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Multi‑variate model of T cell 
clonotype competition 
and homeostasis
Daniel Luque Duque 1, Jessica A. Gaevert 2,3, Paul G. Thomas 2,3, Martín López‑García 1, 
Grant Lythe 1 & Carmen Molina‑París 1,4*

Diversity of the naive T cell repertoire is maintained by competition for stimuli provided by self‑
peptides bound to major histocompatibility complexes (self‑pMHCs). We extend an existing bi‑variate 
competition model to a multi‑variate model of the dynamics of multiple T cell clonotypes which 
share stimuli. In order to understand the late‑time behaviour of the system, we analyse: (i) the 
dynamics until the extinction of the first clonotype, (ii) the time to the first extinction event, (iii) 
the probability of extinction of each clonotype, and (iv) the size of the surviving clonotypes when 
the first extinction event takes place. We also find the probability distribution of the number of cell 
divisions per clonotype before its extinction. The mean size of a new clonotype at quasi‑steady state 
is an increasing function of the stimulus available to it, and a decreasing function of the fraction of 
stimuli it shares with other clonotypes. Thus, the probability of, and time to, extinction of a new 
clonotype entering the pool of T cell clonotypes is determined by the extent of competition for stimuli 
it experiences and by its initial number of cells.

An adult human has approximately 4× 1011 T  cells1, each of them expressing about 3× 104 identical T cell 
receptors (TCRs) on its  surface2. These receptors recognise self-peptides bound to major histocompatibility 
complexes (MHCs), which as bound binary complexes are called self-pMHCs. The interaction between TCRs 
and self-pMHCs induces a T cell to synthesise proteins important for survival and homeostatic  proliferation3–6. 
While the number of distinct TCRs in the naive T cell  repertoire7 is at least 107–108 , the total number of T cells 
is such that most TCRs are present on many different T cells. These sub-populations of T cells sharing the same 
TCR are called T cell clonotypes. If we consider a single naive T cell clonotype with relatively little competition 
for self-pMHCs with other clonotypes, then its population dynamics can be modelled as a uni-variate birth 
and death  process8. Thus, for these TCR clonotypes, self-pMHC stimulation promotes establishment in the 
 periphery9–12. Competition implies that clonotypes are susceptible to extinction.

TCRs are inherently cross-reactive: one TCR can interact with many different  pMHCs13. Individual TCRs 
have been estimated to recognize 106 different  pMHCs14, suggesting an overlap in the sets of self-pMHCs that 
stimulate different T cell clonotypes. Without this overlap, extinction of a clonotype would decrease the coverage 
of the TCR repertoire over the space of foreign peptides, which is known to be maintained even in the presence 
of such extinction  events15,16.

A similar mathematical model can be used for two clonotypes which compete for self-pMHC survival stimuli. 
In this case, a bi-variate Markov competition process can be defined as in Ref.17. This bi-variate model can be 
used to show that extinction, for sufficiently late times, is certain for both clones, i.e., after a transient time one 
clonotype will become extinct and the remaining one will behave as described by the uni-variate  model8. This 
is a closer representation of the competition for survival stimuli experienced by the naive T cell  repertoire11,12. 
However, the highly oligoclonal nature of immune  responses18 and the occurrence of similar  TCRs19 serve as 
evidence that the self-pMHC recognition profile overlap will typically extend to more than two clonotypes.

Here, we propose a generalisation of the model presented in Ref.17 to characterise the competition of a num-
ber, η , of different T cell clonotypes ( η ≥ 3 ) with significant self-pMHC recognition overlap. Significant in this 
context means that the number of self-pMHCs shared by the clonotypes under consideration is so large that they 
cannot be modelled as single  clonotypes8, nor as pair-wise  competitors17. It is assumed that naive T cells of a 
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given clonotype exit the thymus at roughly the same  time20, and that after this time they are not generated again 
by the thymus, given the potential diversity of  recombination21,22. Thus, the population dynamics of a naive T cell 
clonotype in the periphery depends on its homeostatic birth and death rates, and its extinction is  possible20. Here, 
we will show that extinction of any clonotype is certain for sufficiently late times, and thus, some time after its 
thymic output into the periphery, there will be one fewer clonotype competing for stimuli. Mathematically this 
decrease in the number of competing clonotypes would continue until two remain, and finally until only one is 
left, taking us back to the models described in Refs.8,17, respectively.

Our main interest is in the perturbation of established clonotypes in the periphery, specifically by the intro-
duction of a new one that competes with them. We study the dynamics of competition before the extinction of 
the first clonotype, and the population distribution after the first extinction event. This is relevant both if (1) the 
first extinction event corresponds to the clonotype that most recently arrived in the periphery, since it informs 
us on how its introduction modifies already homeostatically established clonotypes at both short (before extinc-
tion), and long (after extinction) timescales, or if (2) the first extinction event corresponds to an established 
peripheral clonotype, since it informs us on the probability a newly arrived clonotype has to become established.

In “Stochastic multi-variate model of naive T cell clonotype competition for self-pMHC stimuli” we introduce 
the competition model which describes the population of a number, η , of different naive T cell clonotypes, as 
well as the recognition tripartite network of self-pMHCs used to calculate their division (birth) rates. We also 
consider two special cases of clonotype competition in the periphery. “Quasi-stationary probability distribution” 
focuses on the quasi-stationary probability distribution (QSD), which we approximate making use of two addi-
tional processes: one in which extinction is not possible, and another where each clonotype has one immortal 
 cell23,24. In “Study of clonal extinction” we prove that for sufficiently late (but finite) times, all clonotypes will 
become extinct. We also introduce the stochastic descriptors used to study the behaviour of the competition 
around these extinction events. Finally, in “Results” we use the QSD and the stochastic descriptors to analyse 
the perturbation exerted on two established clonotypes by a new clonotype entering the periphery. In this case 
we analyse four different competition scenarios for the three clonotypes. We also compare the behaviour of the 
competition process when the new clonotype is in both of the special cases discussed in “Stochastic multi-variate 
model of naive T cell clonotype competition for self-pMHC stimuli”. We end with a discussion in “Discussion”.

