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Dynamical behavior of solitons
of the (2+1)-dimensional
Konopelchenko Dubrovsky system

A. Hussain'™, T. Parveen?, B. A. Younis?, Huda U. M. Ahamd*, T. F. Ibrahim>¢ &
Mohammed Sallah”:8*

Utilizing nonlinear evolution equations (NEEs) is common practice to establish the fundamental
assumptions underlying natural phenomena. This paper examines the weakly dispersed non-linear
waves in mathematical physics represented by the Konopelchenko-Dubrovsky (KD) equations.

The (G’ /G?)-expansion method is used to analyze the model under consideration. Using symbolic
computations, the (G’ /G?)-expansion method is used to produce solitary waves and soliton solutions
to the (2 + 1)-dimensional KD model in terms of trigonometric, hyperbolic, and rational functions.
Mathematica simulations are displayed using two, three, and density plots to demonstrate the
obtained solitary wave solutions’ behavior. These proposed solutions have not been documented in
the existing literature.

In the field of applied mathematics and physics, NEEs are of enormous importance. Since NEEs address a wide
range of phenomena in optical fiber, nonlinear dynamics, fluid mechanics, engineering, plasma physics, and
other fields, it is important to find their exact solutions. In addition to its theoretical significance, modeling
plays a pivotal role with numerous applications, emerging as a key tool in understanding nonlinear evolution
equations. It has evolved into a crucial domain of development, where the exchange and further advancement
of various recent mathematical methods contribute to significant progress. The objective of this research is to
showcase results and recent developments in the theory of evolution equations, encompassing both theoretical
and practical aspects. Many researchers and mathematicians have suggested a variety of efficient methods'~¢ for
finding exact solutions of nonlinear (NPDEs), such as Hirota’s bilinear method’, tanh function method?, the
inverse scattering technique’, the Backlund transformation method'?, modified variational iteration method"!,
the multiple exp-function approaches'?, the Darboux transformation approach', the Lie symmetry analysis'*~1¢,
the (G'/ G)—exgansion approach!’, the Kudryashov technique'® and the Jacobi elliptic technique!®-2!.

The (G'/G*)-expansion method?® is a very efficient, reliable, and simple strategy for locating the numerous
soliton-form solutions of various NPDEs. Our understanding and ability to forecast the appropriate structures
of the related complex nonlinear systems are made possible by the dynamics of NPDEs. A solitary wave, also
known as a soliton, is a particle-like object with finite energy and amplitude that maintains its shape during
propagation and restores it after colliding with other solitons. Thus, determining the precise closed-form solutions
of NPDEs is a very popular topic in today’s world. The wave-form solutions of such a type of NPDEs are highly
advantageous in a variety of fields, including nonlinear sciences, applied mathematics, mathematical physics,
engineering, plasma physics, nonlinear dynamics, and applied sciences. The following (2+1)-dimensional KD
model will be examined in the present study.

Uy = vy

(1)

2

3
Ut — Uxxx — 6bULy + Eazu Uy — 3vy + 3auyv = 0,
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where a, b are arbitrary real parameters, u and v are the dependent variables, and x;, y, t are independent variables.
This system represents the weakly dispersed non-linear waves in mathematical physics.

Several researchers have investigated the analytical solutions of the KD system using some effective methods.
The (2+1)-dimensional KD equation*® was developed by Konopelchenko and Dubrovsky in 1984. Wazwaz**
documented solutions for this system using hyperbolic, trigonometric, and rational functions. These solutions
were transformed into recognizable complex structures such as kinks, solitons, and periodic waves by assigning
specific parameter values. Subsequently, Feng et al.® employed the improved Riccati mapping method and the
variable separation method to analyze solitary wave solutions, periodic waves, and variable-separation solutions
using trigonometric, hyperbolic, and rational functions. Meanwhile, Kumar et al.?® utilized the Lie symmetry
method to derive periodic waves, singular solutions, cnoidal, and snoidal waves. Ren et al.”” utilized the Mobius
(conformal invariant form) and truncated Painleve approach to establish nonlocal symmetries. Meanwhile,
Alfalgi et al.?® employed the B-spline approach and the modified simplest approach involving the KD equation.
They outlined solutions, including shock waves, singular solutions, solitary waves, periodic singular waves, and
plane waves based on rational, trigonometric, and hyperbolic functions. Khater et al.?’ used a modified auxiliary
equation method to establish analytical traveling wave solutions for this system, encompassing periodic waves,
kinks, and solitary waves based on rational, trigonometric, and hyperbolic functions. In a recent approach,
Kumar et al.** applied the generalized exponential rational function method and dynamical system method to
derive solutions for KD equations, yielding soliton solutions such as kink waves, periodic waves, and oscillat-
ing waves based on rational, trigonometric, and hyperbolic functions. In the aforementioned discussion, vari-
ous approaches were employed to derive solutions for the KD system, yielding trigonometric, hyperbolic, and
rational function solutions. Despite sharing the same foundational functions, these solutions exhibited distinct
structures, each novel in comparison to the others. Motivated by this, we aim to introduce additional classes of
solitary wave solutions for the KD system (1), still rooted in trigonometric, hyperbolic, and rational functions,
but with unique structures not yet documented in the literature. This underscores the novelty of our findings.

