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Magnetic silica/graphene oxide 
nanocomposite supported 
ionic liquid–manganese 
complex as a powerful 
catalyst for the synthesis 
of tetrahydrobenzopyrans
Farkhondeh Dadvar  & Dawood Elhamifar *

A novel magnetic silica/graphene oxide nanocomposite supported ionic liquid/manganese complex 
(Fe3O4@SiO2-NH2/GO/IL-Mn) is prepared, characterized and its catalytic application is investigated. 
The Fe3O4@SiO2-NH2/GO/IL-Mn catalyst was synthesized via chemical immobilization of graphene 
oxide on Fe3O4@SiO2 nanoparticles followed by modification with ionic liquid/Mn complex. This 
nanocomposite was characterized by using SEM, TGA, FT-IR, PXRD, EDX, TEM, nitrogen adsorption–
desorption, and VSM analyses. The catalytic application of Fe3O4@SiO2-NH2/GO/IL-Mn was studied 
in the synthesis of tetrahydrobenzo[b]pyrans (THBPs) in water solvent at RT. This nanocatalyst was 
successfully recovered and reused at least eight times without a significant decrease in its activity.

Carbon-based materials are very attractive among chemists due to their high efficiency as a support for different 
catalysts and also their good conductivity1–3. One of the most important allotropes of carbon is graphene oxide 
(GO)4,5 which has a two-dimensional and single-layer structure and involves hydroxyl, carboxylic acid, and epoxy 
groups on its surface6,7. The properties of graphene oxides, such as very good specific surface area, biocompat-
ibility, high flexibility, and lightness, endow them with strong potential for applications in catalytic processing8–10. 
However, GO accumulates in salt solutions and biological media. Therefore, to overcome this problem and also 
for easy separation of GO, recently, the immobilization of graphene oxide on magnetic nanoparticles has been 
considered11,12. In fact, the unique properties of magnetic NPs such as high surface area, availability, easy separa-
tion, and recoverability from the environment, make them attractive candidates to composite with GO. Some 
reports in this matter are TiO2/Fe3O4/GO13, Ag3PO4-Fe3O4-GO14, PEG/Fe3O4/GO-NH2

15
, Fe3O4/GO-COOH16, 

Fe3O4/GO/CS17, MOF@Fe3O4@GO18, Fe3O4-GO-(o-MWCNTs)hybrid19, Fe3O4/GO/chitosan20 and γ-PGA-Fe3O4-
GO-(o-MWCNTs)21. Moreover, several organic functional groups have also been used to modify GO for practi-
cal applications22. Some reported examples in this matter are GO@IL/MoO2(acac)2

23, Cu–NiAAPTMS@GO24, 
GO@melamine25, plydopamine@GO/cellulose26, Al2O3/GO cellulose27, GO-TCT-DETA28, and Mn-UiO-66@
GO-NH2

29.
An important process in chemistry is multicomponent reaction (MCR), in which at least three starting mate-

rials are used to synthesis valuable organic compounds30–32. As example, this process has been effectively used 
for the synthesis of tetrahydrobenzo[b]pyrans (THBPs)33,34 with excellent biological activities such as antiviral, 
anticancer, and dementia35,36. Although, to date, many catalytic systems have been used for the synthesis of 
THBPs, however, the most of them suffer from drawbacks of high catalyst loading, the use of toxic organic sol-
vents, high reaction temperature, and non-recoverability of the catalyst. Therefore, the preparation of a novel and 
powerful catalytic system to overcome the aforementioned limitations is an important challenge in this matter.

In view of the above, herein, we report the synthesis and characterization of a novel magnetic silica/graphene 
oxide nanocomposite supported ionic liquid/Mn complex (Fe3O4@SiO2-NH2/GO/IL-Mn). This is effectively 
applied as an efficient and recoverable catalyst in the synthesis of THBPs.
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Experimental section
Preparation of Fe3O4@SiO2‑NH2
For the synthesis of Fe3O4@SiO2-NH2, firstly, Fe3O4 nanoparticles were prepared according to a known method37. 
Then, 0.5 g of Fe3O4 was added in a solution containing 30 mL of ethanol, 20 mL of distilled water, and 10 mL 
of ammonia (25%). After that, 70 μL of 3-aminopropyltriethoxysilane (APTES) and 70 μL of tetraethoxysilane 
(TEOS) were added and the resulted mixture was stirred at 35 °C for 3 h. Finally, the product was separated by 
using a magnet, washed with distilled water and ethanol, dried at 75 °C for 7 h and denoted as Fe3O4@SiO2-NH2.

