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Delta radiomics analysis 
for prediction of intermediary‑ 
and high‑risk factors for patients 
with locally advanced cervical 
cancer receiving neoadjuvant 
therapy
Rong‑Rong Wu 1,5, Yi‑Min Zhou 2,5, Xing‑Yun Xie 1, Jin‑Yang Chen 3, Ke‑Run Quan 4, 
Yu‑Ting Wei 1, Xiao‑Yi Xia 1 & Wen‑Juan Chen 1*

This study aimed to assess the feasibility of using magnetic resonance imaging (MRI)‑based Delta 
radiomics characteristics extrapolated from the Ax LAVA + C series to identify intermediary‑ and 
high‑risk factors in patients with cervical cancer undergoing surgery following neoadjuvant 
chemoradiotherapy. A total of 157 patients were divided into two groups: those without any 
intermediary‑ or high‑risk factors and those with one intermediary‑risk factor (negative group; n = 75). 
Those with any high‑risk factor or more than one intermediary‑risk factor (positive group; n = 82). 
Radiomics characteristics were extracted using Ax‑LAVA + C MRI sequences. The data was divided into 
training (n = 126) and test (n = 31) sets in an 8:2 ratio. The training set data features were selected using 
the Mann–Whitney U test and the Least Absolute Shrinkage and Selection Operator (LASSO) test. 
The best radiomics features were then analyzed to build a preoperative predictive radiomics model for 
predicting intermediary‑ and high‑risk factors in cervical cancer. Three models—the clinical model, the 
radiomics model, and the combined clinic and radiomics model—were developed in this study utilizing 
the random forest Algorithm. The receiver operating characteristic (ROC) curve, decision curve 
analysis (DCA), accuracy, sensitivity, and specificity were used to assess the predictive efficacy and 
clinical benefits of each model. Three models were developed in this study to predict intermediary‑ 
and high‑risk variables associated with postoperative pathology for patients who underwent surgery 
after receiving neoadjuvant radiation. In the training and test sets, the AUC values assessed using the 
clinical model, radiomics model, and combined clinical and radiomics models were 0.76 and 0.70, 0.88 
and 0.86, and 0.91 and 0.89, respectively. The use of machine learning algorithms to analyze Delta 
Ax LAVA + C MRI radiomics features can aid in the prediction of intermediary‑ and high‑risk factors in 
patients with cervical cancer receiving neoadjuvant therapy.

Cervical cancer is the fourth most commonly diagnosed cancer in women globally. Approximately 84% of cases 
are detected in underdeveloped countries, where cervical cancer is the leading cause of cancer-related mortality 
in women. Cervical cancer is treated with surgery, radiation, and  chemotherapy1.  Friedlander2 defined a "neoad-
juvant chemotherapy" (NACT) in 1983 to describe two to three cycles of systemic chemotherapy administered 
to patients with malignant tumors before surgery or radiation therapy to reduce the tumor. In stage Ib2-IIb 
cervical cancer (FIGO 2009 version), direct surgical resection is difficult due to the large tumor size. NACT 
is typically employed to shrink the tumor and improve the surgical resection  rate3. This strategy is not only 
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beneficial for the surgical treatment of patients with inoperable cancer but also provides the opportunity to 
preserve the ovaries of young patients. NACT can reduce tumor cell viability and eliminate micro-metastases, 
which can help mitigate postoperative high-risk pathological factors, reduce postoperative radiotherapy rates, 
and improve the postoperative quality of life of  patients4, 5. Hence, NACT followed by surgery has been rendered 
an alternative radical treatment modality for patients with locally advanced cervical cancer (LACC), in addition 
to concurrent  chemoradiotherapy6. While the NCCN guidelines do not endorse neoadjuvant treatment options, 
the 2016 American Society of Clinical Oncology Resource Stratification Clinical Practice  Guideline7 emphasizes 
the reliance on alternative resources for treatment when radiation therapy is unavailable in certain situations. 
Instead of surgery followed by chemotherapy, this panel favors neoadjuvant chemotherapy. Neoadjuvant chemo-
therapy followed by surgery is a successful treatment option for patients with locally advanced cervical cancer 
in resource-limited settings.

In LACC, cisplatin-based concurrent radiation has a better the disease-free survival (DFS) rate than NACT 
followed by radical surgery; however, no statistically significant differences are observed in the overall survival 
(OS)  rates8. NACT followed by radical surgery has demonstrated an OS rate similar to that observed with concur-
rent radiation in patients with stage IB3 and IIA2 cervical cancer, with no increase in side  effects9. In patients with 
comparable survival, approximately 25–30% of patients who undergo surgery after NACT still require adjuvant 
radiotherapy or chemoradiotherapy. This treatment model has potential issues such as increased medical costs, 
treatment-related diseases, myelosuppression, lymphedema, urinary and rectal fistulas, rectal strictures, bladder 
dysfunction, and rectal  stenosis10.

