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Real‑time monitoring 
of the reaction of KRAS G12C 
mutant specific covalent inhibitor 
by in vitro and in‑cell NMR 
spectroscopy
Qingci Zhao 1, Ryoka Haga 1, Satoko Tamura 2, Ichio Shimada 2,3* & Noritaka Nishida 1*

KRAS mutations are major drivers of various cancers. Recently, allele‑specific inhibitors of the KRAS 
G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an 
inactive GDP‑bound state. To study the mechanism of action of the covalent inhibitors in both in vitro 
and intracellular environments, we used real‑time NMR to simultaneously observe GTP hydrolysis and 
inhibitor binding. In vitro NMR experiments showed that the rate constant of ARS‑853 modification is 
identical to that of GTP hydrolysis, indicating that GTP hydrolysis is the rate‑limiting step for ARS‑
853 modification. In‑cell NMR analysis revealed that the ARS‑853 reaction proceeds significantly 
faster than that in vitro, reflecting acceleration of GTP hydrolysis by endogenous GTPase proteins. 
This study demonstrated that the KRAS covalent inhibitor is as effective in the cell as in vitro and that 
in‑cell NMR is a valuable validation tool for assessing the pharmacological properties of the drug in the 
intracellular context.

RAS is a representative member of the small GTPase family that mediates signal transduction downstream 
of receptor tyrosine kinases to regulate cellular functions, such as cell growth, motility, and  survival1. RAS 
exchanges between a GDP-bound inactive state and a GTP-bound active state. The conversion of the GDP-bound 
to GTP-bound state induces a conformational change in RAS that enables interaction with downstream effec-
tor molecules, such as Raf, RalGDS, and  PI3K2, 3. Intrinsic or GTPase activating protein (GAP)-mediated GTP 
hydrolysis inactivates RAS in the GDP-bound  state4. Hotspot mutations at Gly12, Gly13, and Gln61, which lead 
to the constitutive activation of RAS, are frequently found in various cancer types, making RAS a prominent 
target for cancer  therapeutics1.

Despite decades of intensive efforts, RAS-targeting therapies have not reached clinical application until 
recently. Many competitive inhibitors for various kinases have been developed, targeting the ATP-binding site 
or surrounding  pocket5. By contrast, RAS has an extremely high affinity for GTP (Kd ~ 20 pM) and a high 
intracellular concentration of free GTP (submillimolar range), making competitive inhibitors targeting the GTP-
binding pocket of RAS impractical. In addition, no clear pockets exist on the effector-binding surface of active 
RAS that can accommodate compounds. Therefore, RAS has been an undruggable target. Several groups have 
developed compounds that directly bind RAS and inhibit interactions with downstream effector molecules using 
fragment-based drug design and in silico  approaches6–10. However, these compounds could not efficiently inhibit 
oncogenic RAS mutants in cells and in vivo.

A breakthrough in RAS-targeting drug discovery was achieved for the KRAS G12C mutant, which accounts 
for 12% of all cancer-associated KRAS  mutations11. Shokat and co-workers developed several compounds cova-
lently attached to the thiol group of C12 using an acrylamide warhead. The remaining moieties of the inhibitors 
is accommodated within the pocket under the Switch II region (termed S-II pocket), which is formed upon 
inhibitor  binding12. The biochemical study indicated that those covalent inhibitors bind KRAS G12C in the 
GDP-bound state, strongly inhibiting GDP–GTP exchange even in the presence of guanine nucleotide exchange 

OPEN

1Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, 
Japan. 2RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 
Kanagawa 230-0045, Japan. 3Graduate School of Integrated Sciences for Life, Hiroshima University, 
Higashi-Hiroshima 739-8528, Japan. *email: ichio.shimada@riken.jp; nnishida@chiba-u.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46623-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19253  | https://doi.org/10.1038/s41598-023-46623-w

www.nature.com/scientificreports/

factors (GEFs)13. In vitro, ARS-853 could interact with KRAS G12C in the GDP-bound form with high potency 
but low binding affinity  (Ki ~ 200 µM)14. Such characteristic potency of ARS-853 is explained by the stabilization 
of the transition state through formation of electrostatic interactions between the protonated K16 of KRAS and 
the acrylamide warhead. Subsequent efforts to enhance efficacy and pharmacological properties have led to the 
development of a range of related compounds, which have exhibited significant effects in vivo and in a xenograft 
mouse  model15, and clinical trials are being conducted by multiple independent  companies16. Two compounds, 
AMG 510 (sotorasib) and MRTX-849 (adagrasib), have received FDA approval for treating  NSCLC17. This is a 
significant milestone, because these drugs are the first to target mutated KRAS, offering hope to patients.