Stochastic multi‑variate model of naive T cell clonotype competition for self‑pMHC 
stimuli
Let us consider two sets: the set, C , of η different clonotypes with a significant overlap in the self-pMHCs they 
recognise (see Fig. 1 of Ref.25), and Q , the set of all self-pMHCs which can stimulate clonotypes in C . We will 
describe the number of T cells belonging to each of the η clonotypes at time t as a continuous time multi-variate 
Markov process, X =

{

(X1(t), . . . ,Xη(t)) : t ≥ 0
}

 , over the state space S =
{

(n1, . . . , nη) : ni ≥ 0,∀i
}

= N
η
0 , 

where Xi(t) represents the number of cells of clonotype i at time t (for 1 ≤ i ≤ η ), and X(t) =
(

X1(t), . . . ,Xη(t)
)

 
is the random vector describing the population of η clonotypes being modelled at time t.

We assume that all cells of a particular clonotype exit the thymus at roughly the same time. However different 
clonotypes can exit the thymus at different times. Since we are interested in modelling the competition dynamics 
of all clonotypes in C , we consider the initial time t = 0 in our process X  so that all clonotypes in C are already 
present in the periphery.

The division rate of cells belonging to a clonotype depends on the competition between clonotypes for shared 
self-pMHC  stimuli11,12,25,26. To this end we consider a tripartite recognition network (see Fig. 1). In a recognition 
network each clonotype (green circle) is able to receive stimuli from a set of self-pMHCs (blue circles), and this 
ability is represented by an edge between the clonotype and the self-pMHC. We partition all peripheral naive 
T cell clonotypes as follows: clonotypes in the periphery are in C , if they are explicitly modelled, or in M , if 

self-pMHCs (Q)
T cell clonotypes

explicitly modelled (C)
T cell clonotypes

not explicitly modelled(M)

q

iQi

Cq

...

...

Figure 1.  Tripartite network of TCR-self-pMHC recognition. Each blue circle represents a self-pMHC and each 
green circle a T cell clonotype. A clonotype is explicitly modelled if it is in C , or part of the periphery but not 
explicitly modelled, if it is in M . This implies C ∩M = ∅ . An edge between a blue and a green circle represents 
the ability of that T cell clonotype to receive stimulus from the self-pMHC. For a given self-pMHC, q ∈ Q , the 
set of clonotypes it can stimulate in C is Cq , and for a given clonotype, i ∈ C , the set of self-pMHCs that can 
stimulate it is Qi.
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they are not explicitly modelled. We note that this definition implies C ∩M = ∅ . Each clonotype i ∈ C has an 
associated set of self-pMHCs that stimulate it, denoted by Qi (see Fig. 1).

We assume all self-pMHCs provide the same (constant) rate of homeostatic proliferation stimulus, and denote 
it by γ8,17. Then, we can write the total homeostatic proliferation stimulus each naive T cell of clonotype i receives 
if the system of η clonotypes is in state n = (n1, . . . , nη) ∈ S as follows

where nq is the total number of naive T cells in the periphery ( C ∪M ) that are stimulated by self-pMHC q 
(see Fig. 1). With this stimulus rate we can now define the birth rate of clonotype i in state n ∈ S , as the transi-
tion rate from state n to state n(+i):=(n1, . . . , ni−1, ni + 1, ni+1, . . . , nη) , which is given by

Similarly, the transition rate from state n ∈ S to state n(−i):=(ni , . . . , ni−1, ni − 1, ni+1, . . . , nη) is the death rate 
of clonotype i, and it is given by

If ni = 0 for any clonotype i, with 1 ≤ i ≤ η , its birth and death rates will both be zero, in agreement with our 
assumption on thymic production. Thus, we observe that the set of states with at least one entry equal to zero, 
A =

{

(n1, . . . , nη) ∈ S : ni = 0 for any i
}

 , with 1 ≤ i ≤ η , is an absorbing set, and the state (0, . . . , 0) is an 
absorbing state representing the extinction of all η  clonotypes27,28.

Let us consider two states, n = (n1, . . . , nη) and m = (m1, . . . ,mη) in S . The transition probability from n to 
m in a small time interval, �t , is defined as

and in the limit �t → 0+ , this transition probability satisfies

The clonotypes in C are explicitly modelled by the process X  , yet there are other clonotypes in the naive T cell 
repertoire which can also receive stimuli from self-pMHCs in Q , but which do not overlap significantly with the 
clonotypes in C . These clonotypes are contributing to the competition for stimuli as a “sink”, in the sense that 
they are taking a portion of the stimuli, but their population dynamics is not explicitly modelled. We denote the 
set of these clonotypes by M and define its cardinality to be |M| = M . We define Cq as the set of clonotypes in C 
which can receive stimuli from self-pMHC q ∈ Q , and separate nq into the number of cells in Cq , which receive 
stimuli from self-pMHC q, and the number of cells in M , which receive stimuli from self-pMHC q. Since we 
do not explicitly model the cells in M , we will assume these populations are homeostatically  established8, and 
thus, have a constant size (see Eq. (A.9) in the Supplementary Material).

Approximation of the transition rates
In what follows we illustrate the definition of the transition rates in the case η = 3 ; that is, the case where only 
three clonotypes are explicitly modelled. For the general formulation of these rates, details have been provided 
in Appendix A (see Supplementary Material). We focus on this specific case for two main reasons. First, when 
considering the generalisation of a two-dimensional competition model, a three-dimensional model is the sim-
plest case to be studied. Furthermore, as shown in Appendices E, F, and G in the Supplementary Material, after 
a finite transient time a clonotype will become extinct, and the competition process can be modelled using a 
process with dimension one fewer than the original. Second, the computational cost of calculating quantities of 
interest for a model with more than three clonotypes is presently too high, making parameter exploration, and 
analysis of such scenarios intractable.