Preparation of Fe3O4@SiO2‑NH2/GO
The Fe3O4@SiO2-NH2/GO nanocomposite was prepared as follows. First, 0.3 g of GO was suspended in 20 mL of 
distilled water for 10 min. Then, 0.5 g of Fe3O4@SiO2-NH2 was added and the obtained mixture was vigorously 
stirred at 70 °C for 2 h. Finally, the product was separated by using a magnet, washed with distilled water and 
ethanol, dried at 75 °C for 7 h and denoted as Fe3O4@SiO2-NH2/GO.

Preparation of Fe3O4@SiO2‑NH2/GO/IL
For the preparation of Fe3O4@SiO2-NH2/GO/IL, firstly, 1 g of Fe3O4@SiO2-NH2/GO nanocomposite was sus-
pended in 50 mL of toluene and sonicated for 20 min at RT. Then, 0.2 mmol of 1-methyl-3-(3-trimethoxysilyl-
propyl)imidazolium chloride (Im) was added and the obtained mixture was stirred under reflux conditions for 
24 h. The product was separated by using a magnet, washed with ethanol, dried at 70 °C for 6 h and denoted as 
Fe3O4@SiO2-NH2/GO/IL.

Preparation of Fe3O4@SiO2‑NH2/GO/IL‑Mn
For this, 1 g of Fe3O4@SiO2-NH2/GO /IL was dispersed in 20 mL of DMSO under ultrasonic irradiation. Then, 
0.5 mmol of Mn(OAc)3.4H2O salt was added and the resulting mixture was stirred at 80 °C for 2 h. The product 
was separated by using a magnet, washed with ethanol, dried at 70 °C for 6 h and denoted as Fe3O4@SiO2-NH2/
GO/IL-Mn.

Synthesis of THBPs using Fe3O4@SiO2‑NH2/GO/IL‑Mn nanocatalyst
For this purpose, the Fe3O4@SiO2-NH2/GO/IL-Mn catalyst (0.8 mol%), malononitrile (1 mmol), benzaldehyde 
(1 mmol) and dimedone (1 mmol) were added in distilled water (10 mL). The resulting mixture was vigorously 
stirred at RT. The progress of the reaction was monitored by using TLC. After the completion of the reaction, the 
catalyst was separated by using a magnet. Then, ethyl acetate (20 mL) was added to the residue and the obtained 
mixture was washed three times with water in a decanter to remove some impurities. Finally, the obtained ethyl 
acetate solution was placed in an ice bath to crystalize/precipitate the desired pure products.

IR, 1H‑NMR and 13C‑NMR data of THBPs
2‑Amino‑4‑(3‑nitrophenyl)‑7,7‑dimethyl‑5‑oxo‑6,6,8,8‑tetrahydro‑4H‑chromene‑3‑carbonitrile
White solid; yield: 85%; M. P.: 211–212 °C (210–21235), IR (KBr, cm−1): 3420, 3339 (NH2, stretching vibration), 
3181 (= C–H, stretching vibration sp2), 2958 (C–H, stretching vibration sp3), 2186 (CN, stretching vibration), 
1673 (C=O, stretching vibration), 1604, 1488 (C=C, Ar stretching vibration sp2), 1245 (C–O, stretching vibration). 
1H-NMR (300 MHz, CDCl3): δ (ppm) 0.99 (s, 3H), 1.09 (s, 3H), 2.15 (d, 1H, J = 15 Hz), 2.33 (d, 1H, J = 15 Hz), 
2.59 (s, 2H), 4.46 (s, 1H), 7.24 (s, 2H), 7.63–7.75 (m, 2H), 8.2 (s, 1H), 8.3 (d, 1H, J = 9 Hz). 13C-NMR (75 MHz, 
CDCl3): δ (ppm) 27.6, 28.7, 32.5, 35.9, 40.4, 50.5, 56.9, 112.4, 120.1, 121.2, 122.3, 130.1, 134.8, 147.3, 148.7, 
159.5, 164.1, 196.1.

