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Real‑time 4K computer‑generated 
hologram based on encoding 
conventional neural network 
with learned layered phase
Chongli Zhong 1, Xinzhu Sang 1*, Binbin Yan 1*, Hui Li 2, Xinhui Xie 1, Xiujuan Qin 3 & 
Shuo Chen 1

Learning‑based computer‑generated hologram (CGH) demonstrates great potential for real‑time high‑
quality holographic displays. However, real‑time 4K CGH generation for 3D scenes remains a challenge 
due to the computational burden. Here, a variant conventional neural network (CNN) is presented for 
CGH encoding with learned layered initial phases for layered CGH generation. Specifically, the CNN 
predicts the CGH based on the input complex amplitude on the CGH plane, and the learned initial 
phases act as a universal phase for any target images at the target depth layer. These phases are 
generated during the training process of the coding CNN to further optimize the quality. The CNN is 
trained to learn encoding 3D CGH by randomly selecting the depth layer in the training process, and 
contains only 938 parameters. The generation time for a 2D 4K CGH is 18 ms, and is increased by 12 ms 
for each layer in a layered 3D scene. The average Peak Signal to Noise Ratio (PSNR) of each layer is 
above 30dB in the depth range from 160 to 210 mm. Experiments verify that our method can achieve 
real‑time layered 4K CGH generation.

Computer-generated hologram (CGH) has been actively researched in recent years, owing to its ability to provide 
ideal depth cues for 3D display  applications1,2. Traditional CGH generation simulates the diffraction from the 
3D objects to the CGH plane with a computer, and the complex amplitude is then encoded into the CGH. The 
encoded CGH can be uploaded onto a spatial light modulator (SLM), which modulates the incident light into 
the target complex  amplitude3,4. Finally, the 3D scene can be reconstructed through diffraction.

Many approaches have been proposed to accelerate the CGH generation and improve its  quality5–9. High-
quality CGH generation is a time-consuming process, and advances in this area have been achieved by integrating 
deep learning  techniques10–12. Conventional neural networks (CNN), such as U-Net, are ideal for CGH predic-
tion due to their high-resolution and high-speed  capabilities13. Nonetheless, real-time 4K holographic displays 
remains a significant challenge for learning-based CGH algorithms due to the high computational burden.

Learning-based CGH algorithms have been used to reconstruct point-based and layer-based scenes in recent 
research. Neural networks can play different roles in the CGH generation process, either predicting the CGH 
directly or serving as a module within the traditional CGH generation process.

For point-based reconstruction, precalculated CGH supervision is required in current researches. A RGBD 
representation is used in Tensor Holography for point-based  reconstruction14. A CNN predicts the complex 
amplitude in the mid-point wavefront-recording-plane (WRP), which is supervised by the precalculated  ones15. 
After diffraction calculation from the WRP to the CGH plane, the double-phase method is used for encoding 
CGH. The point-based reconstruction provides high depth resolution, but pre-calculation of a dataset is required. 
Enlarging the depth range of reconstruction also requires a larger receptive field to match the physical propaga-
tion, and the computation burden is increased if more convolution layers are used.

For layer-based reconstruction, self-supervision is supported with the input image, but CGH generation 
for multiple layers with high efficiency is challenging. HoloNet can generate 2D CGH at high-speed in Neural 
 Holography11. A CNN predicts the phase on the image plane, and another is used to encode the CGH. The recon-
struction of predicted CGH is self-supervised with the input image. Neural 3D holography and Time-multiplexed 
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Neural Holography use CNN to learn accurate diffraction to generate high-quality CGH through  iterations16,17. 
However, millions of parameters used in the Neural Holography series require much GPU resources, limiting 
the ability to generate high-speed 4K CGH. Holo-encoder is proposed to generate 4K CGH  efficiently13. Given a 
target image, a single CNN predicts the CGH directly. 4K-DMD-Net is proposed to further enhance the quality 
using sub-pixel convolution method but the speed is  reduced18. There are also methods using only one CNN to 
encode the  CGH19, but real-time generation is not achieved. FFT modules are used to increase the quality, but the 
speed is much  slower20. Instead of sacrificing speed for quality, a complex-valued CNN is used to generate CGH 
using tens of thousands of  parameters21, and 4K CGH is generated in real-time. These methods can generate 2D 
CGH in high speed, but are not optimized for 3D scenes. Layered CGH can be generated by running multiple 
models, and it is not an efficient way.

In order to optimize the layered 3D reconstruction, Self-holo is proposed to use a CNN to predict the WRP 
with RGBD input similar to Tensor Holography, and another CNN to encode the  CGH22. The 3D scene is divided 
into 3 layers for layered self-supervision. The depth range of reconstruction is also related to receptive field of 
the CNN for WRP prediction. In summary, using a CNN to process the input image for WRP prediction may 
result in constraints on the depth of field and receptive field, and generating multiple 2D CGHs can be compu-
tationally burdensome. To improve the quality, previous research has also explored various strategies involving 
training strategy, dataset, and loss  function23–25. However, these approaches primarily focus on optimizing the 
training process and related aspects, rather than optimizing the neural network architecture. In contrast, our 
method takes a novel approach by optimizing the neural network architecture. We achieve this optimization by 
introducing a learned initial phase instead of relying on a CNN-predicted initial  phase11. Our method can be 
combined with existing strategies to further enhance performance.

