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Histology‑informed multiscale 
modeling of human brain white 
matter
Saeideh Saeidi 1, Manuel P. Kainz 1, Misael Dalbosco 1,2, Michele Terzano 1 & 
Gerhard A. Holzapfel 1,3*

In this study, we propose a novel micromechanical model for the brain white matter, which is 
described as a heterogeneous material with a complex network of axon fibers embedded in a soft 
ground matrix. We developed this model in the framework of RVE‑based multiscale theories in 
combination with the finite element method and the embedded element technique for embedding 
the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated 
into the model through distributions derived from histological data. The constitutive law of both the 
fibers and the matrix is described by isotropic one‑term Ogden functions. The hyperelastic response 
of the tissue is derived by homogenizing the microscopic stress fields with multiscale boundary 
conditions to ensure kinematic compatibility. The macroscale homogenized stress is employed in 
an inverse parameter identification procedure to determine the hyperelastic constants of axons 
and ground matrix, based on experiments on human corpus callosum. Our results demonstrate 
the fundamental effect of axon tortuosity on the mechanical behavior of the brain’s white matter. 
By combining histological information with the multiscale theory, the proposed framework can 
substantially contribute to the understanding of mechanotransduction phenomena, shed light on the 
biomechanics of a healthy brain, and potentially provide insights into neurodegenerative processes.

In the human brain, white and gray matter form a highly inhomogeneous structure, which leads to region-
dependent mechanical  behavior1, 2. Gray matter consists primarily of neuronal cell bodies, whereas white matter 
is characterized by a more complex microstructure, including oligodendrocytes, fibrous astrocytes, microglia, 
capillaries, and a dense network of myelinated axon fibers embedded in a soft extracellular  matrix3. There is 
evidence that pathological and physiological changes in the brain microstructure, such as those resulting from 
traumatic brain injury, growing tumors, neurodegenerative disorders including Alzheimer’s disease, or even 
healthy aging, directly affect the mechanical properties of brain  tissue4–9. In addition, recent studies have shown 
that growth and development of axons are not only related to chemical but also to mechanical stimuli and can 
be affected by changes in tissue  stiffness10–12. Therefore, there is a need to improve our understanding of the 
interactions between the brain microstructure and its mechanical behavior through the development of new 
computational models. In this way, we could better investigate mechanotransduction phenomena that contribute 
to normal brain function and shed light on the underlying mechanisms of brain neurodegeneration.

Microstructure-informed computational models are developed as powerful tools that connect the micro-
structure of the tissue with its macroscopic mechanical response. These models can be roughly divided into two 
groups: (i) structure-based continuum models, in which the heterogeneous microstructure occurs indirectly in 
the formulation of the constitutive  law13–15; (ii) micromechanical multiscale models, where the microstructure 
occurs explicitly at the element level and the macroscopic response is obtained through the homogenization of the 
microscopic fields. With regard to the latter, multiscale models based on representative volume elements (RVEs) 
were combined with numerical homogenization for fiber-reinforced soft tissues such as  tendons16,  arteries17–19, 
 myocardium20 and brain tissue. These multiscale models adopt a physical representation of the microstructure to 
simulate the homogenized response of the material at the  macroscale21,22. Multiscale models of brain tissue have 
been developed mainly for the white matter, with particular emphasis on the brain stem and the corpus callosum 
(CC). Both regions are characterized by bundles of highly oriented axon  fibers23–33. For the brain RVE, most 
studies proposed a micrometer-scale cubic geometry comprising a limited number of axons modeled as straight 
or wavy cylindrical inclusions uniformly distributed within a ground  matrix24,27,30,33. Diffusion tensor  imaging34 
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and, more recently, three-dimensional (3D) imaging with polarized  light35 have enabled the reconstruction of 
the orientation of axon fibers. A more realistic fiber architecture, including random location and orientation of 
the axons, was included in the model presented by Hoursan et al. 31.