2‑Amino‑4‑(4‑methylyphenyl)‑7,7‑dimethyl‑5‑oxo‑6,6,8,8‑tetrahydro‑4Hchromene‑3‑carbonitrile.
White solid; yield: 85%; M. P.: 217–219 °C (218–22038), IR (KBr, cm−1): 3424, 3328 (NH2, stretching vibration), 
3036 (=C–H, stretching vibration sp2), 2960 (C–H, stretching vibration sp3), 2192 (CN, stretching vibration), 1670 
(C=O, stretching vibration), 1561, 1471 (C=C, Ar stretching vibration sp2), 1241 (C–O, stretching vibration).1H-
NMR (300 MHz, CDCl3):1.08 (s, 3H), 1.15 (s, 3H), 2.10 (d, 1H, J = 6 MHz), 2.25 (d, 1H, J = 15.2 MHz), 2.25 (s, 
3H), 2.52 (s, 2H), 4.43 (s, 1H), 7.05–7.14 (m, 4H), 7.28 (s, 2H) 13C-NMR (75 MHz, CDCl3): δ (ppm) 21.2, 27.9, 
29.1, 33.1, 35.1, 41.2, 50.9, 64.1, 114.2, 118.7, 127.5, 129.4, 137.0, 140.2, 157.4, 161.5, 196.0

2‑Amino‑4‑(4‑methoxyphenyl)‑7,7‑dimethyl‑5‑oxo‑6,6,8,8‑tetrahydro‑4H‑chromene‑3‑carbonitrile
White solid; yield: 90%; M. P.: 199–201 °C (196–19839), IR (KBr, cm−1): 3432, 3332 (NH2, stretching vibra-
tion), 3100 (=C–H, stretching vibration sp2), 2958 (C–H, stretching vibration sp3), 2190 (CN, stretching vibra-
tion), 1666 (C=O, stretching vibration), 1527, 1419 (C=C, Ar stretching vibration sp2), 1249 (C–O, stretching 
vibration).1H-NMR (300 MHz, CDCl3): δ (ppm) 1.05 (s,3H), 1.14 (s, 3H), 2.20 (d, 1H, J = 3.4 Hz), 2.23 (d, 
1H, J = 3.4 Hz), 2.45 (s, 2H), 3.75 (s, 3H), 4.37 (s, 1H), 4.50 (s, 2H, NH2), 6.80 (d, 2H, J = 8.6 Hz), 7.15 (d, 2H, 
J = 8.6 Hz). 13C NMR (75 MHz, CDCl3): δ (ppm) 27.8, 28.10, 32.4, 34.6, 40.6, 51.2, 63.9, 113.3, 114.6, 115.2, 
128.8, 133.5, 135.3, 157.5, 158.4, 161.3, 195.9.

Results and discussion
The preparation of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocomposite includes four steps (Fig. 1). Firstly, the 
magnetic Fe3O4 nanoparticles were modified with TEOS and APTES to give Fe3O4@SiO2-NH2 NPs. Secondly, this 
material was chemically reacted with GO to give Fe3O4@SiO2-NH2/GO nanocomposite. Thirdly, the Im-based 
ionic liquid was chemically grafted on the surface of Fe3O4@SiO2-NH2/GO to deliver the Fe3O4@SiO2-NH2/
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GO/IL material. Finally, the last product was treated with manganese acetate to give the Fe3O4@SiO2-NH2/GO/
IL-Mn nanocatalyst.

The functional groups of the GO, Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2/GO/IL-Mn materials were deter-
mined by using a Fourier transform infrared (FT-IR) spectrometer (Fig. 2). For all samples, the strong peak at 
3394 cm−1 is due to the O–H bonds of the material surface (Fig. 2a–c)40. Moreover, the peaks at 1724, 1519, 
1288 and 1049 cm−1 are, respectively, associated to carboxyl C=O, aromatic C=C, epoxy C–O and alkoxy C–O 
bonds of GO (Fig. 2a–c)41. For the Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2/GO/IL-Mn materials, the signals 
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Figure 1.   Preparation of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst.
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at 2825 and 2923 cm−1 are attributed to the C–H bonds of the aliphatic groups (Fig. 2b and c)42. Moreover, for 
the latter materials, the peak at 593 cm−1 is assigned to the Fe–O bond (Fig. 2b and c)43. For Fe3O4@SiO2-NH2/
GO/IL-Mn, the signal at 1627 cm−1 is attributed to C=N bond of ionic liquids (Fig. 2c)41,44. In addition, for both 
Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2/GO/IL-Mn nanomaterials, the strong signals at 1083 and 1215 cm−1 
are assigned to the Si–O-Si vibrations45,46.