In this article, the (G’ /G?)-expansion method?>*! is applied to investigate the (2+1)-dimensional KD model
(1). The primary goal is to generate reliable solitary waves and soliton solutions for the KD system (1). The ana-
Iytical findings are presented in the form of trigonometric, hyperbolic, and rational functions. Additionally, the
development of the solitary wave structure is demonstrated through specific soliton-form solutions in two- and
three-dimensional graphics, as well as density graphics in Mathematica simulations. The results suggest that
the derived exact closed-form solutions exhibit highly impressive and beneficial evolutionary profile dynamics.
Notably, the discovered soliton solutions are entirely novel and have not been reported in previous findings.

The structure of this article follows the following plan: The (G'/G?)-expansion method is explained in Sec-
tion “Introduction to the (G’/G?)-expansion method”, which deals with its introduction. Section “Application
of the (G’ /G?)-expansion method to (2 + 1)-d KD model” provides the exact traveling wave solution to the KD
equations. The dynamics of the wave patterns of the obtained closed-form soliton solutions of the KD equations
are covered in Section “Graphical interpretation of some solutions”. In the end, a conclusion is provided.

Introduction to the (G’ /G?)-expansion method
In this section, we give a general overview of ansatz that is utilized to compute the traveling wave structures of
some nonlinear equations. Here are the main steps for the ansatz of (G’ /G?)-expansion method?>*'.
Step 1. Consider a general system of NPDEs (with two dependent variables and three independent variables)
as
K1t v, th, Vies Ut Ve Uy, Vys Uyys Vyys s Vax.) = 0 @)

Ko (u, v, iy, Vi, Ug, Vi, Uy, Vy, Uy, Vyy, U, Vieer) = 0,

where u, v are unknown functions of independent variables x, y, t.
Step 2. We apply the following transformation

u(x,y,t) = UE), v(x,y,t) = U() along with § = ax + By — ut, (3)
to convert (2) into a system of nonlinear ordinary differential equations (NLODES)

H(U,V,U,V,..) =0,

, (4)
Hy(U,V,U,V,...)=0.
After some mathematical calculations system (4) is converted into a single NLODE
HU,V,U,V,..) =0, (5)

where (') indicates the differentiation w.r.t. £.
G/
G?

al G'\" G\
U@ = dO + (dn(7> + d7n<7> >> (6)
nE::l G2 G2

where the straightforward Riccati equation is satisfied by G = G(£)

Step 3. We assume that a polynomial in( ) can be used to express the solution of (5) as follows
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G\ G'\?
(&) =r+v(e) 7

In the above equation unknown constants dy, dy, d_, (n = 1,2, ..., M) must be found wheren # land ¥ # 0
are arbitrary integers.

The three possibilities for the promising solution of (G'/G2) are listed below;

Case-i: Trigonometric type solutions

If we have ny > 0, then (7) gives

(g/) _ [ <E1 cos /N ¢ + Ey sinvnw{)
G2 ¥ \ E1cos /N — Eysin \/nyr¢
Case-ii: Hyperbolic type solutions

When we have nyr < 0, then (7) gives

( < ) _ Vvl (E1 sinh2y/[n¥1¢) + Ez cosh@y/[1¢) + Ez)
¢ ¥ \EisinhQy/Iny[¢) + Ez coshy/Iny[¢) — Bz )

Case-iii: Rational type solutions
When we have n = 0, ¢ # 0 then from (7) rational function solution can be written as

(&)= (-5 vm)
G) V(Eig +E) )’
where in all above cases E; and E; are constants. In the next section we apply the introduced method.