Through non-invasive manipulation, radiomics may aid in extracting many radiomics features and obtain-
ing tumor heterogeneity information. Researchers can mine high-dimensional data that can aid in therapeutic 
decision-making, forecast tumor survival, and, ultimately, help in personalized and precise  treatment11. Radiom-
ics has been applied to lung cancer, breast cancer, cervical cancer, and so  on12–14.

Tian et al.4 used computed tomography (CT)-based radiomics to predict response to NACT in patients with 
LACC in a multicenter clinical investigation. Surgery after NACT was conducted for patients in the investigation 
cohort; individuals with poor responses were advised to receive direct concurrent chemoradiotherapy. Many 
scholars have used radiomics to predict risk factors marking the postoperative period in patients with cervical 
 cancer15–18. However, intermediary- and high-risk factors have not been predicted in patients who undergo sur-
gery after NACT. Giannini V, Jeon SH, and van Dijk LV et al. predicted response to tumor therapy using Delta 
radiomics features before and after  treatment19–21. Therefore, in this study, we aimed to use Delta radiomics 
features extracted before and after neoadjuvant therapy to predict intermediary- and high-risk postoperative 
parameters in this patient cohort.

Materials and methods
General materials
This study retrospectively collected data corresponding to 157 patients (cervical cancer: stage IIA2 ~ IIB) who 
underwent radical cervical cancer surgery after completion of neoadjuvant therapy at Fujian Cancer Hospital 
from January 2013 to July 2018. The 2009 FIGO staging system was used. Age, squamous cell carcinoma antigen 
level pre-treatment (pre-treatment SCC), after-treatment squamous cell carcinoma antigen level (after-treatment 
SCC), pre-treatment Hemoglobin (pre-treatment HB), maximum tumor diameter, Tumor volume before treat-
ment, Tumor volume after treatment, Tumor volume regression rate, Recist v. 1.1 tumor regression rate and 
WHO tumor regression rate were collected to the clinical data.

Inclusion criteria: (1) Patients who had not been subjected to any treatment outside our hospital prem-
ises during the first visit; (2) pelvic magnetic resonance imaging (MRI) plain scan + enhancement examination 
was performed before and after neoadjuvant treatment; (3) radical hysterectomy and pelvic ± paraaortic lym-
phadenectomy; (4) preoperative scan sequences of the patients included lower abdominal MRI Ax_LAVA + C 
sequences; (5) pathological results were clear after surgery.

Exclusion criteria: (1) artifacts in the imaging area of interest; (2) Ax_LAVA + C sequence images of MRI did 
not meet the requirements of tumor image segmentation; (3) incomplete clinical data; (4) patients who had not 
completed neoadjuvant treatment and surgery at our institution.

After screening based on inclusion and exclusion criteria, according to Sedlis Standard, a total of 157 patients 
were divided into two groups: those without any intermediary- or high-risk factors and those with one interme-
diary-risk factor (negative group; n = 75). Those with any high-risk factor or more than one intermediary-risk 
factor (positive group; n = 82). High-risk and intermediate-risk postoperative risk factors for cervical cancer 
are separated. Positive lymph nodes, paracervical infiltration, and positive margins are examples of high-risk 
factors. Vascular embolism, nerve invasion, tumor size, interstitial infiltration, and lymphovascular interstitial 
infiltration are intermediate risk factors. The patients were randomly assigned to the training and test sets in a 
ratio of 8:2, with 126 patients in the training set and 31 patients in the test set.