The surface morphology of Fe3O4@SiO2-NH2/GO/IL-Mn was studied by using SEM technique. The spherical 
nanoparticles of Fe3O4@SiO2 NPs and also the graphene oxide layers were clearly seen in the SEM image (Fig. 3). 
This confirms the successful formation of the Fe3O4@SiO2-NH2/GO composite during applied conditions.

The TEM analysis of the designed catalyst was also performed to investigate its structure. This analysis showed 
the catalyst to be composed of spherical Fe3O4@SiO2 NPs and GO layers (Fig. 4).

The EDX analysis showed the signals of carbon, nitrogen, oxygen, silicon, manganese and iron elements in 
the prepared nanocomposite (Fig. 5). This is in good agreement with the FT-IR results, confirming the successful 
immobilization of IL-Mn complex on Fe3O4@SiO2-NH2/GO composite.

The EDX-mapping analysis of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst is shown in Fig. 6. As seen, all 
desired elements of C, O, N, Fe, Si and Mn are very well distributed in the material. This is also in good agree-
ment with the FT-IR and EDX results, indicating the successful formation of the designed Fe3O4@SiO2-NH2/
GO/IL-Mn nanocomposite.

The powder XRD analysis of Fe3O4@SiO2-NH2/GO/IL-Mn showed six signals at 2θ of 30, 35.5, 43.1, 54, 57.2, 
and 63.5 degree, corresponding to the Miller indices of 220, 311, 400, 422, 511 and 440, respectively (Fig. 7). 
These signals are attributed to the spinel structure of magnetic iron oxide NPs,47,48 confirming the high stability 
of the magnetite NPs during modification processes. Also, the peak at 2θ = 19° is related to silica layer of the 
designed catalyst49,50.

Figure 2.   FT-IR spectra of (a) GO, (b) Fe3O4@SiO2-NH2 and (c) Fe3O4@SiO2-NH2/GO/IL-Mn.

Figure 3.   SEM image of Fe3O4@SiO2-NH2/GO/IL-Mn.
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According to the VSM analysis, the saturation magnetization of the designed Fe3O4@SiO2-NH2/GO/IL-Mn 
material was found to be 40 emu/g (Fig. 8), confirming its high magnetic properties. This characteristic is very 
important in the fields of adsorption and catalysis.

Thermal stability of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst was investigated by using thermal gravi-
metric analysis (TGA, Fig. 9). The first weight loss at temperatures between 10 to 110 °C (3%) is related to the 
removal of water and alcoholic solvents39. The second weight loss at 111–210 °C (4%) is attributed to the removal 
of the parts of functional groups that are located on the surface of the material. The main weight loss at tem-
peratures more than 220 °C is related to the complete removal of the ionic liquids and also some parts of GO.

The nitrogen adsorption–desorption isotherms of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocomposite showed 
a type II curve with a pronounced H3 hysteresis loop, according to the IUPAC classification51. The BET spe-
cific surface area and total pore volume of the material were calculated to be about 386.5 m2/g and 0.35 cm3/g, 
respectively. In addition, the BJH pore size distribution analysis showed a peak with good intensity centered at 
average pore diameter of about 4.8 nm (Fig. 10).

After preparation and characterization, the catalytic activity of Fe3O4@SiO2-NH2/GO/IL-Mn was investigated 
in the synthesis of THBPs at room temperature (RT). For this, the reaction between benzaldehyde, dimedone and 

Figure 4.   TEM image of Fe3O4@SiO2-NH2/GO/IL-Mn.

Figure 5.   EDX analysis of Fe3O4@SiO2-NH2/GO/IL-Mn.
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malononitrile was selected as a test model (Table 1). The effect of various parameters such as catalyst loading and 
solvent was investigated to obtain the best conditions. In the absence of a catalyst, no product was obtained after 
3 h, proving the catalyst is necessary for the development of this reaction (Table 1, entry 1). After addition of the 
catalyst, the reaction was progressed effectively and the best result was obtained in the presence of 0.8 mol% of 
Fe3O4@SiO2-NH2/GO/IL-Mn (Table 1, entries 2–4). It is important to note that increasing the amount catalyst 
to 1 mol% did not result in a significant change in the reaction yield (Table 1, entry 5). In order to demonstrate 
the effect of the Mn-centers on the catalytic process, the catalytic activity of Mn-free Fe3O4@SiO2-NH2/GO/IL 
nanocomposite was also investigated. This experiment showed that the Mn-free material gave no yield of the 
desired product, verifying the process is actually catalyzed by catalytic Mn sites (Table 1, entry 6). This catalytic 

Figure 6.   EDX-mapping analysis of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst.