We first write Eq. (1) making use of the following definition. Let niq , for i = 1, 2, 3 and q ∈ Qi , be the number 
of cells not of clonotype i that can receive stimulus from self-pMHC q; that is, niq = nq − ni for i = 1, 2, 3 , so 
that Eq. (1) becomes

By writing the per-cell birth rate in this manner it is easy to see that it depends not only on clonotype i, but on 
all other clonotypes which compete for stimuli from self-pMHCs in Qi . In addition, we can subdivide the set 
of self-pMHCs that can stimulate clonotype i into sets Qk

ij , where j denotes the number of other clonotypes that 
the stimulus is shared with (including the case j = 0 , where the stimulus is not shared with other clonotypes), 
and k indexes the different possible choices of j clonotypes (see Eq. (A.2) and Eq. (A.3) in the Supplementary 
Material). Then, using these subsets we can write Eq. (4) for clonotype 1 as follows

(1)�(i)(n) =
∑

q∈Qi

γ

nq
,

(2)�
(i)
n = ni�

(i)(n).

(3)µ(i)
n = µini .

pnm(�t) = P

(

X(t +�t) = m

∣

∣

∣

∣

X(t) = n

)

,

pnm(�t) =















�
(i)
n �t + o(�t), if m = n

(+i),

µ(i)
n �t + o(�t), if m = n

(−i),

1−
�η

i=1(�
(i)
n + µ(i)

n )�t + o(�t), if m = n,
o(�t), otherwise.

(4)�(i)(n) =
∑

q∈Qi

γ

ni + niq
, for i = 1, 2, 3.
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We now take into account the set of clonotypes not explicitly modelled, M . Thus, we can further partition the 
stimulus shared by clonotype 1 with clonotypes 2 and 3 by the number of clonotypes in M with which the 
stimulus is being shared (see Eq. (A.6) in the Supplementary Material). Using this partition of the stimulus we 
can then consider a mean field approximation (see Eq. (A.8) in the Supplementary Material) and Ref.8), which 
can be simplified by making use of the Poisson approximation for binomial distributions (see Eq. (A.11) and Eq. 
(A.12) in the Supplementary Material). By doing so we introduce two new parameters: the mean niche overlap 
νkij , which represents the expected number of clonotypes in M that receive stimulus from self-pMHCs in Qk

ij , 
and 〈n〉 , the average number of cells for each clonotype in M . Then, the per-cell birth rate of clonotype 1 can 
be approximated as

where ϕ1 is the total stimulus available to clonotype 1, and pk1,j is the probability of a self-pMHC in Q1 being in 
Qk

1,j ; that is, ϕ1 = γ |Q1| , and pk1,j = |Qk
1,j|/|Q1| . We note that given these definitions of ϕi and pkij , we have the 

following relations (see Eq. (A.15) in the Supplementary Material):

Finally, the per-cell birth rate shown in Eq. (6) can be simplified for two limiting cases. The first one when νkij ≪ 1 
for all νkij , called the “hard niche” limit, which is characterised by weak competition with clonotypes not explicitly 
modelled. In this case the birth rate for clonotype 1 simplifies to

The second case, where νkij ≫ 1 for all νkij , called the “soft niche”, in which there is significant competition with 
clonotypes not explicitly modelled. In this case the birth rate of clonotype 1 is approximated by

Quasi‑stationary probability distribution
We now want to study the behaviour of η competing clonotypes before the first extinction event occurs. In 
order to do so, we introduce the quasi-stationary probability distribution (QSD), which describes the late time 
behaviour of the process conditioned on non-extinction23,29,30. We introduce pn(t) , the probability that at time 
t the competition process X  is in state n , given that it started in state n0 , i.e.,

(5)

�(1)(n) =
∑

q∈Q1
1,0

γ

n1 + n1q
+

∑

q∈Q1
1,1

γ

n1 + n2 + n12q

+
∑

q∈Q2
1,1

γ

n1 + n3 + n13q
+

∑

q∈Q1
1,2

γ

n1 + n2 + n3 + n123q
.

(6)

�(1)(n) = ϕ1 · p
1
1,0 · e

−ν11,0

M
∑

r=0

(

ν11,0
)r

r!

1

n1 + r�n�

+ ϕ1 · p
1
1,1 · e

−ν11,1

M
∑

r=0

(

ν11,1
)r

r!

1

n1 + n2 + r�n�

+ ϕ1 · p
2
1,1 · e

−ν21,1

M
∑

r=0

(

ν21,1
)r

r!

1

n1 + n3 + r�n�

+ ϕ1 · p
1
1,2 · e

−ν11,2

M
∑

r=0

(

ν11,2
)r

r!

1

n1 + n2 + n3 + r�n�
,

(7)

ϕ1p
1
1,2 =ϕ2p

1
2,2 = ϕ3p

1
3,2,

ϕ1p
1
1,1 =ϕ2p

1
2,1,

ϕ1p
2
1,1 =ϕ3p

1
3,1,

ϕ2p
2
2,1 =ϕ3p

2
3,1.

(8)�
(1)
n = ϕ1n1

(

p11,0
n1

+
p11,1

n1 + n2
+

p21,1
n1 + n3

+
p11,2

n1 + n2 + n3

)

.

(9)

�
(1)
n ≈ ϕ1n1

(

p11,0

n1 + ν11,0�n�
+

p11,1

n1 + n2 + ν11,1�n�

+
p21,1

n1 + n3 + ν21,1,�n�
+

p11,2
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)

.