Multiscale models provide a convenient tool to characterize the viscoelastic and hyperelastic mechanical 
properties of brain tissue microstructure. The macroscale response derived from the stress homogenization 
can be fitted to experimental data to determine the mechanical parameters of the constituents by an inverse 
 procedure32,33,36. Given the difficulty of directly quantifying the material properties of axons, this is a valuable con-
sideration. From a mechanical point of view, brain tissue exhibits a soft, time-dependent material  behavior37–40. 
Neuroimaging techniques highlight a distinct structural  anisotropy34,41,42, although there is disagreement whether 
this is also reflected in the macroscopic mechanical  anisotropy3,43,44. In addition, current predictions of the hyper-
elastic and viscoelastic material properties of white matter are inconsistent. According to reports, axons are three 
to thirteen times stiffer than the ground  matrix30,31,45,46. Histological images also indicate that the axons follow 
wavy  streams45,47–49, an aspect that can have relevant implications for the performance of the micromechanical 
 model24,26,27. Overall, a micromechanical model based on data obtained from histological information combined 
with parameter identification performed at multiple loading modes simultaneously could lead to a better under-
standing of the relationship between microstructure and macroscopic mechanical behavior.

The main objective of this study is to propose a new microscale RVE of the brain white matter. The micro-
mechanical model includes several microstructural parameters, such as axon diameter, orientation and tortuos-
ity, based on histological information. For each of these parameters, appropriate probability density functions 
(PDFs) are calibrated to the experimental distribution observed in human CC. Furthermore, we propose an 
efficient implementation in a finite element framework based on the embedded element technique. This tech-
nique, which was applied to the modeling of axon  fibers50 and more recently to collagen networks by Dalbosco 
et al.19, is optimal for simulating complex architectures of one-dimensional (1D) fibers. The fiber tortuosity 
is indirectly included in the constitutive law via the concept of the recruitment  stretch13,51. The second objec-
tive is to investigate how the microstructure correlates with the macroscopic, possibly anisotropic, mechanical 
response of the white matter. For this purpose, the homogenized response is used to determine the mechanical 
parameters of axon fibers and the ground matrix, through an inverse parameter identification scheme based 
on existing  experiments2. The model is then validated against load cases other then those used to identify the 
material parameters. Finally, the influence of fiber tortuosity and orientation on the homogenized response of 
the RVE is assessed.

Results
Representative volume element of brain white matter
We designed a microscopic RVE based on a simplified two-component representation of the brain white matter. 
A continuous 3D medium describes the ground matrix, including the extracellular matrix and the non-neuronal 
cells, reinforced by 1D myelinated axon fibers. Following the work from our group on arterial  tissue19, axons are 
distributed in the matrix at random locations with different diameter, orientation, and tortuosity. We considered 
the outer diameter of axons, including the myelin sheath. Fiber tortuosity refers to the waviness of the axon fibers 
in the unloaded state, here implemented through the concept of recruitment stretch (see Methods). The volume of 
axon fibers is defined by the fiber volume fraction 2. An illustration of the RVE is shown in Fig. 1. The algorithm 
for generating the random fiber network is described in detail in the Supplementary Material available online.
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Figure 1.  Representative volume element of the corpus callosum. View of the human brain in the coronary 
plane and axon fiber network in the corpus callosum from scanning electron  microscopy47. The 3D RVE with 
random axon fiber network represents axons as cylindrical structures (color is related to their tortuosity).
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We included microstructural features of axon fibers in the RVE from existing histological information of 
brain CC, in the form of distribution functions. Namely, we considered three parameters: fiber diameter, fiber 
tortuosity and fiber orientation.

Scanning electron micrographs show that the diameter of myelinated axons in the human CC follows a cer-
tain  distribution52. We fitted the experimental data of the genu (the bending of the anterior CC) to a generalized 
extreme value distribution defined by the following PDF

where d, µ , σ and ξ represent the fiber diameter, the location parameter, the scale parameter, and the shape 
parameter of the probability density,  respectively53. The experimental distribution and fitting are shown in Fig. 2a.

From histological images of the white matter, we could observe wave-like streams, suggesting that axons can 
be characterized by a certain  tortuosity45,55. In the absence of information from human brain, we employed data 
derived from scanning electron micrographs of sheep CC, which suggested a log-normal distribution of the axon 
tortuosity τ 48. More precisely, we defined a straightness parameter Ps = 1− τ = L0/Lf  , where L0 is the end-to-
end length of the fiber and Lf  denotes the arc length of the center line, measured in the reference configuration. 
We then fitted the experimental distribution of the straightness parameter Ps using a beta PDF, i.e.