The intracellular reactivity of covalent inhibitors of KRAS is affected by various cellular factors. Many KRAS 
mutants, including G12C, exhibit impaired intrinsic and GAP-mediated GTP hydrolysis  activity18, which is 
unfavorable for covalent inhibitors that react with the GDP-bound form. It was recently reported that the endog-
enous proteins markedly enhances the GTP hydrolysis of KRAS mutants to increase the intracellular reactivity 
of the covalent  inhibitors19. However, intracellular molecular crowding could negatively affect protein–drug 
interactions due to unwanted nonspecific interactions with endogenous  molecules20. In addition, recent study 
demonstrated that the reactivity of the covalent inhibitor was affected by solution pH, owing to the suppressed 
pKa value of the C12  thiol21. Therefore, to evaluate the intracellular activity of the covalent inhibitors of KRAS, 
it is necessary to monitor the progress of GTP hydrolysis of KRAS and formation of covalent bonds under the 
macromolecular crowding environments, where proteins and metabolites are present at high concentrations.

Solution NMR allows us to observe chemical and enzymatic reactions in real-time under physiological 
 conditions22. Previously, the GTP hydrolysis rate (khy) and GDP–GTP exchange rate (kex) of small GTPases, 
including RAS, were characterized by real-time observations of NMR signals derived from the GTP- and GDP-
bound  forms23. Real-time NMR can be performed without fluorescent nucleotide  analogs24, 32P radio isotope-
labeled nucleotides, or effector-based interactions. Our group exploited the in-cell NMR method to monitor the 
level of GTP-bound level of HRAS in HeLa S3 cells and directly quantified khy and kex for HRAS and its oncogenic 
 mutants25. Therefore, NMR enables simultaneous observation of the progress of GTP hydrolysis and the reaction 
of the covalent inhibitor both in vitro and intracellularly. In this study, we investigated the kinetics of the reaction 
of ARS-853 and GTP hydrolysis of KRAS G12C using in vitro and in-cell NMR.

Results
Characterization of the G12C mutant and ARS‑853 modification
We evaluated khy and kex of KRAS wild-type (WT) and G12C mutant. As described in our previous study, the 
δ1 methyl signal of I21 signals in the 1H–13C hetero-nuclear single quantum coherence (HSQC) spectrum can 
be used to measure the fraction of GTP- and GDP-bound states based on their signal  intensity25. We measured 
1H–13C HSQC spectra of GTP-loaded KRAS (WT and G12C) continuously to estimate khy by single exponen-
tial curve fitting of the time-dependent change of the fraction of GTP-bound state (fGTP) (Fig. 1a). The khy of 
the G12C mutant was 5.15 ×  10−3  min−1, which is 4.6 times lower than that of KRAS WT. We estimated kex by 
measuring a series of 1H–13C HSQC spectra of GDP-loaded KRAS in the presence of 2 molar excess of nonhy-
drolyzable GTP analog (GTPγS) (Fig. 1b). The estimated kex of G12C was 1.12 ×  10−2  min−1, 1.9 times slower 
than KRAS WT. Based on khy and kex, fGTP in the steady state (ssfGTP) can be calculated as kex/(khy + kex). Due 
to the reduction of khy and decrease of kex, the ssfGTP of G12C was elevated to 68% compared with KRAS WT 
(47%) (Fig. 1c). We estimated khy and kex using the GTP regeneration system, in which GDP released from RAS 
following GTP hydrolysis was regenerated to GTP by acetate kinase. Because the concentration of free GTP can 
be kept constant in the GTP regeneration system, khy and kex values can be simultaneously estimated by curve 
fitting of the time course of fGTP (Supplementary Fig. 1a). khy and kex values were almost identical with those 
obtained from individual experiments (Supplementary Fig. 1b).

Next, we analyzed the properties of KRAS G12C modified with ARS-853. Mass spectrometry analysis showed 
that treatment of GDP-loaded KRAS G12C with two equimolar ARS-853 for 2 h led to a remarkable increase 
in mass (Supplementary Fig. 2). Comparison of 1H–13C HSQC spectra of KRAS G12C with or without ARS-
853 showed significant chemical shift changes for Ile signals proximal to switch II pocket (I93, I100) and those 
in switch I loop (I21 and I36), indicating modification of ARS-853 and the resulting conformational change 
(Fig. 1d,e). ARS-853-conjugated KRAS exhibited no exchange to GTP-bound form in the presence of 2 molar 
excess GTPγS (Fig. 1f). Thus, the ARS-853-conjugated KRAS G12C mutant was trapped in the GDP-bound form.