(10)pn(t) = P

(

X(t) = n

∣

∣

∣

∣

X(0) = n0

)
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Let us consider the absorbing set A =
{

(n1, . . . , nη) : ni = 0 for any i
}

 and denote by pA(t) the probability that 
at time t the process is not in A . Now, we define the probability that the process is in state n ∈ S \A at time t 
given that absorption into A has not occurred yet, as follows

Finding an analytical solution for the probabilities defined in Eq. (11) is in general not possible (see Appendix B 
in the Supplementary Material), and thus, the QSD will be numerically approximated. We discuss two useful 
approximations in the following section, which were proposed in Refs.23,24.

Approximation of the QSD: two auxiliary processes
We approximate the QSD making use of two auxiliary competition  processes24. In the first approximation we 
will consider the multi-variate Markov process X (1) =

{(

X
(1)
1 (t), . . . ,X(1)

η (t)
)

: t ≥ 0
}

 , where X(1)
i (t) is the 

number of cells of clonotype i at time t. The birth rate of clonotype i in state n = (n1, n2, . . . , nη) , �1,(i)n  , is given 
by Eq. (A.14) in the Supplementary Material, and its death rate by

This process, so defined, makes the extinction of clonotypes impossible. Thus, the state space of X (1) is the set 
of states where no extinction has occurred

The second process we will consider is X (2) =
{(

X
(2)
1 (t), . . . ,X(2)

η (t)
)

: t ≥ 0
}

 , where the birth rates, �2,(i)n  , are 
the same as those for X  and X (1) , and we consider an immortal cell present in each clonotype; that is, the death 
rates are given by

and the state space of X (2) is also A0.
To approximate the QSD for a multi-variate competition system, we will calculate the stationary probability 

distribution of the two auxiliary processes defined  above23,24. To this end we first separate A0 into subsets, which 
we will call levels, as follows

for k = η, η + 1, η + 2, . . . . Then, these levels can be ordered as follows

and the states in each level can be ordered using the colexico-graphical order, sometimes called reverse lexico-
graphical  order31 (see Appendix C in the Supplementary Material). Note that we start at L0(η) , since any state 
with fewer than η cells in total does not belong to A0 by definition. Using a combinatorial  argument32, we find that

We now introduce the plane 
∑η

i=1 ni = N as a reflecting boundary on our state space. This means that we only 
consider states which have at most N cells in total. In practice, this truncation value can be chosen so that the 
probability of exceeding a total number of cells, N, in the population is negligible (see “Study of clonal extinc-
tion”). Then, the number of states in A0 is

Finally, the stationary probability distributions of X (1) and X (2) can be computed with a linear level-reduction 
 algorithm33 (see Appendix D in the Supplementary Material), an outline of which is given in Algorithm D.1 in 
the Supplementary Material.

Study of clonal extinction
We next studied the behaviour of the competition process X  and its extinction events with the use of stochastic 
descriptors and first step arguments. We first show that our system will reach the absorbing state with probability 
1 (see Appendix E in the Supplementary Material); that is, all clonotypes are guaranteed to become extinct for 
late enough times. Then, we show that total extinction is not only guaranteed, but it occurs in finite time (see 
Appendix F in the Supplementary Material). However, it is important to note that this finite time could be on 

(11)qn(t) = P

(

X(t) = n

∣

∣

∣

∣

X(t) /∈ A

)

=
pn(t)

pA(t)
.

µ1,(i)
n =

{

µini , if ni > 1,
0, if ni = 1.

(12)A0 = S \A = {n ∈ S : ni > 0 for all 1 ≤ i ≤ η}.

µ2,(i)
n = µi(ni − 1),

L0(k) =

{

(n1, . . . , nη) :

η
∑

i=1

ni = k and ni > 0 for all i

}

,

L0(η) ≺ L0(η + 1) ≺ L0(η + 2) ≺ L0(η + 3) ≺ · · · ,

(13)L0k:=|L0(k)| =

(

k − 1

η − 1

)

.

|A0| =

N
∑

i=η

L0i =

N
∑

i=η

(

i − 1

η − 1

)

=

(

N

η

)
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a timescale much longer than those considered in biology, making the populations effectively immortal on a 
biological timescale.

Since the mean time to the extinction of all clonotypes is finite, the mean time to the first extinction event 
is also finite. We found an expression for the mean time to the first extinction event (see Appendix G in the 
Supplementary Material), to understand the timescales at which a model with η clonotypes can be simplified 
to a model with η − 1 clonotypes. Following this, we studied the distribution of clonal sizes at the time of the 
first extinction event to study changes in the population of surviving clonotypes (see Appendix H in the Sup-
plementary Material). In calculating this probability distribution, we obtain two important descriptors of the 
model. First, the probability distribution of clonal sizes at the time of the first extinction event U , which we can 
separate into the following probabilities

and second, the probabilities of each clonotype being the first to become extinct given an initial state n

Finally, we studied the distribution of divisions before a clonotype becomes extinct given an initial state n (see 
Appendix J in the Supplementary Material); that is, we considered

which can be used as a measure of proliferation of a T cell clonal family before its extinction.

Results
We now focus our study to the dynamics of two established clonotypes, which compete for self-pMHC stimuli 
with a third, new, clonotype that has just exited the thymus. Thus, the two clonotypes will be in a state defined 
by the mean of their two-dimensional QSD (and in the absence of the newly arrived clonotype). In this case, 
there are only two pkij probabilities for each clonotype. The probability pi,0 that a self-pMHC is recognised only 
by clonotype i, and the probability pi,1 that a self-pMHC is recognised by both clonotypes. Thus, by Eq. (A.15)  
in the Supplementary Material, we only need to choose a value for one of the probabilities to determine the rest.