where Ŵ(•) is the gamma function of (•) and a, b > 0 are shape parameters. The histogram and the corresponding 
fit are shown in Fig. 2b. The parameter Ps → 0 is characteristic of large fiber tortuosity, whereas Ps → 1 refers 
to straighter fibers. As specified in the Methods, we modeled the axons as 1D straight segments and indirectly 
incorporated tortuosity into the constitutive law, based on the concept of recruitment  stretch19,51. In summary, 
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Figure 2.  Illustration of the structural parameters considered in the model. (a) Histogram of axon diameter 
distribution for the human corpus callosum and the PDF fit of the generalized extreme value (GEV) based 
on (1) (the insert is adapted  from52); (b) histogram of axon fiber straightness parameter Ps for ovine corpus 
callosum (data adapted  from48) and the beta distribution fit based on (2); (c) concept of fiber recruitment, with 
the initial tortuous configuration, the partially unbent state (fiber stretch � < 1/Ps ) and the recruited state 
( � > 1/Ps ); (d) orientation of a single axon fiber in space (adapted  from54).
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the stretch of a tortuous fiber consists of a first stage of unbending or fiber recruitment, with no mechanical 
contribution, and a subsequent phase in which the fully stretched fiber starts to bear loads. This concept is 
illustrated in Fig. 2c.

Finally, the orientation distribution of axon fibers in space is described by a density function, with the 
orientation of a single fiber identified by azimuthal and elevation angles (Fig. 2d). Following the collagen fiber 
dispersion model proposed by Holzapfel et al.54, we assumed a bivariate von Mises PDF, which requires a pair of 
concentration parameters α,β ≥ 0 (Eq. 4 in Methods). Despite recent advances in neuroimaging methods, high-
resolution images of the fibrous network in human white matter are still  scarce35,56. In vivo diffusion tensor imag-
ing studies can provide the orientation of the fibers with millimeter-scale  resolution34,57, which is not applicable 
to the microscopic range of this work. Furthermore, increasing evidence confirms that axons in the human CC 
are highly  unidirectional47. Therefore, we assumed perfect alignment of the axons ( α → ∞ , β → ∞ ) for model 
fitting and validation. A summary of the complete structural parameters used in this work is listed in Table 1.

Size of the representative volume element
Due to the random structure of the axon fiber network, different RVEs are generated for the unique set of charac-
teristic PDF parameters listed in Table 1. Therefore, a fundamental step is to determine the size of the RVE, which 
offers a significant macroscale representation of the mechanical behavior, independently of the random network.

We generated n = 10 RVEs in four groups based on different edge lengths, La = 5, 15, 25 and 50µ m (40 RVEs 
in total), using the same structural parameter set. All RVEs are subject to the same loading, which was defined 
based on seven simple deformation modes used in the experiments of Budday et al 2. These include uniaxial 
compression and tension up to a stretch of 1.2 parallel and transverse the fiber direction, as well as three modes 
of simple shear up to an amount of shear of γ = 0.2 , as illustrated in Fig. 3.

To ensure kinematic compatibility between the micro and macroscales, periodic boundary conditions are 
applied to the RVE 19 (see  Methods). The macroscale response is provided by the homogenized stress, which is 
calculated based on the rule of mixture and the assumption of continuity in the displacement fields of matrix 
and fibers (no-slip condition)19. The homogenized first Piola–Kirchhoff (nominal) stress P is then defined as 
P = Pm + vf P̃f  , where vf  is the fiber volume fraction, Pm is the volume-averaged stress in the ground matrix and 
P̃f  represents the volume-averaged stress for the embedded fibers. These are obtained from

where Vm is the volume of the ground matrix and Vf =
∑Nf

i=1 V
(i)
f  is the total volume of the fibers.

Results of the RVE size convergence analyses are illustrated in Fig. 4 in terms of homogenized stress-stretch 
curves from the tension FF simulations. The shaded plots show the variability range for the macroscopic response 
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Table 1.  Structural parameters of corpus callosum. The parameters of different PDFs are fitted to existing 
experimental data.