Application of the (G’/GZ)-expansion method to (2 + 1)-d KD model
The transformations u(x, y,t) = U(¢) and v(x, y,t) = V(¢), where ¢ = ax + By — ut in Eq. (1), lead to the
NLODE system presented below.

BU'(§) =aV'(©)
3
EaZaUmZU/(;) +3aa V(U (¢) — 6abU()U'(¢) — pU'(§) — a*UP (¢) = 38V/(¢) = 0.

The first equation is integrated, and the result is
BUE) = aV(}). 8)

By incorporating it into the second equation of the NLODEs system and ignoring the integration constant,
the following NLODE is produced as

382

37/ aZ 3 3 2
a”U (C)—?OZU (C)‘FE(Zab—ﬂﬁ)U )+ 74'# U()=0. 9)

By applying the balancing principle to the Eq. (9), we get at M + 2 = 3M, which results in M = 1. Using (6)
for M = 1formula, we arrive at the trial solution presented as

G G
U©) = do+d1( >+d (GZ) , (10)

where dy, di and d_; are constants. On inserting (10) and its derivatives along with (7) into (9), we get a system
of equations. We obtain the set of algebraic equations by setting the coefficients of powers of (G'/G*) to zero

2a3d1¢2 - Eazad% =0,

3 3
- Ed%aﬂ + Sdfotb — Eazadod% =0,

3%d 3
’3 1 2d) - Euzadfd_l — 3dydyab + 6bgbyab = 0,
1 35 d 3
- 5e aPadd + =20 4 3d2ab - —dguﬁ73a2ad0d1d_1 + pudy — 3dyd_yaf + 6d1b_jab =0 (11)
do
-4 atady + 22 ﬁ +3d2ab — —doaﬁ — 3a’adydid_y + pdy — 3d d_1aB + 6dyb_ ab = 0,

- Edilaﬂ + 3d31ab - Ea 2adyd? | =0,
1
20t3d_1ﬂ2 - Eﬂzadil =0

We obtain the following set of parameters by solving the aforementioned system using the computer program
like Mathematica, Maple, or MATLAB.
Set-1
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P 4atn?d? 4+ 3p%4% 2an b nQa*dyn — Bd_1)
o =uo, =p, =n, =, a=——, e S
=k a2 o d_y a2, (12)
Y=Y, d.y=d_, dy=dy, dy=0.
Set-2
20ty + 382 20 VA
=, = p, =, = = -, b — —
a=a, =B, n=1n pn " a i i (13)
Yv=v, d1=0, d=0, dy=d.
Set-3
s datydg + 3p7d} 2ay Y 2o*doy — Be)
a=d>ﬁ=ﬁ,n=——2,ﬂ=—+, a=— ,b=—2
dy dia d d? (14)
Y=v, d1=0, dy=do, di=di.
Set-4
g=p Yd_y 8atyid_y — 3B%d, 2ay b VB
oa=do, = p, = — s =, 4= ——, = —
7 di K ad; d d (15)
1// = 1//, d,l = d,], do = 0, dl = dl.
Set-5
3 _ag2
a:o{,ﬁ:ﬂ’]’]:_lad_l”ulzzlaawd_l 3ﬁ’ a=a, b:l@
2 o o 2 o (16)
20
V=y, da=dy do=0 d="2"
Set-6
29 d? 16aty2d? | + 382%d? davrd_
a=a, =B, n= Ipzil’ =" v ;l+ﬂ ¢, a= awz 1,
i dgo dg )
29 d_1 (4a®yrd_y + Bdp) 1 d?
b: > == ,d, :d,, d:d, dzfi-
i v=q 1 bodo=do, di= oo
Set-7
4pd?, 64aty2d? | + 362d2 8ard_;
a=a, =B n=—""7— n=- 3 > = 7
d; dgo d; a8)
ayrd_1 (8o yrd_ d 1 d?
b= v 1(0”1/3 1+ﬂ0)»‘ﬁ=‘ﬁ> dy=d_y, dy=do, dy=--—"-
dy 4d_;

The three possibilities for the promising solution of (G'/G?) from Set-1 are listed below;
Case-i: Trigonometric type solutions
If we have ny > 0, then (7) gives

(S’) _ /1<E1 COS\/’?¢§+Ezsin«/W/C) 19)
G? V¥ \ Ej cos /n¥¢ — Exsin/n¥re )
Case-ii: Hyperbolic type solutions

If we have ny < 0, then (7) gives

(g) _ W(El sinh(2/[n¥[¢) + E; cosh(2/[ny[¢) +Ez)
G? ¥ \E1sinh2y/n¥1¢) + Ea coshy/[ny[¢) — Bz )

Case-iii: Rational type solutions
If we have n = 0,1 # 0 then from (7) rational solution can be written as

G 2 W (El ; EZ)
Where E] and E2 are real parameters.