Figure 7.   PXRD pattern of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst.
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system was also significantly affected by the solvent. Yields of 58%, 82%, 53% were obtained in toluene, EtOH 
and also under solvent-free media, respectively. Pleasingly, in water, the best yield was obtained (Table 1, entry 
4). Accordingly, 0.8 mol% of catalyst, water solvent and RT were identified as the optimal conditions (Table 1, 
entry 4).

With the optimum conditions in hand, various aldehyde derivatives containing both electron withdrawing 
and electron donating substituents were used as substrate (Table 2). All of these aldehydes delivered the desired 
products in high yield at short time. It was also found that Fe3O4@SiO2-NH2/GO/IL-Mn offers high turnover 
number (TON) and turnover frequency (TOF) for all products, confirming the high ability of the present catalytic 
system to synthesis a wide range of biologically active THBPs.

The recoverability and reusability of Fe3O4@SiO2-NH2/GO/IL-Mn were also investigated in the reaction 
model. For this, after finishing of the reaction, the catalyst was easily separated by using a magnet. Then, it was 
reused in the next run under the same conditions as the first run. These steps were repeated and it was found 
that the catalyst could be recovered and reused for at least eight times with no significant decrease in efficiency 
(Fig. 11). These findings confirm high performance and very good stability of the designed catalyst under applied 
conditions.

Figure 8.   VSM of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst.

Figure 9.   TGA of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst.
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Next, a leaching test was performed in the model reaction to investigate the nature of the Fe3O4@SiO2-NH2/
GO/IL-Mn nanocatalyst under the applied conditions. For this, after the conversion was about 45% complete, 
the catalyst was magnetically removed. Then, the progress of catalyst-free residue was monitored. Interestingly, 
after 120 min, no notable conversion was observed. This proves no leaching of Mn species in the reaction solution 
under the applied conditions and also the heterogeneous nature of the designed catalyst.

Furthermore, the reactivity of the catalyst was investigated under optimal conditions. For this purpose, the 
model reaction was carried out and its progress was monitored using TLC. After the completion of the reac-
tion, the starting materials were again added to the reaction vessel in the same proportion as the first run. These 
steps were repeated and the results showed that the activity of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocatalyst is 
maintained for at least seven runs without a significant decrease in performance (Table 3).

In the next, in order to study the chemical and structural stability of the catalyst under applied conditions, 
the FT-IR and XRD analyses of the recovered catalyst were performed after fifth run. As shown in Fig. 12, the 
FT-IR spectrum of the recovered Fe3O4@SiO2-NH2/GO/IL-Mn showed a pattern similar to the FT-IR of fresh 
nanocatalyst, proving the high stability of the designed material under the applied reaction conditions.

The PXRD of the recovered Fe3O4@SiO2-NH2/GO/IL-Mn also illustrated six peaks at 2θ of 30, 35.5, 43.1, 54, 
57.2, and 63.5, which are in good agreement with the PXRD pattern of the fresh nanocatalyst, proving the high 
stability of the crystalline structure of Fe3O4 NPs during the reaction process (Fig. 13).

Finally, the performance of Fe3O4@SiO2-NH2/GO/IL-Mn nanocomposite was compared with some previ-
ous catalytic systems in the synthesis of THBPs (Table 4). The results showed that our catalyst is better in terms 
of reaction conditions, catalyst loading and recovery times. These findings may be attributed to the magnetic 

Figure 10.   (a) Nitrogen adsorption–desorption and (b) BJH pore size distribution isotherms of the Fe3O4@
SiO2-NH2/GO/IL-Mn nanocatalyst.

Table 1.   Effect of solvent and catalyst loading in the synthesis of THBPs at RT.