Parameter Description Value

vf Axon volume fraction 0.400 [–]

Axon diameter (Generalized extreme value PDF)

µ Location parameter 0.426 [ µm]

σ Scale parameter 0.200 [ µm]

ξ Shape parameter -0.305 [–]

Axon tortuosity (Beta PDF)

a Shape parameter 9.155 [–]

b Shape parameter 1.275 [–]

Axon orientation (Bivariate von Mises PDF)

α Concentration parameter ∞
β Concentration parameter ∞
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Figure 3.  Loading modes applied to the RVE. Compression and tension parallel (FF) and transverse (TT) to 
the fibers, and three modes of simple shear (axon fibers are aligned with the x-axis).
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of the randomly generated RVEs. Due to the concept of recruitment stretch, perfectly aligned fibers do not pro-
vide any mechanical contribution when compressed along their axis or stretched in the perpendicular direction. 
Therefore, compression FF and tension TT were not considered in the convergence analysis. The size of the RVE 
and the fiber network have a significant impact; however, we can see a convergent pattern, suggesting that larger 
RVEs can provide a more accurate representation of the microstructure. Considering the high computational 
costs for the RVEs in group 4 and minimum differences to the results of group 3, an RVE edge size of La = 25µ m 
is chosen as the optimal RVE. It is important to highlight that the homogenized stress in each group varies inde-
pendently of the number of fibers in the RVE.

Material parameter identification and model validation
The optimal RVE is used to simulate the homogeneous macroscale deformations in order to identify the material 
parameters of the ground matrix and of the axon fibers. We defined an inverse parameter identification algorithm 
(see Methods) and employed the experimental data from Budday et al.2 for the human brain CC, from compres-
sion FF and tension FF, TT (Fig. 3).

We assumed that the ground matrix behaves like a nearly incompressible isotropic material, whose strain-
energy function �m is given by a one-term Ogden material model, as suggested by numerous studies on the 
time-independent behavior of human brain under various loading  conditions2,4. We postulated an analogous 
material model for the axon fibers, with a modified formulation of the strain-energy function of the single fiber 
�̃

(i)
f  to include the concept of recruitment stretch and the assumption of incompressibility.

In total, four material parameters must be determined: shear moduli of ground matrix and fibers, µm and 
µf  , and two nonlinearity parameters αm,αf  . In our modeling approach, we embedded the axon fibers inside 
the volume of the ground matrix, assuming perfect adhesion. Accordingly, �̃(i)

f  denotes a modified strain-
energy function to account for a stiffness redundancy resulting from the embedding 50. Therefore, the material 
parameters µf  and αf  are to be understood as parameters of the embedded fibers. More details are provided in 
the Methods. Figure 5 shows the model fit (labeled as ‘fit’ results) compared to the experimental stress-stretch 
curve in compression FF (Fig. 5a) and tension FF, TT (Fig. 5b). The material parameters identified are summa-
rized in Table 2. In addition, the model is validated by testing its prediction capabilities in the remaining loading 
cases not used to identify the material parameters, namely compression TT and shear TF, FT, TT. The results are 
shown in Fig. 5 (labeled as ‘simulation’ results).

Effect of fiber orientation
We performed analyses on RVEs with edge length La = 25µ m using the optimized material parameters listed 
in Table 2 but changing the concentration parameters α (in-plane) and β (out-of-plane) to assess the influence 
of the fiber orientation. Four different cases, summarized in Table 3 and illustrated in Fig. 6, were considered: (i) 
in-plane and out-of-plane isotropy; (ii) plane isotropy and out-of-plane alignment; (iii) in-plane alignment and 
out-of-plane isotropy; (iv) perfect alignment (the reference case for CC). Figure 7 compares the homogenized 
response of the RVEs simulated for 15% stretch in tension FF. The homogenized stress-stretch curve of the RVE 
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Figure 4.  RVE size convergence. Top: groups of RVEs with four different edge lengths La ( Nf is the variation of 
fiber number for n = 10 RVEs). Bottom: corresponding homogenized nominal stress plotted against the stretch 
from the simulation of n = 10 RVEs in each group (tension FF). The legend displayed in the first chart is the 
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with perfectly aligned fibers (case iv, solid black curve) shows a far stiffer behavior compared to the RVE with 
isotropic fiber dispersion (case i, dotted gray curve). Intermediate cases are also significantly different.
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Figure 5.  Macroscale response of the optimal RVE. Homogenized nominal stress as a function of the stretch in 
(a) compression and (b) tension, and as a function of the amount of shear for three simple-shear modes. Curves 
labeled as simulation are reproduced in the model validation phase, using the material parameters identified 
from the cases denoted as fit. Experimental curves adapted  from2.