We will denote the new clonotype as clonotype 1, and the established ones as clonotype 2 and clonotype 3, 
respectively. We consider all three clonotypes to have the same total homeostatic stimulus; that is, we assume 
ϕ1 = ϕ2 = ϕ3 = 10 cells · year−120. Before the arrival of clonotype 1 we hypothesise Q2 ∩Q3 to be in the soft 
niche, and the remaining self-pMHCs in the hard niche. We remind the reader that “hard niche” implies little 
competition with clonotypes not explicitly modelled, and “soft niche” that self-pMHCs are significantly com-
peted for with clonotypes not explicitly modelled. Figure 2A shows the competition scenario described for the 
two established clonotypes, where the size of each Qi circle represents the magnitude of ϕi , and the colour of 
each region represents the magnitude of νkij , with a darker colour indicating a greater value. In this competition 
scenario the values of p2,1 and ν2,1 were chosen to be 1/3 and 1, respectively.

(14)U
i
n,m = P

(

the process is at statem at the
time of the first extinction event

∣

∣

∣

∣

X(0) = n,
and clonotype i
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)

,

(15)U i
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(
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∣

∣

∣

∣
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)

.
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Figure 2.  (A) Competition scenario considered for the two established clonotypes, where they compete for 1/3 
of their stimulus. The shaded region represents the subset of self-pMHCs considered to be in the soft niche, with 
a mean niche overlap value ν2,1 = ν3,1 = 1 . (B) Marginal distribution of the QSD for clonotype 2, approximated 
using the processes X (1) and X (2) defined in “Approximation of the QSD: two auxiliary processes”.
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Making use of the method described in Appendix G (see Supplementary Material), we calculated the mean 
time to extinction for all initial states with at most 102 total cells and found them to range between 80 to 125 
years. Given these long extinction times it was appropriate to approximate the QSD of this competition pro-
cess. In Fig. 2B we plot the marginal distribution for clonotype 2. We show this distribution for only one of the 
clonotypes, since the competition between them is symmetric, and thus clonotypes 2 and 3 are identical before 
the introduction of clonotype 1. We observe that for the competition scenario considered, with most of the self-
pMHCs in the hard niche, the approximation X (1) better describes the behaviour of the system (see Gillespie 
simulations in Fig. 2B). However, we note that shifting X (2) by one cell results again in a good approximation. 
This is to be expected for these small population sizes and for the hypothesis of an immortal cell in this process.

Once clonotype 1 enters the periphery we will consider four different competition scenarios across a spectrum 
of symmetries, ranging from full symmetry to complete asymmetry. In the first scenario, Fig. 3A, we assume all 
clonotypes to be competing symmetrically; that is, all one-on-one competitions have the same probability. For 
the second scenario, Fig. 3B, we hypothesise symmetric competition between clonotype 1 and clonotypes 2 and 
3, but these competitions are greater than the competition between clonotypes 2 and 3, leaving the new clonotype 
at a disadvantage. Our third scenario, Fig. 3C, has clonotype 1 competing more for homeostatic stimuli with 
clonotype 3 and less with clonotype 2, giving clonotype 2 an advantage. Our final scenario, Fig. 3D, represents 
the case of extreme asymmetry in which clonotypes 1 and 3 compete completely for stimuli. In all scenarios, 
we consider self-pMHCs recognised by more than one clonotype to be in the soft niche, with the value of the 
mean niche overlap increasing as the number of clonotypes increases. For the self-pMHCs recognised only by 
clonotype 1, we consider both hard and soft niches.

The diagrams in Fig. 3 were used as a guide to choose the probabilities shown in Table 1. Since we are con-
sidering three different clonotypes, we can use Eq. (7) to determine all the probabilities with only the four values 
given in Table 1. In the case of a single clonotype with no direct competitors ( η = 1 ), the mean time to extinction 
for mean niche overlap values greater than 10 is  negligible8. Therefore, the values chosen for the mean niche over-
lap in our competition scenarios were: 1 for self-pMHCs recognised by two clonotypes, and 10 for self-pMHCs 
recognised by three clonotypes. Since we are considering clonotypes 2 and 3 to be homeostatically established, 

Q1

Q2 Q3

(A) Symmetric competition.

Q1

Q2 Q3

(B) Symmetric competition between
clonotype 1 and clonotypes 2 and 3, but
greater than the competition between
clonotypes 2 and 3.

Q1

Q2 Q3

(C) Clonotype 1 has lower competition
with clonotype 2, and greater competi-
tion with clonotype 3.

Q1

Q2 Q3

(D) Clonotype 1 competes completely
with clonotype 3.

Figure 3.  Competition scenarios when a new clonotype is introduced in a two-dimensional clonotype system. 
Shaded areas represent sets of self-pMHCs that are in the soft niche, with a darker shade meaning a lager value 
of the mean niche overlap ( νkij ). Cross-hatched areas represent regions where we consider both the soft and hard 
niche cases.
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their initial state will be the mean of the QSD for the competition between them rounded to the nearest integer, 
which with the chosen parameters is the state (8, 8) (see Fig. 2B).

Clonal distributions at the first extinction event
Using the method described in Appendix H in the Supplementary Material, we calculate the distribution of 
clonal sizes at the time of the first extinction event for the four different scenarios, and with the new clonotype 
in the hard or soft niche. Figure 4 shows the distribution of clonal sizes with an initial state, n0 = (4, 8, 8) , as 
well as the probability for each clonotype to be the first to become extinct, U i

n0
 . A triangle represents the initial 

state considered, n0 = (4, 8, 8) , and a diamond represents the mean of the resulting distribution of clonal sizes 
at the time of the first extinction event.

Our results indicate that the probability of the new clonotype (clonotype 1) being the first to become extinct 
drastically increases when we compare the hard and soft niche cases in all the scenarios except (d). This shows 
that if the clonotype introduced is in the soft niche, its probability of extinction is greater, putting it at a large 
disadvantage against the other two homeostatically established clonotypes. In scenario (d) however, we see that 
not only does the probability of extinction of clonotype 1 change, but both U1

n0
 and U3

n0
 see a marginal increase. 