By back substituting the values in (10), we get the solutions of the system (1) in the form;
Family-1: Trigonometric type solutions
If we have nyr > 0, then
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=B ( W(EICOS«/W§+EzsiH«/W§))_I
urx,y,t) = 2 -1 \/; Ejcos /nyt — Exsin /e )

22
sy = P20 By ([T (oo ST e VT ) ) )
1y = a’a? a ! ¥ \ E1 cos /0¥ ¢ — Ep sin\/nyr¢ '

Family-2: Hyperbolic type solutions
If we have nyr < 0, then

ap — 2ab +d_1(— V| (El sinh(2v/[n¥/[¢) 4 E; cosh2/[n/[£) 4-1'52))_1

uZ(xry’ t) = - aza

¥ \Ersinh2y/ny¥[¢) + E; cosh2/Iny[¢) — Ex
ety — _B@B =20 B ( _ i <E1 sinh(2y/ TP 1¢) + E> cosh@y/ T T¢) + Ez>)_1
e @2 o '\ v \Esich@QY/MyTo) + ExcoshQVIvle) —E ) )
(23)
Family-3: Rational type solutions
If we have n = 0, # 0 then rational function solution is given as
aB —2ab E; -1
uz (X, y,t) = — P *+d71(_ 1/,(]51;-1-52)) , (24)
o Bab—2ab) B, E, !
BErD =0 e T yEc B
By substituting the values of Set — 2 in (10), we get the solutions of the system (1) in the form;
Family-4: Trigonometric type solutions
If we have ny > 0, then
by =22 ([T (BT« Evin 5 )
” b \V ¥ \Ey cos /n¢{ — Epsin/ni¢
_ Be (\/T(El cos /Ny + E; sina/m//{)) !
b \V ¥ \ Eicos /ny¢ — Eysin/nyr¢ ’ s
vy, 1) — _/32(;(\/7(}31 cos /N —|—E25in4/m//§)> @5)
anr ab ¥ \ E1 cos /N ¢ — Exsin/n¥¢
B ,8725 (\/Z(El cos/nY¢ + E; sin«/nwg))l
ab W \ Ej cos/nr{ — Ep sin/ny¢ '
Family-5: Hyperbolic type solutions
If we have nyr < 0, then
us(x,y, 1) = ﬁi(vlmlll (E1 sinh(2y/[n¥1¢) + E; cosh2/Iny[£) +E2))
T b\ ¥ \Ersinh@y[ny[¢) + E2 cosh@y/Ini[e) — By
_ Be ( Vv (E1 sinh2y/[7¥1¢) + Ex cosh2y/[n¥/[¢) +E2))‘1
b ¥ \EisinhQ2y/[n¥[¢) + Ez cosh(2/Iny[¢) — E; 26)
yo(p, 1) = ﬁir(wnw (E1 sinhy/[n¥1¢) + Ez cosh2y/ I 1¢) +E2))
T ab Ny \ErsinhQyIny[¢) + E cosh2y/Iny[0) — Ey
_ PBe ( Vvl (E1 sinh(2y/[ny1¢) + E cosh2y/In¥¢) + E2)>‘1
ab 14 Eysinh2V/[n¥1¢) + Bz cosh2/[n¥ 1) — Ez '
Family-6: Rational type solutions
If we have n = 0, # 0 then rational function solution is given as
s (6, 1) = @(7& ) —@(—7& )_1
P Y@ B b V(E+E)) 27)

o= Br( By P B
VelX, ), 1) = ab \Y(Ei¢ + Ey) ab _w(EIC—'_EZ) .