Table 2.  Optimal material parameters of the ground matrix and the embedded axon fibers.

Ground matrix Embedded axon fibers

µm [Pa] αm [–] µf [Pa] αf [–]

353.5 −21.5 80.8 62.3

Table 3.  Different cases of fiber dispersion according to the shape parameters α,β of the bivariate von Mises 
distribution.

Case Description Concentration parameters

i In-plane and out-of-plane isotropy α = 0, β = 0

ii Planar isotropy and out-of-plane alignment α = 0, β → ∞
iii In-plane alignment and out-of plane isotropy α → ∞, β = 0

iv Perfect alignment α → ∞, β → ∞
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Discussion
Overall, the model can accurately reproduce and predict the macroscale mechanical behavior of the human CC, 
capturing its peculiar compression-tension  asymmetry2. In particular, the homogenized stress-stretch curve is 
able to replicate the nonlinearity shown by the experimental data in tension (Fig. 5b). Under compression, the 
model shows a certain discrepancy for the loading transverse to the fibers (Fig. 5a), but in contrast to compa-
rable existing  models32, it still delivers results within the experimental uncertainty. The homogenized response 
of the RVE shows no significant difference between different shear modes (Fig. 5c), which agrees well with 
experimental  results2.

Experimental data suggest that compressing the CC along the fiber axis (compression FF) or stretching it 
orthogonally (tension TT) results in a softer mechanical  response2. Since both cases involve compression of the 
axon fibers, the hypothesis that tortuous fibers do not bear compressive loads seems reasonable. The overall 
stiffness of the tissue in these two loading modes mainly results from the ground  matrix2. A similar observa-
tion applies to the shear modes, where axon fibers are only slightly recruited at 0.2 amount of shear. In contrast, 
the CC is stiffer when stretched along the fibers (tension FF) or compressed orthogonally (compression TT), 
suggesting that recruited axon fibers provide an important contribution in these cases. In particular, tension FF 
shows a characteristic stiffening in the macroscopic stress-stretch curve, a feature that previous micromechanical 
models could not  predict31,32.
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Regarding the material parameters identified, our findings show that the axons are only slightly stiffer than the 
ground matrix, whereas previous studies reported that the shear modulus of the axons is several times  larger30–32. 
We believe the difference is due to the simplifying assumption that axon tortuosity was neglected in previous 
micromechanical models. As argued by  Meaney45, the wavy structure of axons and their distribution in tissue 
are critical factors that significantly affect the homogenized response of the RVE and consequently the inverse 
parameter identification. In addition, the fact that axons appear as soft fibers is consistent with their role being 
distinct from the structural function of collagen  fibers2. We emphasize that the identified material parameters 
correspond to the material properties of the embedded fibers based on the modified strain-energy function. In 
micromechanical models that are not based on fiber embedding, the material properties of the actual axons are 
defined from the sum of the strain-energy functions of the ground matrix and the axon fibers.

To further highlight the effect of fiber tortuosity and recruitment, we compared the averaged stress in the fib-
ers and in the ground matrix to the homogenized stress (Fig. 8). For stretches up to 10%, the ground matrix makes 
the largest contribution to the homogenized stress, whereas at higher stretches the recruited fibers contribute 
to the stiffening behavior. This is consistent with the experimental observations 2, which showed a very similar 
mechanical response for the CC in tension FF and tension TT at low stretches (Fig. 5b). Our model provides 
an explanation of such an isotropic response, based on the one hand on the reduced fraction of recruited fibers 
and, on the other hand, on the softness of the axon fibers. At the same time, the anisotropic response observed 
in other experiments with human brains at higher  stretches43 is motivated here by the recruitment of a consist-
ent fraction of fibers. Taken together, these observations provide a possible explanation for the long-standing 
debate about the mechanical anisotropy of human brain tissue. Based on our findings, we can recommend that 
the experimental characterization of brain tissue include a combination of various loading cases with stretches 
up to at least 1.15 so that a consistent number of axon fibers is recruited.