This different behaviour can be explained given that for (d) not only a new clonotype is being introduced in the 
system, but clonotype 3 changes from hard to soft niche, since this is a quality of the set of self-pMHCs and not 
of the clonotype itself. This implies that while in scenario (d) clonotype 1 sees no significant change in its extinc-
tion probability between the hard and soft niche cases, if it exits the thymus with more clonotypes that will also 
compete with it, this will reduce the advantage of clonotypes it competes with. By comparing the probabilities 
of extinction for clonotype 1 in the four different scenarios, we observe that in the hard niche case the most 
favourable scenario for its survival is scenario (a), of symmetric competition. This is the scenario in which it 
has less competition with the other two clonotypes overall. On the other hand, when we consider the soft niche 
case, we see that the most favourable scenario is scenario (d), in which the new clonotype competes completely 
for stimuli with an established clonotype. One likely explanation of this seemingly counter-intuitive behaviour is 
that, in scenario (d) not only is clonotype 1 exerting pressure on the established clonotype, but other clonotypes 
not explicitly modelled are doing so too, implying that the competitive pressure from clonotypes in M is shared 
with between clonotypes 1 and 3.

If we focus on the cases when clonotype 1 is not the first to become extinct, we see that in scenario (a) we 
expect its size to have rebounded into an established state in which both surviving clonotypes have fewer cells 
than the mean of the QSD of two competing clonotypes (before clonotype 1 was introduced). As a result the 
new clonotype expanded, while the established one contracted. In the soft niche we see that the size of the new 
clonotype does not bounce back to a homeostatic state, but instead both surviving clonotypes see a reduction 
in their number of cells. In scenario (b) for the hard niche case, we again see a move to a homeostatic state. 
However, there is little change in the size of the new clonotype, and a decrease in the size of the established 
clonotype to match the population of the surviving one. In the soft niche for this scenario we see a similar 
behaviour coupled with a reduction in the population size of clonotype 1. In scenario (c) we see a break from 
the symmetry observed between U2

n0
 and U3

n0
 in the previous scenarios, since the competition considered is no 

longer symmetric. If clonotype 2 is the first to become extinct, we expect the population of clonotype 3 (which 
has a greater competition with clonotype 1) to decrease until it matches that of clonotype 1. On the other hand, 
if clonotype 3 becomes extinct first we see very little change in the population of clonotype 2 (which has a lower 
competition with clonotype 1), and only a minor change in the size of clonotype 1. Lastly, in scenario (d) we see 
an interesting change in the shape of the clonal size distribution when clonotype 2 becomes extinct first. Since 
clonotypes 1 and 3 directly compete for all stimuli, they behave as a single population. Thus, the distribution is 
no longer centred around a point, but around a line where the sum of both populations is constant. However 
given the uneven initial state, the distribution has more density on the end that has clonotype 3 surviving with 
more cells than clonotype 1. If clonotype 3 is the first to become extinct, we see the same behaviour observed 
before where the population of the larger surviving clonotype decreases to match that of the new clonotype. In the 
soft niche we see an interesting behaviour when clonotype 2 is the first to become extinct. Since both remaining 

Table 1.  Parameters for the competition scenarios shown in Fig. 3. The base value considered for ϕ is 10, and 
we also consider the following values: ϕ = 1, 102.

(a) (b) (c) (d)

p11,1 2/9 1/3 1/9 0

p21,1 2/9 1/3 5/9 2/3

p11,2 1/9 1/9 1/9 1/3

p22,1 2/9 2/9 2/9 0

νki,1 1  clonotype8

ν1i,2 10  clonotypes8

ϕi 1, 10, 102 cells · year−120

µi 1 year−1

〈n〉 10 cells
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Figure 4.  Distributions of clonal sizes at the time of the first extinction event (each column, Ui for i = 1, 2, 3 , 
represents the extinction of clonotype i in the hard and soft niche cases (clonotype 1), green and blue, 
respectively, with initial state n0 = (4, 8, 8) using the method described in Appendix H in the Supplementary 
Material). The fourth column shows the probability for each clonotype to be the first becoming extinct, U i

n0
 . 

Each panel (a, b, c and d) corresponds to one of the competition scenarios shown in Fig. 3. A triangle represents 
the initial state and a diamond indicates the mean of the resulting distribution of clonal sizes at the time of the 
first extinction event.
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clonotypes are in the soft niche, the distribution has most of its density accumulated around state (1, 1), implying 
that even if these two clonotypes survive they can very easily become extinct due to their small population sizes.

We now turn our focus to the U1 distributions. We can see that even when the new clonotype is the first to 
become extinct, it has a negative effect on the populations of the established clonotypes, reducing their aver-
age sizes in all cases. To better understand the effect the new clonotype has on the homeostatically established 
clonotypes, we calculate the probability for each clonotype to become extinct as a function of the initial number 
of cells in the new clonotype and plotted them in Fig. 5.

