids is 
important rather than with amino acids) and unsaturated fatty acid (too flexible). The remaining five compounds 
were used here as the reference compounds: aldosterone, testosterone, sildenafil, sunitinib and celecoxib.

Chemical library for virtual screenings
For both the prospective and the retrospective studies, we used a commercial library provided by NAMIKI 
SHOJI Co., Ltd. (https://​www.​namiki-​s.​co.​jp/), which is composed of biologically active compounds including 
those in the clinical trial phase and approved drugs. All compounds in the library were preprocessed (desalted 
and normalized) by the MolStandardize module of RDKit v.2018.09.1, and 44,503 compounds preprocessed 
successfully were subjected to screening by AI-AAM.

Calculation of AAM descriptors
AAM descriptors of each compound were calculated as distribution of centers of mass of amino-acid “probes” 
around the compound by using molecular dynamics (MD) simulation. However, its high computational cost 
makes it impractical for use in large-scale virtual screenings. Here we employed deep learning techniques to 
accelerate those calculations. The computational details are as follows:

Preparation of compound conformations
Experimentally determined binding conformations were used for calculating AAM descriptors of reference 
compounds except for BIIB-057. Cocrystal structures were downloaded from RCSB53 in PDB format under the 
PDB ID 2AA2 (aldosterone), 2AM9 (testosterone), 1UDT (sildenafil), 3G0E (sunitinib) and 3LN1 (celecoxib) 
and 3D structures of the ligands were extracted from the PDB files. Binding conformations of BIIB-057 and 

https://www.namiki-s.co.jp/
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library compounds were unknown, and thus we considered 100 conformations generated by Discovery Studio 
2020 (BIOVIA). Charge states at pH = 7.0 of all compounds including the reference compounds were also pre-
dicted by Discovery Studio.

Amino acid probes
In this study, not all 20 natural amino acids were considered but some were selected depending on the charge 
states of the reference compounds to reduce computational costs: asparagine, cysteine (deprotonated), phenyla-
lanine, and threonine for monocationic reference compounds, and histidine (having protons both on the epsilon 
and delta nitrogen) was added for neutral reference compounds. The detailed method is mentioned in “Calcula-
tion of AAM similarity scores” section. To clearly highlight differences in AAM descriptors among amino acids, 
we removed their backbone chains and employed only side chains as the amino-acid probes.

Force fields
The generalized AMBER force field 2 (GAFF2)54 was employed to describe atomic interactions of reference 
and library compounds. Partial atomic charges were obtained by the restrained electrostatic potential (RESP) 
method55. The antechamber56 in the AmberTools19 package was used both to assign atom and bond types and to 
calculate the charges. For the RESP fit, electrostatic potentials of all the compounds were obtained from single-
point quantum calculations at the HF/6-31G* level with the conformations optimized by the PM6 method. All 
of the quantum calculations were carried out by using Gaussian 1657. For amino acid probes, the ff14SB force 
field was employed. As a water model, TIP3P was used.

Calculations of AAM descriptors
In the beginning, we calculated AAM descriptors of various compounds as training data for deep learning by 
MD calculation. All MD calculations were performed using the gromacs-5.1.5 package58. As initial structures 
for the simulations, we considered pair structures of a compound and an amino acid probe which was placed 
randomly in the vicinity of the compound. A water box was created by tleap in AmberTools19 package where a 
minimum distance between any atom in the two molecules and an edge of a periodic box was set to 8.0 Å. A total 
of 100 pair structures were generated per compound, and all the structures were optimized and equilibrated with 
Berendsen thermostat and barostat. Here the coordinates of the compound were fixed, temperature T = 300 K, 
and pressure P = 1 atm. After a 100 ns production run with Nosé-Hoover thermostat and Parrinello-Rahman 
barostat, the AAM descriptor was calculated as an average distribution of a center of mass of the amino acid 
probe over 100 pair structures by using in-house software.

To learn AAM descriptors calculated by MD simulation, we adopted the pix2pix-type generative adversarial 
network model (https://​doi.​org/​10.​48550/​arXiv.​1611.​07004). The original pix2pix was for 2D image data, and 
thus we extended it for 3D distribution data such as AAM descriptors. As explanatory variables, intermolecular 
potential energy surfaces (PES) between each probe atom and compounds were calculated. Note that PES cal-
culations can be performed analytically and are therefore very fast. We confirmed that the obtained predictor 
can predict AAM descriptors of various compounds with sufficient accuracy. Here the number of training data 
(the number of compounds used for generating training data) was 100.

Calculations of AAM similarity scores
AAM similarity scores were defined as the cosine similarities between AAM descriptors of the reference com-
pounds and library compounds, and were calculated by the following process. We first defined a tensor of a 
reference compound for the AAM similarity score calculation as ga(r)θ(r) , where ga(r) is an AAM descriptor 
of an amino acid probe a ( a = 1 ~ Na is an index of amino acids, and Na = 4 or 5) for a reference compound, r is 
a coordinate where the center of mass of the reference compound is taken as the origin, and

Now, the cosine similarity between AAM descriptors of the reference compound and a library compound 
can be defined as follows:

where Ga(r) is an AAM descriptor of an amino acid a for the library compound, s = (X,Y ,Z) is a translation 
vector, R = R(α,β , γ ) is a rotation matrix and α ∼ γ are Euler angles, and
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s and R were determined to satisfy the following condition by grid search with a step size of 1 Å for X, Y , and Z 
and 10 degrees for α , β and γ:

However, this requires high computational cost because the integration over r must be done Na × NR × Ns 
times ( NR and Ns are the numbers of grids for R and s ). In a practical calculation, we reduced it by applying the 
singular value decomposition (SVD) method. Substituting

into Eq. (2), the following expressions can be obtained:

where a cutoff Nµ was determined so that a summation of explained variance ratios exceeded 0.99. It is clear from 
these expressions that the number of integrations over r was decreased from Na × NR × Ns to Na × Nµ × Ns.