Real‑time analysis of the ARS853 modification in vitro
We monitored ARS-853 modification of KRAS G12C in real-time with in vitro NMR measurement. Based on 
the previous kinetic study showing that the binding affinity of ARS-853 is weak (Ki ~ 200 μM)14, we recorded 
the time-resolved 1H–13C HSQC spectra of GTP-loaded G12C in the presence of 8 molar excess of ARS-853 
([KRAS]:[ARS-853] = 50:400 μM) so that the measured rate constant (kobs) would be dominated by the reaction 
rate (kinact) (Fig. 2a). The progress of covalent bond formation was estimated by the intensity of I93 signals, which 
showed distinctive chemical shift changes upon ARS-853 modification (Fig. 2b). The rate constant of ARS-853 
modification was 6.40 ×  10−3  min−1. The progress of GTP hydrolysis of KRAS G12C in the presence of ARS-853, 
monitored by I21 signals, was 6.61 ×  10−3  min−1 (Fig. 2c). Thus, khy was almost identical to the rate of ARS-853 
modification, indicating that the ARS-853 reaction occurs immediately after GTP hydrolysis. In addition, there 
is no significant difference in khy values in the presence or absence of ARS-853. Therefore, it was verified that the 
presence of ARS-853 does not affect the GTP hydrolysis of RAS G12C and GTP hydrolysis is the rate-limiting 
step for ARS-853 to conjugate the G12C thiol group (Fig. 2d).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19253  | https://doi.org/10.1038/s41598-023-46623-w

www.nature.com/scientificreports/

Real‑time analysis of ARS‑853 modification in the intracellular environment
To monitor ARS-853 modification intracellularly, we performed in-cell NMR analysis of KRAS G12C. To observe 
the NMR signal under intracellular conditions, stable isotope-labeled KRAS G12C was introduced into HeLa S3 
cells by reversible membrane permeabilization using streptolysin O (SLO) (Supplementary Fig. 3a)26. The cells 
were encapsulated within the Mebiol gel thread inside the 5-mm NMR tube and continuously perfused with fresh 
culture medium using the bioreactor system during NMR  measurements27. To monitor intracellular fGTP of 
G12C in the absence of ARS-853, 1H–13C SOFAST-HMQC28 (band-selective optimized flip angle short transient 
hetero-nuclear multiple quantum coherence) spectra were measured every 30 min under perfusion of medium 
without ARS-853 (Fig. 3a, Supplementary Figs. 3b and 4a). Intracellular fGTP of G12C was already reached the 
steady state, with 49.5% from the average of four time points (Fig. 3b). Although the ssfGTP of intracellular 
G12C was lower than that measured in vitro (68%), this result demonstrated that the G12C mutation caused 
constitutive activation intracellularly.