In our study we also explored the influence of axon fiber orientation with a parametric analysis. We found a 
very relevant effect of both in-plane and out-of-plane fiber orientation (Fig. 7), suggesting that the assumption of 
perfectly aligned fibers, common to previous studies on  CC30,32,33, should be verified against new imaging data. 
However, it is important to note that for stretches up to 10%, the macroscale stress does not appear significantly 
affected by the orientation of the fibers (enlarged view of Fig. 7). This result agrees well with the observations 
of Budday et al. 2, which pointed out that there is no relevant effect of directionality in mechanical tests of CC, 
although the microstructure of CC has a clear structural anisotropy.

Conclusion
We developed a model of the brain white matter based on the framework of nonlinear continuum mechanics and 
multiscale RVE-based numerical homogenization. The computational framework was first used to character-
ize the time-independent hyperelastic material properties of the microstructural constituents of white matter 
(ground matrix and axon fibers) using an inverse parameter identification procedure. Second, we investigated 
the relationship between brain microstructure and macroscopic mechanical response of the tissue. To provide 
a realistic and repeatable representative microstructure, a random fiber network of axons was developed based 
on statistical distribution functions fitted to imaging data. These include the dispersion of the axon diameter, 
axon fiber tortuosity and orientation. To increase the computational efficiency of the simulation, straight one-
dimensional axon fibers were embedded in the volume of the ground matrix and tortuosity was included into 
the constitutive law through the concept of recruitment stretch.

The representative size of the volume element was determined with a convergence study performed on forty 
randomly generated RVEs with different sizes. By simultaneously fitting the homogenized response of the RVE 
to macroscale experimental data for compression and tension, the parameters of one-term Ogden models were 
inversely identified for both the ground matrix and the axons. To the best of the authors’ knowledge, this is the 
first study in which a micromechanical model of the brain is adopted to characterize the material parameters 
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of the microstructure, including the influence of orientation and tortuosity. Incorporating the concept of fiber 
tortuosity and recruitment stretch, we found that axons are only slightly stiffer than the ground matrix, which 
is in contrast to existing similar models but in good agreement with experimental observations. Based on the 
identified material parameters, the simulated homogenized response showed strong agreement with the experi-
mental data across different deformation modes. Although existing phenomenological models can fit the tension-
compression response of the human brain (e.g., by adding a second term in the Ogden strain-energy function), 
recent microstructural models available in the literature have failed to reach this goal. In contrast, our model 
was able to accurately capture the response under tension based on the observed distribution of axon tortuosity 
without the need to introduce additional fitting parameters.

Finally, we would like to mention some limitations of the proposed model. Although it is widely accepted 
that brain tissue exhibits time-dependent behavior, the current study did not consider viscoelasticity or stress 
relaxation originating from the interaction with cerebrospinal fluid. In addition, the current study focused on 
a single region of the human brain white matter, and was based on the assumption of perfect fiber alignment. 
Existing imaging data from diffusion tensor imaging were not applicable to this study due to poor resolution 
at the microscopic scale of the RVE. In the future, 3D polarized light imaging could be applied to human brain 
tissue and potentially provide more accurate data to refine the model.

Methods
Axon fiber orientation
The orientation of a fiber with unit reference vector N can be expressed with respect to a Cartesian base {ek}k=1,2,3 
as N(�,�) = cos� cos� e1 + sin� cos� e2 + sin� e3 , where � ∈ [0, 2π] is the azimuthal, or in-plane angle, 
and � ∈ [−π/2,π/2] is the elevation, or out-of-plane angle (Fig. 2d). We introduced a bivariate von Mises dis-
tribution ρ(�,�) = ρip(�)ρop(�) defined by two independent PDFs for the distribution of each angle 54, where

with I0(α) the modified Bessel function of the first kind of order zero and erf (•) the error function of (•).

Recruitment stretch
To describe the tortuosity of axon fibers, we defined a straightness parameter Ps = L0/Lf  and employed it in the 
concept of recruitment stretch. Assuming a multiplicative decomposition of the kinematic stretch � in a single 
straight fiber according to � = l

L0
= �r�t , we can distinguish the recruitment stretch �r and the true stretch �t58.  

In the previous equation, l is the deformed length of the straight fiber (see Fig. 2c). The value of �t depends on 
the state of the fiber, i.e.