The first thing we observe is that when comparing the hard and soft niche cases (clonotype 1) in each scenario, 
the probability of clonotype 1 becoming extinct first is always higher in the soft niche than in the hard niche 
case. For clonotypes 2 and 3 we see the opposite behaviour, with these clonotypes being more likely to become 
extinct first in the hard niche case. The only exception to this (by a minimal margin) is clonotype 3 in scenario 
(d), since in this case clonotype 3 has the added disadvantage of being in the soft niche, which increases its prob-
ability to become extinct. Another property we observe of the probability of extinction is that it very quickly 
becomes saturated; that is, it shows little sensitivity to changes in the number of initial cells in the new clonotype 
after a certain value (or threshold). The threshold level depends on the competition scenario considered. This 
implies that even a new clonotype with a small initial population can perturb the two-dimensional system and 
make one of the established clonotypes more likely to become extinct first. The largest difference between hard 
and soft niche cases is seen in scenario (a) for clonotype 1, where the probability of clonotype 1 being the first 
to become extinct is almost halved when comparing the soft to the hard niche. This is due to the fact that in this 
case the value of p11,1 is highest, meaning that the proportion of self-pMHCs shared with clonotypes 2 and 3 is 
the lowest. Thus, a change in the mean niche overlap has a very strong effect on clonotype 1, since it changes 
from a scenario of low competition to one of complete competition. This is the same reason why we see such 
little change in scenario (d), since clonotype 1 is already competing for all of its stimuli and a change in the 
mean niche overlap has a much weaker effect. From this figure we also learn that in the hard niche case there 
are different optimal competition scenarios for the survival of the new clonotype. For initial numbers of cells 
fewer than six, we find the lowest probability of extinction in the symmetric competition scenario (a). For values 
between 6 and 30 the optimal competition is the asymmetrical competition scenario (b). Finally, for values above 
30 complete competition with an established clonotype gives clonotype 1 the lowest probability of becoming 
extinct first. Interestingly, this behaviour is completely lost in the soft niche case, where we see that there is only 
one optimal competition scenario for all possible initial numbers of cells, namely complete competition with 
another clonotype (scenario (d)).

We also considered the effect of increasing and decreasing the total amount of stimulus available, ϕ , by an 
order of magnitude. In Fig. 6 we have plotted the probabilities of extinction, U i

n0
 , for the case when ϕ = 1, 102 . 

For ϕ = 1 we see that, due to the scarcity of stimulus, there is little effect from the competition. Yet in the hard 
niche we still see smaller probabilities of extinction for clonotype 1, and higher probabilities for the established 
clonotypes. The strongest effect on the extinction probabilities in this case comes from the initial number of 
cells. However, in contrast to Fig. 5 the probabilities do not become saturated as quickly, meaning that in this 
case each cell of clonotype 1 has a weaker effect on the sizes of the established clonotypes. For ϕ = 102 we see the 
opposite behaviour, where the probabilities become saturated so quickly that they appear as almost completely 
horizontal lines, with the notable exception of scenario (d). The first thing we note is that for clonotype 2 all the 
probabilities are negligible, except for scenario (a) in the hard niche case. In this case, given the overabundance 
of stimulus, the competition between clonotypes has no effect and all clonotypes are equally likely to be the 
first to become extinct. In scenario (b), for both hard and soft niche cases, the increased competition causes the 
extinction probability to accumulate on clonotype 1. The asymmetric competition of scenario (c) accumulates 
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Figure 5.  Probability of extinction for each clonotype, U i
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 , in the four scenarios with hard and soft niche 
cases (for clonotype 1) as a function of the initial number of cells in clonotype 1, calculated using the method 
described in Appendix H in the Supplementary Material. The initial number of cells of the other two clonotypes 
is the mean of the QSD of their two-dimensional competition process, namely (n2, n3) = (8, 8).
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most of the probability of extinction on clonotype 1 and 3 in the soft and hard niche cases, respectively. Finally, 
in scenario (d) we observe a similar behaviour to that with ϕ = 1, 10 , where the probabilities of clonotypes 1 
and 3 are coupled and the difference between hard and soft niche is minimal. This behaviour stems from the 
fact that we have complete competition for stimuli, and regardless of its abundance the competitive exclusion 
 principle34 tells us that one population must become extinct. With every other aspect of the populations being 
equal, this means that initial conditions completely determine which clonotype is most likely to become extinct.

Number of divisions before extinction of a clonotype
We now calculate the probability distribution of the number of divisions before extinction of each clonotype, Di , 
making use of the method described in Appendix J (see Supplementary Material). Figure 7 shows these distribu-
tion for the four scenarios in the hard and soft niche cases (for clonotype 1) for the initial state n0 = (4, 8, 8).

We can see that for scenarios (a) and (b), in both the hard and soft niche cases (for clonotype 1), the division 
distributions for clonotypes 2 and 3 remain mostly unchanged since they are not only competing in the same way 
but have the same initial number of cells. In scenario (c), we observe the distribution for clonotype 3 shifted to 
the right when compared to clonotype 2, due to the increase in competition for clonotype 3, but again there is no 
notable difference between the hard and soft niche cases. We see a break in these similarities between the hard 
and soft niche cases in scenario (d). Here, the distribution of divisions of clonotype 3 is narrower and centred 
around smaller values in the soft niche case when compared to the hard niche case. This is due to the fact that 
the new clonotype being in the soft niche changes all self-pMHCs recognised by clonotype 3 from the hard to 
the soft niche, greatly reducing its probability of dividing a greater number of times before becoming extinct. If 
one focuses on the new clonotype (clonotype 1), one observes that regardless of the niche considered in scenarios 
(a) and (b), the median of the number of divisions is lower than the other modelled clonotypes, with this differ-
ence being greater in the soft niche case. In scenario (a), this behaviour is caused by the smaller population size 
of the new clonotype (since every other aspect of the competition is symmetric). The behaviour is amplified in 
scenario (b) given the increased competition experienced by the new clonotype. In scenario (c), we see that in 
the hard niche case the distribution of divisions of the new clonotype is very similar to that of clonotype 3. This 
is due to the change in the distribution for clonotype 3 due to its increased competition. However, this similar-
ity is undone in the soft niche case where the distribution for the new clonotype is narrower and has a smaller 
median. This agrees with our previous observation in Fig. 5: the niche in which the new clonotype is has a bigger 
impact on its fate than its competition scenario. Finally, in scenario (d) we see that in the hard niche case the 
distribution already has a low median and is rather narrow. This behaviour is stronger in the soft niche case. In 
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the hard niche case, scenario (d) has the lowest median and the most narrow distribution for the new clonotype 
overall, followed by the distributions of scenarios (b), (c), and (a), in that order. This agrees with the probabilities 
of extinction for the initial state n = (4, 8, 8) in Fig. 5, where we see that these probabilities decrease in the same 
order. In the soft niche case we can see a direct relation between the probabilities of extinction and distribution 
of divisions for scenarios (a), (b), and (c), but not for scenario (d). This can be justified since the probabilities of 
extinction are changing due to an increased chance of clonotype 3 becoming extinct and not a direct change to 
the extinction of the new clonotype.