By substituting the values of Set — 3 in (10), we get the solutions of the system (1) in the form;
Family-7: Trigonometric type solutions
If we have nyy > 0, then
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s (x t)——M-i-b( E(EICOSWHEszWCD
ERuE a’a ' ¥ \ E1 cos /N ¢ — Ep sin/nr ¢

N 1,32 2 — 4aabB + 4’ b? (\/Z(El cos /NY¢ + Ey sin /¥ ))1
4 a‘a?b, Y \ E1 cos /0 ¢ — Ep sin /0¥ ¢ ’
_ Bap —2ab) —I—blé(\/Z(El cos/ny¢ + Ey sinW{))
a’a? a ¥ \ E1 cos /0¥ ¢ — Ep sin /0¥
N 1 8°a* — daabp?® + 40’ Bb? (\/I(El cos /Y ¢ +E; sinmg))‘l
4 atadb; ¥ \ E1 cos /N ¢ — Epsin/nr¢ '

vz (%, ¥, t) =

Family-8: Hyperbolic type solutions
If we have nyy < 0, then

us ooy, 1) = _ap —2ab b (W (E1 sinh(2/|n¥]¢) + E; cosh(2y/[n¥]¢) + E2>)
a’a ¥ E; sinh(2/n¥[¢) + E; cosh(2/[n¥[¢) — E;
N 18%a* — 4aabp + 4o’ b? < Iyl (El sinh(2/Tn¥1¢) + Ex cosh2y/Tni[¢) + Ez>)*1
4 a*a?b; v E; sinh(24/[n¥]¢) + E; cosh(2/n¥r[¢) — E,
veCoy ) = PP = 200) B («/W <E1 sinh2y/n¥[¢) + E cosh2y/Iny[¢) + Ez))
a’a? a ¥ E; sinh(24/[n¥1¢) + E; cosh(2/In¥[¢) — E,

+1ﬁ#—4mwﬂ+&ﬂwﬁ<_me(&mm@¢mwwrﬂzmm@¢mwo+5ﬁ>*
4 atadb, ¥\ E1sinh2y/n¥[¢) 4 E2 cosh(2+/[n¥[¢) — Ea '
(29)
Family-9: Rational type solutions
If we have n = 0, # 0 then rational function solution is given as

ko (3, 8) = _ap —2ab —bl( E, ) +152a2—4aabﬁ+4a2b2 (_ E; )_1
o a’a Y(EiL +E)) 4 ata?b ¥ (Er§ +Es)
vo(x, y, 1) = _M _ lﬁ (L)
a?a? a \VY(E1§ + E2)
+lﬂ3a2 — 4aabB? + 4a’Bb? (_ E; )_1
4 ata’by Y (E1¢ + Ez)

By substituting the values of Set — 4 in (10), we get the solutions of the system (1) in the form;
Family-10: Trigonometric type solutions
If we have nyy > 0, then

o, 1) = _aB—2ab +b1(\/z(E1 cos /N +E2sin\/W§))
7 a’a ¥ \ Ey cos /e — Exsin/nyc ) )’
B(ap —2ab) +blé(\/j(El cos /¢ +Ezsin\/W§)).
a’a? a ¥ \ E1 cos o/qU ¢ — Ep sin /0¥

vio(x%, y,t) = —

Family-11: Hyperbolic type solutions
When we have nyy < 0, then

ap —2ab (vlmﬁl <E1 sinh2y/[n¥1¢) + E; cosh2y/Tn[¢) +E2>)

a’o ¥ \E1sinh2y/[n¥[) + E> cosh2y/ Iy [¢) — E;
B(ap — 2ab) B («/Imﬁl (El sinh(2/[nY/[¢) + Ez cosh2v/Iny/[¢) +Ez)>.

unn(x,y,t) = —

Gyt == Ty B by myT) + B cosh @y To) — Es

Family-12: Rational type solutions
If we have n = 0, # 0 then rational function solution is given as

_ap—2ab Ey
u(ny,t) = — 2a b (w(Elf +Ez)>’

B(ap — 2ab) b B ( E; )
B e N
a’a? Y (E1¢ + Ez)

(33)
vi2(x, ¥, 1) =
o
By substituting the values of Set — 5 in (10), we get the solutions of the system (1) in the form;
Family-13: Trigonometric type solutions

When we have nyy > 0, then
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w1y, 1) = 200y (\/I(El cos/m¢ + E; sinW()
PR = ¥ \ E1cos /n¥¢ — Eysin /¢