To observe the ARS-853 reaction inside cells, we replaced the perfusion medium with a medium containing 
100 μM ARS-853 and resumed NMR measurements (Fig. 3a and Supplementary Fig. 4b). We observed the time-
dependent decay of the GTP-bound signal of I21 (Fig. 3b). The I93 signal also exhibited a chemical shift change 
in a time-dependent manner, reflecting the ARS-853 modification (Fig. 3b). The ARS-853 modification moni-
tored by I93 signals was almost comparable with the GTP hydrolysis probed by I21 signals, except for the first 
30 min time point, which would reflect the delayed transportation of the inhibitor across the plasma membrane. 
Considering that the ARS-853 modification inhibits GDP–GTP exchange, the temporal change of intracellular 
fGTP represents the progress of GTP hydrolysis in the cells. The rate constant of GTP hydrolysis in cells estimated 
from the I21 signal was 1.09 ×  10−2  min−1, which is a 2.1-fold increase compared with the in vitro rate, suggesting 
that the modification of ARS-853 proceeds faster than in vitro due to the increase in the intracellular khy of RAS. 
Based on intracellular khy (1.09 ×  10−2  min−1) and ssfGTP values of the G12C mutant (49.5%), intracellular kex 
was estimated to be 1.18 ×  10−2  min−1 (Fig. 3c). This estimation closely matched with in vitro, indicating that the 
kex of KRAS G12C is not significantly affected by the intracellular environment.
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Figure 1.  Characterization of the KRAS G12C mutant and its conjugation with ARS-853. (a,b) Measurements 
of GTP hydrolysis (a) and GDP–GTP exchange (b) rates of KRAS WT and G12C mutant. Time-dependent 
changes of fGTP for WT (gray circles) and G12C (blue circles) were measured based on NMR signal intensities 
of I21 signals and subjected to single exponential curve fitting (solid lines). (c) Summary of in vitro parameters 
of KRAS WT and G12C. The theoretical fraction of the GTP-bound state at steady state (ssfGTP) was calculated 
using experimental khy and kex values. (d) Overlaid 1H–13C HSQC spectra of KRAS G12C with (red) and 
without (black) ARS-853 modification. (e) Mapping of chemical shift difference for Ile residues (spheres) 
caused by ARS-853 modification. The Ile δ1 methyl groups showing significant chemical shift difference 
(δΔ = δH2 + (δC/5)2)1/2 is more than 0.002 ppm) are in magenta. (f) The GDP–GTP exchange profiles of G12C 
with (purple) and without (blue) ARS-853 modification. GDP-loaded KRAS G12C was incubated with 2 
equimolar of GTPγS.
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Discussion
In this study, we performed real-time monitoring of covalent inhibitor targeting of KRAS G12C using in vitro 
and in-cell NMR. Based on the NMR signals of I21 and I93, which exhibited chemical shift changes upon conver-
sion of the GTP/GDP-bound state and covalent bond formation with the inhibitor, respectively, the progress of 
GTP hydrolysis and ARS-853 modification can be simultaneously monitored by acquiring time-resolved NMR 
spectra. In vitro analysis revealed that the reaction between ARS-853 and KRAS G12C occurred in concert with 
the progress of GTP hydrolysis, thereby precluding the conversion of the GTP-bound activated form. This result 
directly demonstrated the postulated mechanism based on the mutational  study13. In-cell NMR experiments 
confirmed that ARS-853 converts the constitutively activated KRAS G12C into the inactive GDP-bound form 
with a higher rate constant than in vitro.

In the previous study, the reaction of the covalent inhibitors was monitored by an LC–MS/MS-based method, 
which required cell disruption and subsequent sample preparation to apply mass  spectrometry29. By contrast, the 
in-cell NMR method can directly monitor reaction progress in the native intracellular environment within living 
cells. One caveat of the current in-cell NMR study is that it used the KRAS G-domain without the C-terminal 
hypervariable region; therefore, RAS was not localized to the plasma membrane. Notably, ssfGTP of KRAS 
G12C was ~ 50%, which is consistent with the result of the RAS-binding domain (RBD)-MS assay performed in 
the presence of erlotinib (EGFR inhibitor)29. Therefore, the result of the in-cell NMR experiments would reflect 
the activity status of KRAS in the basal state without external cellular stimuli. The previous NMR study of full-
length KRAS immobilized on nanodiscs showed that the Switch II region of RAS is exposed to the solvent on 
the lipid  bilayer30, suggesting that the inhibitor binding is not affected by membrane localization of RAS. On the 
other hand, in order to observe the effects of inhibitors in the presence of receptor stimulation, it is necessary 
to perform in-cell NMR analysis under conditions where KRAS is localized to the membrane through lipid 
modifications, as recently  reported31.

Compared with the in vitro rate, the intracellular reaction rate of ARS-853 was elevated due to the increase of 
the khy value of G12C. Increase of intracellular khy was also observed for HRAS mutants in our previous in-cell 
NMR  study25. Although these mutants are known to be insensitive to canonical GAPs, such as RASA1 and  NF118, 
we previously found that unidentified intracellular proteins with molecular weight 30–50 kDa could increase 
khy

25. Consistently, a study reported that the GTP hydrolysis of G12C is enhanced by RGS3 (a GAP that regulates 
heterotrimeric G-proteins), which possesses catalytic mechanisms distinct from canonical  GAPs19. Although 
the expression level of RGS3 in HeLa cells has been reported to be  low32, it is expected that other atypical GAPs 
contribute to the enhancement of GTP hydrolysis of G12C mutant.
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One of the major problems in the early stages of drug development is that the drug candidates obtained by 
in vitro screening often fail at the cellular level due to low membrane permeability or poor intracellular bind-
ing selectivity. In-cell NMR experiments fill the gap between in vitro and cellular level assays, allowing direct 
assessment of drug efficacy under intracellular conditions, including the membrane permeabilization efficiency. 
Several in-cell NMR studies have demonstrated that protein–drug interactions can be evaluated quantitatively 
under intracellular  conditions33, 34. We expect that in-cell NMR will be a widely applied tool for assessing the 
pharmacological properties of a drug at early stages of drug development.