Examination methods
All MRI examinations were performed using 1.5 T scanners (Signa 1. 5 T EXCITE III HD) with eight-channel 
phased-array abdominal coils. All patients were injected with the contrast agent gadopentetate glucosamine injec-
tion (Gd-DTPA) at a dose of 0.1 ~ 0.2 mmol/kg via elbow vein at a rate of 1.5 ml/s. The following criteria were 
used: TR was 4 ms, TE was 2 ms, the flip angle was 15°, FOV was 400 mm × 400 mm, layer thickness/interlayer 
distance = 7 mm/3.5 mm, number of layers was 88–92, and scanning time was about 15 s.
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Image segmentation and feature extraction
To achieve grayscale normalization, Ax-LAVA + C images of each patient before and after neoadjuvant treat-
ment were first subjected to N4-bias field correction. The corrected images were imported into the ITK-SNAP 
3.8 software (www. itksn ap. org). A gynecologic oncologist with five years of experience (physician 1) outlined 
all images layer-by-layer to fuse the region of interest into volume of interest (VOI). These images were then 
reviewed by a gynecologic oncologist with more than ten years of experience (physician 2). Image preprocess-
ing was performed to enhance radiomics feature differentiation, including resampling to 1 × 1 × 1 mm isotropic 
voxels, and interpolation was performed using the SitkBSpline algorithm. Radiomics features were extracted 
by the Pyradiomics package. A total of 1562 radiomics features were extracted, including first-order histogram 
features, morphological features, texture features, and Gaussian wavelet transform filter features. The delta radi-
omics features were calculated based on the following formula: post-treatment radiomics features—pre-treatment 
radiomics  features22. A total of 30 patients were selected using a completely randomized method, and the VOI 
was outlined again by physician 1 at one-month intervals. The intraclass correlation coefficient (ICC) consistency 
was evaluated by extracting the radiomics  features23. The workflow of radiomics analysis was shown in Fig. 1.

Feature selection and development of radiomics labels
First, the data were regularized, and the radiomics features in the training set were initially screened based on ICC 
(ICC > 0.75) to retain the features with good reproducibility. Second, after excluding highly redundant radiomics 
features with Spearman correlation coefficients > 0.9, radiomics features were assessed using the Mann–Whit-
ney U test to distinguish between positive and negative groups while keeping statistically significant features. 
Third, the LASSO was used to perform feature dimensionality reduction. Finally, we used the random forest 
machine learning method to distinguish between positive and negative sets. All feature screening and classifi-
cation operation procedures were performed with Python 3.8.5. A pre-and post-neoadjuvant delta radiomics 
model, a clinical model, and a pre-and post-neoadjuvant delta clinical radiomics model were constructed. All 
models were quantified using the ROC  curve24, and the AUC values were used to quantify the predictive value 
of models. Accuracy, sensitivity, and specificity were also used to assess the diagnostic performance of models.

Clinical benefits
The decision curve analysis (DCA) was used to determine the net benefit of each model for the evaluation of 
intermediary- and high-risk factors at various threshold probabilities and to rate the clinical usefulness of the 
predictive  model25 .

Statistical methods
All aforementioned statistical methods were performed via Python 3.8.5 and SPSS 26.0 (IBM, New York, USA).

Ethics statement
This study was approved by the medical ethical committee review board of the Fujian Cancer Hospital (No. 
K2022-135-01).

Results
Comparison of baseline characteristics of patients in the two groups
Table 1 displays the clinical characteristics of the patients. The average age of the patients in the training set 
was 51.86 ± 7.41 years. The average age of the patients in the test group was 53.68 ± 7.56 years. Only the tumor 
regression rate determined via Recist v1.1  criteria26 and pre-treatment HB levels (p > 0.05) were significantly 
different between the two cohorts.

Figure 1.  The workflow of radiomics analysis in this study.

http://www.itksnap.org
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Feature extraction and feature dimensionality reduction
We extracted 1562 radiomics features from Ax LAVA + C MRI sequence images captured before and after neo-
adjuvant therapy. The delta radiomics features were calculated. A completely random process was used to select 
30 patients, and physician 1 again marked the VOI after an interval of one month. Following the extraction of 
radiomics features, consistency in the ICC was assessed. Among all extracted radiomics features, features with 
ICC > 0.75 were selected. For identifying redundant features, Spearman correlation coefficients were calculated. 
One feature was arbitrarily excluded if the correlation coefficient between two features was greater than 0.9. 
Then, the best subset of radiomics features was selected using the LASSO test based on tenfold cross-validation 
for penalty adjustment. The features retained in the model are shown in Fig. 2.

Construction of clinical model
We retained the following 7 clinical features through feature selection to construct a clinical model: Age, Diam-
eter, Pre-treatment SCC, Tumor volume after treatment, after-treatment SCC, WHO_withdrawal_rate and 
Recist1.1_withdrawal_rate. The clinical model was constructed by applying the random forest algorithm based 
on clinical features with an AUC of 0.76 (95% CI 0.673–0.840) in the training set with precision, sensitivity, and 
specificity of 0.72, 0.70, and 0.82, respectively, and an AUC of 0.74 (95% CI 0.512–0.892) in the test set with 
precision, sensitivity, and specificity of 0.74, 0.69, and 0.92, respectively (Fig. 3).