)
w5 (B hoam vt )
)

vi3(%, p, t) = 2By (\/I<E1 cos /Ny ¢ + E; Slnrf) (34
7 a ¥ \ E1 cos /n¥ ¢ — Ep sin\/nyr¢
+d71E(\/I(E1 cos /N L +Ezsin\/W§>)'
o ¥ \ Ej cos /N — Exsin /e
Family-14: Hyperbolic type solutions
When we have nyy < 0, then
dra( 1) = 2y ( VIl (El sinh2/[n¥/1¢) + E; cosh2y/ny[¢) +Ez))
a v E; sinh(2y/[n¥]¢) + Ep cosh(2y/|n¥r[¢) —
i ( _ Vvl (E1 sinh2/[ny1¢) + Ez cosh2y/Tny/1¢) +E2)) -
¥ E; sinh(24/[n¥]¢) + Ez cosh(2+/Tn¥r () (35)
eyt = 2L ( _ Iyl (E1 sinh(2y/[n[¢) + Ex cosh@y/Iny ) +Ez))
a v E1 sinh(2y/[n¥[¢) + E; cosh(24/Invr[¢) —
+d_1ﬁ(_ W(& sinh(2y/[n¥/[¢) + Bz cosh2v/Tny[¢) +Ez))
a ¥ E; sinh(24/[n¥]¢) + Ep cosh(2+/Tn¥r ()
Family-15: Rational type solutions
When we have n = 0,4 # 0 then rational function solution is given as
20 E E -1
st = 7<_ ¥ (End +E2)) i ( UL +E2>) ’ 6
yis(x,y, 1) = Zﬂ(_ L) +d71§<_ El>1.
a Y (E1g + Ep) o V(Ei¢ + E2)

By substituting the values of Set — 6 in (10), we get the solutions of the system (1) in the form;
Family-16: Trigonometric type solutions

If we have nyy > 0, then
( £ = do+ 1d E cos /nY¢ + Ep sin /ni¢
u6(x, y, t) = ——
1615y 0t 2d_, Ej cos/n¢ — Epsin/nyr¢

(W(E]COSF{+E2SIHF§>)I
¥ \Eycos /¢ — Eysiny/nyg ) )
+

B

vie(x, ¥, 1) = doﬂ

14 n [ E1cos/n¥¢ + Epsin /¢ (37)
20d_y (\/;(El cos/n¢ —Ezsiﬂ«/Wé“))
vl (\/T(Elcos\/wz—i—Ezsin«/W{))l.
¥ \ E1 cos /0¥ ¢ — Ep sin /0¥
Family-17: Hyperbolic type solutions
When we have nyy < 0, then

wi ey ) = do +7d72<_x/|77‘l’|(Elsinh(zx/W/fTO+52€08h(2«/|77‘l’|§)+52)
17(%, ), 1) = 2d v Eq sinh(24/[n¥(¢) + E> cosh(2/|1n¥[¢) — Ep
+d_1(— Vinyl (El sinh2/[nY/1¢) + Ez cosh@y/In¥1¢) + Ea

¥\ E1sinhQv/In¥[¢) + Ez cosh2y/n¥r1¢) — Ez) o
viz(x, v, 1) = d B + 1 Bd; (_ VIl (El sinh(24/Tn¥[¢) + E; cosh(24/In¥r[¢) +Ez)
X%yt =do + 5 ad_; ¥ E1 sinh2y/[7¥]¢) + E» coshQy/Tnyr¢) —

+d lé(_ Viny| (E1 sinh2/[In¥[¢) + E; cosh2y/Inyr[£) +Ez)
o« ¥ \Eisinh2y/[n¥[¢) + Ez cosh2V/In¥[¢) — Ex

Family-18: Rational type solutions

If we have n = 0, # 0 then rational function solution is given as
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1 d? Ey Er -
) = d ——0(—7) d- <—7> :
userd=dt g\ vEe e ) T T vEme B

_ B 1 Bdg (_ £ ) ﬁ(_El)l
ey =do ot ooi \ T vEe ) T e T vEcTE))

(39)

By substituting the values of Set — 7 in (10), we get the solutions of the system (1) in the form;
Family-19: Trigonometric type solutions
If we have nyy > 0, then

uro(x, y,t) = d +1i5< E(ElcOS«/WHEzsin«/Wc))
pEnE A 4d-y ¥ \ E1 cos /n¥¢ — Eysin/nye

td (\/Z(Elcos\/W{ +Ezsinﬂg>)l
“\V v \Eicos /7t — Easiny/nyc))
B 1 pd? (\/T(Elcos\/wc—}—lizsinmg“))
Y