Methods
Protein preparation
The cDNA encoding KRAS G-domain (residues 1–169) was cloned into the pET15b vector and transformed 
into E. coli BL21 (DE3) strain. Protein expression was induced by 0.4 mM IPTG for 16 h at 25 °C. Cells were 
harvested and lysed by sonication, and cell debris and insoluble fraction were removed by centrifugation. The 
supernatant was purified by nickel-NTA affinity chromatography, and further purified by Superdex 75 size 
exclusion chromatography (GE healthcare). Stable isotope-labeled [uniform (U)-[2H], Ileδ1-[13C1H3]] KRAS 
was prepared as  described35. The KRAS G12C mutant was generated using the QuikChange method (Agilent 
technologies). To prepare GTP-loaded KRAS, GDP-bound KRAS in HEPES buffer (20 mM HEPES [pH 7.2], 
150 mM NaCl, 5 mM  MgCl2, and 1 mM TCEP) was incubated with 10 mM EDTA and 5 mM GTP (Sigma) for 
10 min to strip GDP. Then 15 mM  MgCl2 was added for GTP rebinding. Free excess GTP/GDP was removed 
by dialysis against HEPES buffer. A 10 mM stock solution of ARS-853 (SelleckChem) was prepared in DMSO.

In vitro NMR measurements
In vitro NMR experiments were performed either by Bruker Avance 500 or Avance 600 NEO spectrometer 
equipped with a cryoprobe at 37 °C. To monitor GTP hydrolysis, a series of 1H–13C HSQC spectra were measured 
every 15 or 30 min for 200 μM KRAS loaded with GTP. For GDP–GTP exchange rate and ARS-853 modification, 
50 μM GDP-loaded KRAS was mixed with 200 μM GTPγS or 400 μM ARS-853, respectively, and time-resolved 
1H–13C HSQC spectra were recorded every 15 or 30 min. All spectra were processed by TopSpin 3.6 (Bruker), 
and the peak intensities of the GDP/GTP state were analyzed by Topspin 3.6 or UCSF SPARKY. The khy and kex 
values were estimated by non-linear curve fitting using Eqs. (1) and (2), respectively.
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where  [RASGTP]t and  [RASGDP]t denote the fraction of RAS in GTP- and GDP-bound forms, respectively, at time 
point t. The fraction of GTP-bound form at the steady state (ssfGTP) was calculated using Eq. (3).

In‑cell NMR measurements
HeLa S3 cells (JCRB#0713) were cultured in DMEM (supplemented with 10% FBS) under 5%  CO2 atmosphere. In 
total, 1 ×  108 cells were treated with 20 ng/mL SLO at 4 °C for 10 min at cell density 2.0 ×  106 cells/mL and washed 
with HBSS buffer (30 mM HEPES–KOH [pH 7.2], 137 mM NaCl, 5.4 mM KCl, 0.25 mM  Na2HPO4, 0.44 mM 
 KH2PO4, 4.2 mM  NaHCO3, 1% w/v d-glucose). The cells were gently mixed with 500 μL of 1.0 mM KRAS G12C 
in transport buffer (25 mM HEPES [pH 7.4], 115 mM KOAc, 5 mM  MgCl2, 2 mM EDTA) at 37 °C for 30 min. 
The cells were resealed with HBSS containing 1 mM  CaCl2, filtered with a 100-μm mesh to remove cell debris, 
washed two times with HBSS, mixed with 150 μL of 6% Mebiol gel at 4 °C, transferred to a 5-mm Shigemi tube 
as a coil-shaped thread using a Pasteur pipet, and incubated at 37 °C to form a gel.

All in-cell NMR experiments were performed at 37 °C using an AvanceIII HD 800 spectrometer equipped 
with a TCI probe (Bruker). 1H–13C SOFAST HMQC spectra were recorded with 30 min measurement time under 
perfusion with DMEM containing 20%  D2O (without serum) at a flow rate of 2.75 mL/h. To measure the ARS-
853 reaction in the cell, the inlet tube was detached from the NMR tube, purged with the medium containing 
100 μM ARS-853, and then reattached. The cells were perfused with ARS-853 containing medium for at least 
15 min at a flow rate of 2.75 mL/h before resuming subsequent NMR measurements.

Data availability
The datasets generated during and/or analyzed during the current study available from the corresponding author 
on reasonable request.
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