Discussion
Maintaining the diversity of the T cell repertoire is essential for the immune system to mount a strong and effec-
tive immune  response35–38. Promoting survival of significantly different clonotypes maximises this diversity by 
allowing TCRs with similar self-pMHC recognition profiles to become extinct. However, it has been observed 
that several clonotypes often overlap on their recognition profile (e.g.25,26,39) as a compromise between TCR 
diversity and coverage over the space of foreign antigens. This motivates the multi-variate representation we have 
developed in this manuscript, which extends and generalises that presented  in17 to three or more clonotypes.
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calculated using the method described in Appendix J (see Supplementary Material). (A) shows the distributions 
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We showed that the cellular division rate of competing clonotypes decreases as the overlap in their recogni-
tion profiles increases. That is, we see the effects of competitive exclusion as the distribution of the number of 
divisions shows a decrease in its mode (the peak moves to the left), when there is an increase in the competition 
for self-pMHCs. Furthermore, we mathematically showed that extinction of all clonotypes is certain; that is, 
given sufficient time (which can be larger than the biological timescales) the populations of all clonotypes will 
become extinct. The mean time to this extinction event is bounded, and it depends on the mean number of cells 
per clonotype. A feature of the proposed competition process, prior to the first extinction event, is that the system 
is driven to a state where all clones have low numbers of cells, with the specific number of cells depending on 
their recognition overlap. This agrees with the biological assumption that in a homeostatic state each clonotype 
consists of only a few cells, with the exact number varying from clonotype to  clonotype20,40.

Our multi-variate competition model shows that the introduction of a new clonotype to the periphery per-
turbs the homeostatically established clonotypes. We see this in the decreased mean number of cells after the first 
extinction event when compared to the initial state of the process. Even in the scenario with the least competition 
for stimuli (scenario (a)) we see a perturbation of the established clonotypes. More than this, the probability 
of extinction as a function of the initial number of cells in the new clonotype very quickly becomes saturated 
(see Fig. 5). This implies that even a clonotype with a low number of initial cells has great potential to perturb 
already established clonotypes.

From the distribution of divisions before extinction, we can say that in the soft niche case we always expect 
the new clonotype to experience very little proliferation before becoming extinct. Even in scenario (a), where 
competition with other modelled clonotypes is the lowest, we see a distribution of divisions that is very narrow 
and centred around a small value. This major change outlines an important feature of the soft niche; even when 
considering a mean niche overlap of only ten clonotypes, the probability of extinction is greatly increased and 
the distribution of divisions is made more narrow and moved to the left. This major change in behaviour between 
the hard and soft niche cases can be interpreted in two ways: (i) for the soft niche assumption to be correct in 
the naive T cell repertoire, the mean niche overlap value must be a small number of clonotypes ( 1 < νkij < 10 ), 
otherwise a new clonotype entering the periphery would have a very low probability of becoming established, and 
the naive T cell repertoire would become mostly static; (ii) if the mean niche overlap is not small, then T cells in 
the soft niche must have a very fast turnover, and make up for most of the thymic output to counteract this low 
probability of proliferation and establishment. These two interpretations are made under the assumption that the 
thymic output is mostly homogeneous; that is, we assume that most of the cells exiting the thymus are either part 
of the hard or soft niche. By relaxing this assumption and considering a heterogeneous thymic output, instead 
of a homogenous one, we can think of the naive T cell repertoire as being divided in two sets: one set comprised 
of clonotypes in the hard niche, which is deeply established (with low extinction probabilities) and is expected 
to remain mostly constant through life, and another set of clonotypes in the soft niche, which is constantly 
changing and is more dynamic through life (as clonotypes appear from the thymus and become extinct due to 
clonal competition). This type of heterogeneity would allow for the maintenance of a T cell repertoire that has 
the capability of constantly producing new clonotypes (in the soft niche), while maintaining other clonotypes 
(in the hard niche) throughout life.

So far we have only discussed the possible effects of a distribution of soft and hard niche clonotypes exiting 
the thymus, assumed to be constant throughout the ageing  process37,41,42. However, given the known changes 
in thymic output through life, such as thymic  involution43,44, and other age-related  changes45, it is plausible that 
the composition of thymic emigrants (in terms of hard and soft niche, or clonal size) changes as well during 
the lifespan of a host. If we consider thus, not a constant mixture of hard and soft niche clonotypes exiting the 
thymus, but a mixture that evolves from mostly hard niche clonotypes during fetal stages to mostly soft niche 
clonotypes during adulthood, then our model predicts the early establishment of clonotypes that exited the 
thymus early in life, and then a declining supply of mostly short-lived clonotypes later in life. This decline in the 
production of soft niche clonotypes could be justified by the fact that during the initial development of the T cell 
repertoire, we naturally expect there to be fewer clonotypes in the periphery, and therefore smaller values of the 
mean niche overlap νkij . Furthermore, this behaviour is compatible with the analysis by Gaimann et al.46, in which 
T cell clonotype sizes were found to follow a power-law distribution, where clonotypes generated during the 
early fetal stages (characterised by no nucleotide insertions during V(D)J  recombination47) were found to be the 
most enriched in the periphery. A dynamical analysis, making use of the competition model proposed here, of 
clonotype diversity, sizes and niches, with parameters corresponding to a human or murine host, may be feasible.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].

Code availability
The python codes used to generate the figures in section “Results” have been made available at https:// doi. org/ 
10. 5281/ zenodo. 63423 7248.
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