)ty =do— + —
Vis®3:1) O + 4ad_ Ejcos/ny¢ — Exsin /¢

td ﬁ(W<E1COSW§+EZSinW{>)1
T ¥ \ E1 cos /0¥ ¢ — Ep sin/n¥r¢ '

(40)

Family-20: Hyperbolic type solutions
When we have nyy < 0, then

oo ) = do + gié(_ W(El sinh2y/n¥1¢) + E coshy/[7¥1¢) +Ez>)
4d_, ¥ E; sinh(24/[n¥]¢) + E; cosh(24/[n¢r[¢) — F
i ( Vvl (El sinh(2y/[n¥[¢) + E; cosh(2y/Iny1¢) + Bz ) ) !
Y \Eisinh(2y/[n¥[¢) + Ez cosh(2y/n/[¢) — Ex '
ooy ) = do 4 L Bd; (_ W(El sinh2/[7¥1¢) + E; cosh/In1¢) +E2))
a  4ad W E; sinh(24/[n¥[¢) + E; cosh(2/In¥[¢) — F
B ( il (E1 sinh @y [¢) + Ez coshy/In1¢) + Ez))_l
a Vv E; sinh(2y/|n¥]¢) + Ez cosh(2+/In¥[¢) — B, '

(41)

+d_;

Family-21: Rational type solutions
If we have n = 0, # 0 then rational function solution is given as

1 d? E Ex o
i (B Y (Y
uz1 (%, 5 t) 0+4d_1 V(E1L + E») T V¥ (E1¢ + Ez)

_. B lﬂd3<_ Ey ) /3<_El)l
ey =dog + o\ yEe ) T e\ T vEe 1B )

where in all above families { = ax + By — ut and E, E, are constants.

(42)

Graphical interpretation of some solutions

We can demonstrate the graphical representation of the wave solution profile of various solution surfaces in this
section. Using symbolic computations, the (G'/G?)-expansion is used to produce waveform soliton solutions
to the (2 + 1)-dimensional KD model in terms of trigonometric, hyperbolic, and rational function solutions.
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Figure 1. The nature of solitary wave solution (22) obtained by fixing all parameters to 1.

Figures 1, 2, 3 and 4 show the periodic waves as well as solitary wave solutions for the KD system (1). An essential
set of parameters that are mentioned with each case are included in each plot.

Discussion and conclusions

It is common practice to utilize NEEs to establish the fundamental assumptions underlying natural phenomena.
In this paper, the weakly dispersed non-linear waves in mathematical physics were represented by the KD equa-
tions. The (G’/G?)-expansion method was used to analyze the model under consideration. Several researchers
have obtained the analytical solutions of the KD system using hyperbolic, trigonometric, and rational functions.
In summarizing previous work, Wazwaz?* reported the solutions, introducing kink, soliton, and periodic wave
solutions. Subsequently, Feng et al.? explored solitary wave, periodic wave, and variable-separation solutions.
Concurrently, Kumar et al.?® derived periodic waves, singular solutions, cnoidal, and snoidal waves. Additionally,
Alfalqi et al.”® outlined solutions, including shock waves, singular solutions, solitary waves, periodic singular
waves, and plane waves. Khater et al.?’ established periodic waves, kinks, and solitary waves. In an approach,
Kumar et al.*® obtained soliton solutions such as kink waves, periodic waves, and oscillating waves. Although
various approaches in the discussion produced trigonometric, hyperbolic, and rational function solutions with
distinct structures, our approach also explored the same class of rational, hyperbolic, and trigonometric function-
based solutions. Comparing results, we conclude that the literature has not featured any of our produced solu-
tions. The obtained solitary wave families validate the method, showcasing applications in solitary wave theory,
mathematical sciences, and nonlinear sciences. For future studies, we intend to investigate the KD system using
the Jacobi elliptic function method to derive elliptic function-based solutions.

Scientific Reports |

(2024) 14:147 | https://doi.org/10.1038/s41598-023-46593-z nature portfolio



www.nature.com/scientificreports/

X

(c) density plot (d) 3D plot

Figure 2. The nature of periodic waves (25) obtained by fixing all parameters to 1.
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Figure 3. The nature of solitary wave solution (29) obtained by fixing all parameters to 1.
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Figure 4. The wave nature of rational polynomial solution (33) obtained by fixing all parameters to 1.
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