Construction of radiomics model
The model was developed with delta radiomics features calculated based on Ax_LAVA + C MRI sequences 
before and after neoadjuvant treatment. A total of 18 radiomics features were retained after feature extraction 
and feature dimensionality reduction (Additional file 1). The random forest algorithm was applied to construct 
a radiomics model based on the above features. The AUC in the training set was 0.88 (95% CI 0.818–0.937), and 
the precision, sensitivity, and specificity were 0.82, 0.88, and 0.75, respectively. The AUC in the test set was 0.86 
(95% CI 0.730–0.995), and the precision, sensitivity, and specificity were 0.81, 0.81, and 0.80, respectively (Fig. 3).

Development of combined clinical radiomics model
Based on Ax_LAVA + C MRI sequences collected before and after neoadjuvant therapy, delta radiomics fea-
tures were calculated. From clinical features and delta radiomics features combined, 4 clinical features and 15 

Table 1.  Comparison of clinical features in the training and validation sets.

Clinical features Training set Test set P

Tumor volume before treatment 31.20 ± 22.04 32.35 ± 29.74 0.809

Tumor volume after treatment 8.53 ± 8.59 8.26 ± 6.99 0.872

Tumor volume regression rate 0.70 ± 0.23 0.65 ± 0.25 0.334

Maximum tumor diameter before treatment 4.28 ± 1.19 3.99 ± 1.59 0.242

Maximum tumor diameter after treatment 1.80 ± 1.43 1.39 ± 1.21 0.145

WHO tumor regression rate 0.59 ± 0.31 0.63 ± 0.35 0.583

Recist v1.1 tumor regression rate 0.31 ± 0.35 0.47 ± 0.39 0.025

Pre-treatment HB 110.30 ± 18.14 118.48 ± 18.90 0.021

Pre-treatment SCC 8.66 ± 11.37 8.86 ± 12.71 0.443

after-treatment SCC 2.75 ± 4.23 2.73 ± 4.92 0.985

Age 51.86 ± 7.41 53.68 ± 7.56 0.224

Diameter 0.091

 < 4 cm 53(42.06%) 12(38.71%)

 ≥ 4 cm 73(57.94%) 19(61.29%)

Figure 2.  (A) Coefficient profiles. (B) cross-validation plot. (C) feature weight plot.
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radiomics features were retained after feature extraction and feature dimensionality reduction (Additional File 
1). The random forest algorithm was applied to construct a model based on the aforementioned features, with 
an AUC of 0.91 (95% CI 0.868–0.961) in the training set and accuracy, sensitivity, and specificity of 0.83, 0.76, 
and 0.90, respectively. The AUC in the test set was 0.89 (95% CI 0.779–1.000), and the precision, sensitivity, and 
specificity were 0.84, 0.88, and 0.80, respectively (Table 2).

Clinical benefits
The findings of decision curve analysis (DCA) for the clinical, radiomics, and combined models are shown in 
Fig. 4. The decision curves showed that the combined model performed better in terms of benefits than the clinic 
model and radiomics model.

Discussion
Cervical cancer is one of the most common malignant tumors in gynecology, and its incidence rate is second 
only to breast cancer, with the third highest mortality rate in developing  countries27. According to the World 
Health Organization, over 80% of cervical cancer cases occur in developing nations. Additionally, more than 
half of cervical cancer patients are diagnosed at an advanced stage. Cervical cancer exhibits a subtle onset with 
inconspicuous early symptoms, and screening and treatment techniques for the disease vary across countries and 
regions. In cases where lesions exceed 4 cm, the likelihood of recurrence and metastasis after treatment increases 
for stage IB2 and IIA2 cervical cancer. Despite the NCCN guidelines recommending concurrent chemoradio-
therapy as the preferred treatment approach, the 5-year survival rate for patients undergoing this treatment ranges 
from approximately 30% to 80%28. In certain regions, there is a low number of patients with stage IB2 and IIA2 
cervical cancer and large lesions receiving CCRT due to limitations in radiotherapy equipment and techniques. 
In some areas, stage IIB patients also undergo surgery as a treatment option. Apart from the constraints related 
to radiotherapy equipment and technology in certain developing countries, such as China, the decision-making 
process of patients and their families also plays a role in the selection of treatment approaches. The optimal 
treatment modality for this specific group of patients is still under exploration. Neoadjuvant chemotherapy can 
effectively decrease the requirement for postoperative adjuvant radiotherapy and enhance the postoperative 
quality of life for young women and patients with locally advanced cervical cancer and large lesions. Its primary 

Figure 3.  (A) The ROC curves of the clinical model, radiomics model, and combined model in the training set. 
(B) The ROC curves of the clinical model, radiomics model, and combined model in the test set.

Table 2.  Performance of each model.