O

O O

CN

NH2

O
CHO

+ +NC CN

Entry Catalyst (mol%) Solvent Time (min) Yield (%)

1 – H2O 180 –

2 Fe3O4@SiO2-NH2/GO/IL-Mn (0.4) H2O 40 43

3 Fe3O4@SiO2-NH2/GO/IL-Mn (0.6) H2O 40 72

4 Fe3O4@SiO2-NH2/GO/IL-Mn (0.8) H2O 40 95

5 Fe3O4@SiO2-NH2/GO/IL-Mn (1) H2O 40 96

6 Fe3O4@SiO2-NH2/GO/IL (0.01 g) H2O 40 12

7 Fe3O4@SiO2-NH2/GO/IL-Mn (0.8) Toluene 40 58

8 Fe3O4@SiO2-NH2/GO/IL-Mn (0.8) EtOH 40 82

9 Fe3O4@SiO2-NH2/GO/IL-Mn (0.8) Solvent-free 40 53
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nature of Fe3O4@SiO2-NH2/GO/IL-Mn as well as the positive effect of chemically immobilized ionic liquids in 
the stabilization of the catalytically active Mn-species.

A plausible mechanism for the synthesis of THBPs using Fe3O4@SiO2-NH2/GO/IL-Mn is outlined in Fig. 14. 
At first, the malononitrile and the Mn-activated aldehyde are condensed through the Knoevenagel condensation 
to give intermediate 1. Intermediate 2 is then delivered via a Michael-type addition between the enol form of 
dimedone and intermediate 1. An intramolecular cyclo-condensation is performed on intermediate 2 to give 
intermediate 3. Finally, the intermediate 3 is converted to the desired product 4 through a tautomerization 
process58.

Table 2.   Synthesis of THBPs in the presence of Fe3O4@SiO2-NH2/GO/IL-Mn at RT. a Turnover number 
[defined as yield (%)/cat. (mol%)]. bTurnover frequency [defined as TON/reaction time (h)].

O

O O

CN

NH2

OCHO

+ NC CN
Fe3O4@SiO2-NH2/GO/IL-Mn

H2O, RTR
+

R

Entry R Time (min) TONa TOFb Yield (%) Found M. P. (°C) Reported M. P. (°C)

1 H 40 118.75 179.92 95 221–224 222–22452

2 4-Cl 26 112.5 261.62 90 210–213 210–21235

3 4-OMe 35 112.5 193.96 90 199–201 196–19839

4 4-Me 37 106.25 174.18 85 217–219 218–22038

5 3-NO2 20 106.25 321.97 85 211–212 210–21235

6 4-NO2 15 110 440 88 181–183 182–18435

Figure 11.   Recoverability and reusability of Fe3O4@SiO2-NH2/GO/IL-Mn.

Table 3.   Catalytic reactivity of the Fe3O4@SiO2-NH2/GO/IL-Mn nanocomposite.

Run 1 2 3 4 5 6 7 8

Time (min) 40 40 47 50 53 60 60 64
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Conclusion
In this study, for the first time, a manganese-containing IL-modified Fe3O4@SiO2-NH2/GO nanocomposite was 
prepared, characterized and used as a novel catalyst for the synthesis of THBPs. The high chemical and thermal 
stability of the designed catalyst were confirmed by using FT-IR, TGA and EDX analyses. The PXRD and VSM 
analyses showed high magnetic properties of the designed catalyst. The SEM and TEM analyses also confirmed 

Figure 12.   FT-IR spectra of (a) fresh Fe3O4@SiO2-NH2/GO/IL-Mn and (b) recovered Fe3O4@SiO2-NH2/GO/
IL-Mn.

Figure 13.   PXRD pattern of the recovered Fe3O4@SiO2-NH2/GO /IL-Mn nanocomposite.

Table 4.   The comparative study of Fe3O4@SiO2-NH2/GO/IL-Mn with previously reported catalysts.

Catalyst Conditions Recovery times Ref.

MGO-D‐NH‐(CH2)4‐SO3H Cat.0.02 g, H2O/ethanol, 35 ºC 6 53

Fe3O4@SiO2@TiO2 Cat. 0.01 g, solvent free, 100 ºC 6 54

[Et3NH][HSO4] Cat. 0.025 g, solvent free/MW 3 55

CaO@SiO2-SO3H Cat. 0.02 g, H2O/50 ºC 6 56

GO–Si–NH2–PMo Cat. 0.04 g, solvent-free 90 ºC 5 57

Fe3O4@SiO2-NH2/GO/IL-Mn Cat. 0.8 mol%. H2O/RT 8 This work
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the successful formation of the Fe3O4@SiO2-NH2/GO composite. The Fe3O4@SiO2-NH2/GO/IL-Mn catalyst 
was effectively used in the synthesis of THBPs and gave the desired products in high yields. The leaching test 
and also the recoverability and reactivity studies clearly showed high performance and stability of the catalyst 
under applied conditions.

Data availability
All data and materials are included in the manuscript.
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