Material models
The ground matrix behaves like a nearly incompressible material whose strain-energy function is expressed as 
an isotropic one-term Ogden material model, i.e.

where �k , k = 1, 2, 3 , are the principal stretches, and J = �1�2�3 is the volume ratio. To enforce near incompress-
ibility, we assumed the volumetric parameter Dm = 0.04/µm , which corresponds to an initial Poisson’s ratio of 
νm = 0.49 . The strain-energy function for the i-th embedded fiber includes the concept of recruitment stretch 
and is defined as

with the true stretch �t according to (5).

Finite element model
Embedded element technique
The microscopic RVE, subjected to the elementary deformation modes, was solved using the finite element 
solver of Abaqus FEA software (Dassault Systèmes) using the embedded element technique. In the embedded 
element technique, a guest domain (axon fibers) is superposed on a host domain (ground matrix). The formula-
tion implemented in Abaqus FEA constrains the translational degrees of freedom of the embedded nodes to 
the elements of the surrounding matrix. In our model, the ground matrix is meshed by first-order hexahedral 
mixed-formulation elements (C3D8H) and the fibers are meshed by first-order mixed-formulation truss elements 
(T3D2H). To ensure the condition of no-slip between the matrix and fibers, the fibers are carefully meshed so that 
the embedded nodes lie precisely on the edge or face of the host elements. A mesh convergence analysis for the 
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RVE with La = 25 µ m was performed, considering the following element sizes of 2.50, 1.25, 0.83 and 0.75µ m 
for both 3D and 1D elements. The results showed that the homogenized response of the RVEs is independent of 
the element size across all loading modes. An element size of 1.25µ m was adopted in all simulations.

The embedded element technique creates a stiffness redundancy for the matrix volume occupied by the fib-
ers. Various approaches are discussed in the literature to address the stiffness  redundancy19,30–32. Based on the 
rule of mixtures and the no-slip condition, we can write the total energy W stored in the continuum medium as

where �̃(i)
f = �

(i)
f −�m denotes the modified strain-energy function of the i-th embedded fiber and Nf  is the 

total number of fibers.

Multiscale boundary conditions
In the multiscale theory based on RVEs and stress homogenization, periodic boundary conditions are applied to 
ensure that opposite faces at the boundary of the RVE deform identically. Mathematically, we require that each 
pair of points (X+,X−) on opposite surfaces of the boundary ∂�0 = ∂�+

0 ∪ ∂�−
0  has the same displacement 

fluctuation ũ , i.e.

where F is the macroscopic deformation gradient and I is the second-order identity tensor. The resulting set of 
linear constraint equations correlates the displacement degrees of freedom of the node pairs on opposite faces, 
edges, and corners of the  RVE59. The constraints are implemented using a custom Python script and are provided 
in detail in the Supplementary Material available online.

Inverse parameter identification
We devised a two-step optimization algorithm to characterize the mechanical parameters of the ground matrix 
and the embedded axon fibers based on experimental  data2. First, the ground matrix parameters µm and αm 
are determined from compression FF and tension TT up to 10% stretch, fitting the experimental data to the 
analytical stress-stretch curves in the incompressible limit at the same time. Afterward, the parameters µf  and 
αf  of the embedded fibers are obtained by an inverse procedure based on finite element simulations on the RVE 
and experimental data in tension FF up to 10% stretch. The use of analytical curves in part of the parameter 
identification significantly reduced the computational time. The boundaries for the material constants were set to 
µm ∈ [50, 5 000] Pa, αm ∈ [−50, 50] , µf ∈ [20, 5000] Pa and αf ∈ [−inf , inf ] . Based on an initial guess of the mate-
rial parameters, the optimization algorithm minimizes the absolute squared error between the experimental data 
and the simulation output data according to the maximum likelihood principle, i.e. χ2 =

∑N
n=1(P

exp
ij − Psimij )2n , 

where Pexpij  and Psimij  are the components of the nominal stress tensor from the experiments and the analytical 
or finite element simulation, respectively.

The process of identifying the material parameters was performed using a custom Python script integrated 
into the Abaqus FEA software. A trust–region reflective algorithm was  employed60. In order to improve the 
computational efficiency of the finite element analyses, the simulations and post-processing were parallelized. 
Sensitivity analyses were carried out to verify that the optimal values are independent of the initial guesses and 
the boundary values. The algorithm is summarized in the Supplementary Material available online.

Data availability
 Algorithms used for generating the custom codes during the current study are included in the Supplementary 
Material. All of the requested data for the 3D models and custom codes are available from the corresponding 
author on request.
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