Model name Data set AUC 95% CI Accuracy Sensitivity Specificity Threshold

Radiomics model
Training set 0.88 0.818–0.937 0.82 0.88 0.75 0.516

Test set 0.86 0.730–0.995 0.81 0.81 0.80 0.533

Clinic model
Training set 0.76 0.673–0.840 0.72 0.70 0.82 0.578

Test set 0.70 0.512–0.892 0.74 0.69 0.92 0.578

Combine model
Training set 0.91 0.868–0.961 0.83 0.76 0.90 0.590

Test set 0.89 0.779–1.000 0.84 0.88 0.80 0.557
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objective is to preserve the ovarian and sexual functions of these young patients without compromising their 
prognosis. Therefore, accurately predicting the effectiveness of neoadjuvant therapy before treatment and iden-
tifying intermediary- and high-risk factors after surgery are essential factors for this specific group of patients.

In this study, a clinical and radiomics model and a combined clinical radiomics model were constructed to 
predict intermediary- and high-risk factors associated with postoperative pathology after neoadjuvant therapy. 
The models were based on delta radiomics features and clinical features of Ax_LAVA + C MRI sequence images 
collected before and after neoadjuvant therapy. Delta radiomics includes a temporal component, including the 
extraction of quantitative features from picture sets recorded during therapy, which reveals the progression of 
feature values. The combined clinical radiomics model showed the best predictive ability with respect to both 
the training set (AUC: 0.91) and the test set (AUC: 0.89). Nonetheless, the radiomics model outperformed the 
clinical model in this study (radiomics model AUC of 0.86 vs. clinical model AUC of 0.70 in the test set). The 
combined clinical radiomics model showed the best predictive performance with AUC, accuracy, and sensitivity 
of 0.89, 0.84, and 0.88, respectively, in the test set (Fig. 3).

Yang-yang Kan et al.16 previously used T1CE and T2 MRI radiomics to identify positive lymph nodes in 
patients with early-stage cervical cancer, with AUC values of 0.753 (95% CI 0.656–0.850) in the training set 
and 0.754 (95% CI 0584–0.924) in the test set. MRI radiomics were used to predict lymphovascular interstitial 
infiltration in patients with early-stage cervical cancer, as well as risk stratification for patients who required 
adjuvant radiotherapy after  surgery29; Sun et al.5 believed that before treatment, MRI-based radiomics predicts 
LACC NACT responses. With an AUC of 0.999, the combined model outperformed other radiological models 
in the test set. Fang et al.26 showed that a radiomics model was developed to predict the response to simultane-
ous radiotherapy using three sequences of sagittal T2 images, ADC map images, and axial T1-enhanced images 
obtained during pre-treatment multiparametric MRI. The AUC values were 0.820 (95% confidence interval 
0.713–0.927) and 0.798 (95% confidence interval 0.678–0.917) in the training and the test sets, respectively. 
Furthermore, the combined model outperformed individual radiomics or clinical features, consistent with the 
findings of the current study. Our study is novel in that it proposes predicting intermediary-and high-risk factors 
for patients after neoadjuvant therapy in the postoperative period to assist clinicians in determining whether 
adjuvant therapy is needed or whether concurrent radiotherapy should be administered directly.

There are certain limitations to this study that need to be addressed. Firstly, there might be a selection bias 
since all the data used in this study were obtained from a single study center and a specific type of MRI machine. 
Future research should include validation from multiple centers to ensure generalizability. Secondly, the study 
participants were limited to cervical squamous carcinoma, and it would be beneficial to conduct studies involv-
ing other pathological subtypes of cervical cancer.

In summary, a combined clinical radiomics model was developed using Delta LAVA + C MRI radiomics fea-
tures and clinical features. Machine learning algorithms are expected to be used for non-invasive preoperative 
prediction of intermediary- and high-risk parameters in patients with cervical cancer receiving neoadjuvant 
therapy.

Conclusion
In conclusion, we established an MRI-based radiomic model that combined clinical and radiomic features to 
predict postoperative intermediary- and high-risk factors in patients undergoing surgery following neoadju-
vant therapy. This combined model showed excellent diagnostic performance and can be potentially used for 
preoperative prediction of postoperative intermediary- and high-risk factors in patients with cervical cancer 
subjected to neoadjuvant therapy.

Figure 4.  (A) The DCA curves in the training set. (B) The DCA curves in the test set.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19409  | https://doi.org/10.1038/s41598-023-46621-y

www.nature.com/scientificreports/

Data availability
The original contributions presented in the study are included in the article. Further inquiries can be directed 
to the corresponding authors.
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