We calculated AAM similarity scores of all pairs of the reference compounds and library compounds, and 
extracted compounds whose AAM similarity scores were > 0.7 as candidate compounds.

By the way, AAM descriptors and AAM similarity scores were also calculated to select some amino acids 
as probes described in “Amino acid probes” section. At the beginning of this operation, we calculated AAM 
descriptors for each reference compound, using each of 20 amino acid probes that carried different electric 
charges. Then, AAM similarity scores of all the pairs of two amino acid probes were calculated. With respect to 
each pair of two amino acid probes, the AAM similarity scores for all the reference compounds were added and 
averaged. With this distance matrix, hierarchical clustering was performed. As a result, we got some clusters of 
amino acid probes, and calculated the average of AAM descriptors of the amino acid probes for each cluster. 
Then, from each cluster, we chose an amino acid probe whose AAM descriptor was proximate to the average: 
asparagine, cysteine (deprotonated), phenylalanine, and threonine for monocationic reference compounds, and 
histidine (having protons both on the epsilon and delta nitrogen) was added for neutral reference compounds.

Calculations of Tanimoto coefficients
Morgan fingerprint with radius 2 and 2048 bits was used for calculations of Tanimoto coefficients between library 
and reference compounds. All the calculations were done by using RDKit v.2018.09.1.

The enrichment factor (EF)
EF values are commonly used in virtual screening evaluation as accuracy metrics. The EF value is defined as the 
ratio between the predicted hit rate and the random hit rate30,31. At first, the hit rate of the compounds known to 
target the same proteins as their reference was estimated when AI-AAM was not applied. To calculate the hit rate, 
the number of compounds that were known to target the same proteins as the reference and were contained in the 
subset of the NAMIKI library, which consists of the compounds having the same electrical charge as the reference, 
was counted. This was then divided by the total number of the compounds contained in the library (“random hit 
rate”). Subsequently, the hit rate of the compounds whose known targets were the same as those of the reference 
compound was estimated when AI-AAM was applied. The value was the number of the hit compounds known 
to target the same proteins as the reference divided by the total number of hits (“predicted hit rate”). EF values 
were calculated by dividing the “predicted hit rate” by the “random hit rate” for each reference compound.

In vitro SYK kinase assay
The experiments to evaluate the inhibitory activity levels of compounds were carried out according to the manu-
facturer’s instructions on the SYK Kinase Enzyme System (Promega, Wisconsin, USA) and ADP-Glo™ Kinase 
Assay (Promega). By measuring luciferase activity using the Ensight Multimode Plate Reader (PerkinElmer), 
the inhibition rate was calculated by comparing the OD value to the negative and positive control wells. BIIB-
057 and XC608 were analyzed using an Shimazu Prominence HPLC system equipped with Shiseido capcell pak 
C18 UG120 column (5 μm, 4.6 mm × 150 mm), reversed phase HPLC column eluting with a solvent gradient 
A:B; where A = 0.1% formic acid and 10 mM ammonium acetate in H2O and B = 0.1% formic acid and 10 mM 
ammonium acetate in CH3CN/H2O = 95/5 (Gradient: as follows, Detection: UV 254 nm) at a flow rate 1 mL/
min. The column temperature was kept at 40 ℃. The gradient was from 5 to 100% (20 min gradient % of B and 
5 min isocratic hold).
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Mobility shift assay
Kinase profiling of BIIB-057 and XC608 against a panel of 24 kinases was performed to examine the selectivity 
by using mobility shift assay at Carna Biosciences, Inc. (Kobe, Japan) (https://​www.​carna​bio.​com/​engli​sh/​produ​
ct/​msa.​html). Drug concentrations were both set to 50 nM, and ATP concentrations were approximately equal 
to the Km value for each kinase.

Calculation of binding free energy
The fragment molecular orbital (FMO) method was employed to calculate binding energies between compounds 
and target proteins. As the complex structures of reference compounds and their target proteins, cocrystal struc-
tures (PDB ID: 2AA2, 2AM9, 1UDT, 3G0E, and 3LN1) were used. The complex structures of library compounds 
were created as follows: first, the compounds were translated and rotated with R and s obtained from the processes 
of calculating AAM similarity scores (see “Calculations of AAM similarity scores” in the “Methods”); second, 
the obtained structures were combined with protein structures extracted from the cocrystal structures of the 
corresponding reference compounds. All complex structures were improved by optimizing conformations and 
positions of the compounds using the DFTB method (200 steps) with GAMESS v2020.259. Here the structures of 
the target proteins were kept fixed. FMO calculations (MP2/6-31G* level of theory) were then performed based 
on the improved complex structures. Here the target proteins were fragmented into amino acids, and solvent 
effects (water) were included using the PCM method. The binding energies were calculated by subtracting the 
sum of energies of the compound alone and the target protein alone from the energy of the complex structure.

Statistical analysis
All statistical analyses were performed with Excel. To identify the relationship between two categorical variables, 
Chi-square test was performed. To calculate the probability of significant difference between two groups, two-
tailed t-test (unpaired) was performed. *P < 0.05 were considered as statistically significant. Before the t-test, 
F-test was performed to determine if the two samples had equal variance.

Data availability
The datasets and the chemical structures written in SMILES notation analyzed during the current study are 
available from the corresponding author on reasonable request.
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