Here, we proposed a layered CGH generation method based on encoding CNN with learned layered phase. 
To generate layered 3D CGH with high efficiency, we seek to avoid using CNN to process the input image. For 
each depth layer, a corresponding learnable initial phase is used as a universal phase for any input images. After 
diffraction from the image planes to the CGH plane, the CNN predicts the CGH by taking the complex amplitude 
in the CGH plane as input. To generate multiple-layer CGH, the input image’s depth layer is randomly selected 
during the training process. Our model is verified by generating CGH for 2D reconstruction at different depth 
layers and generating 3D layered CGH by encoding the complex amplitude synthesized by multiple layers. The 
encoding CNN takes only 6.47 ms to encode a 4K CGH, and its computational burden does not increase for 
multiple layers because it only processes the synthesized complex amplitude. The diffraction takes 12 ms for 
each depth layer. Numerical reconstruction and optical experiments demonstrate that our method can achieve 
real-time 4K CGH generation for layered scenes.

Results
Structure and experiment results of proposed method
The structure of our method is illustrated in Fig. 1. Our model is designed to generate CGH for 2D reconstruc-
tions at different depths and layered 3D scenes. Here, 6 target depth layers are set ranging from 160 to 210 mm 
with an interval of 10 mm. For each depth layer, an initial zero phase is used as learnable parameters during the 
training process. As shown in Fig. 1a, for each input amplitude, its depth layer is selected randomly from the 
6 target depth layers. The input amplitude is then given the corresponding initial phase. After diffraction from 
the image plane to the CGH plane with the Angular Spectrum Method (ASM), a CNN is utilized to encode the 

Figure 1.  Structure of the proposed method.
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CGH. The amplitude of numerical reconstruction is then compared with the input amplitude for self-supervision. 
Further details of the training process are introduced in Methods section.

Here, we present the optical reconstructions of 6 depth layers in Fig. 2. The input image is from the DIV2K 
validation dataset, which is not used to train our model. 6 CGHs are generated with our proposed method, 
corresponding to depth layers of 160 mm, 170 mm, 180 mm, 190 mm, 210 mm and 210 mm, respectively. The 
focused reconstruction is highlighted in yellow. The optical reconstructions are clear when the corresponding 
depth layer is in focus, while other reconstructions are defocused. For instance, CGH 1, 2, and 3 are generated 
at 160 mm, 170 mm, and 180 mm, respectively. At a depth layer of 160 mm, only the reconstruction of CGH 1 
is clear, while the other reconstructions are defocused. We can see that our method can successfully generate 
CGHs for 2D reconstructions at different depths.

In addition to generating CGHs for 2D reconstructions, we demonstrate the ability of our method to recon-
struct layered 3D scenes in Fig. 3.

To generate 3D layered scene, each layer is combined with the predicted phase at the corresponding depth. 
After ASM to the CGH plane, the CNN is used to encode the synthetized complex amplitude. The detailed 
process is introduced in Methods section. The images are from DIV2K dataset and pixabay. The first 3D scene 
contains two objects placed at 160 mm and 190 mm, respectively. In Fig. 3a, the letter is in focus, while in Fig. 3c, 

Figure 2.  Optical reconstruction of the 6 depth layers.
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the castle is in focus. The second 3D scene contains two objects placed at 180 mm and 210 mm, respectively. In 
Fig. 3b, the rectangle is in focus, while in Fig. 3d, the cat is in focus, demonstrating that our model can generate 
layered 3D scenes.

Generation speed and quality of proposed method
Figure 4 shows the generation speed for 4K CGH with varying layer numbers, as well as the average PSNR and 
SSIM of the 6 depth layers. The PSNR and SSIM are tested using 100 samples of the DIV2K validation dataset. 
0 layer represents only running the encoding CNN. The total generation time comprises two components: dif-
fraction calculation and CNN encoding. It shows that the encoding CNN takes up 6.47 ms to encode a 4K CGH 
using the complex amplitude on the CGH plane, and it takes around 12 ms to calculate the diffraction from 
one layer to the CGH plane. In the case of a single layer, the total generation time is 18.03 ms when utilizing an 
RTX3090 GPU. When switching to an Intel I7-12,700 CPU, the total generation time increases to 1926.95 ms. 
Zero-padding (ZP) ASM is used for more accurate diffraction calculation, but it slows down the ASM calculation. 
In Fig 4a, the red line represents that ZP is not implemented in the forward ASM, and it takes around 6 ms for 
each layer. Figure 4b shows the average PSNR and SSIM with ZP (w/ZP) and without ZP (w/o ZP) added in the 
forward ASM from the image plane to the CGH plane. Although the speed is improved without ZP, the quality 
is reduced. Figure 5 shows the optical reconstruction. The ringing artifact is more obvious if ZP is not used. Note 
that all our algorithms are implemented in python, using C++ may further accelerate diffraction calculation.

Discussion
Here, we show detailed experiments on the learned phase. Using CNN for CGH encoding has been widely used 
in previous  researches11,19,22. Our encoding CNN plays a similar role to encode the complex amplitude into CGH. 
The encoding CNN used is similar to our previous CCNN  model21. The main difference is that we proposed a 

Figure 3.  Optical reconstructions of layered 3D scenes.

Figure 4.  (a) Generation speed with the increase of layer number. (b) Average PSNR and SSIM.
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non-image-dependent initial phase for each depth layer. Thus, we firstly show a comparison of using and not 
using the proposed phase.

Two models are trained to learn CGH generation, and the structure of the encoding CNN is the same. In 
contrast to the previous method that only uses CNN for encoding and sets zero initial phase (w/o phase)19, our 
method (w/phase) sets the initial phase as a learnable parameter. Both models are trained to generate 6 layers 
from 160 to 210 mm. 100 samples of DIV2K validation dataset are used to validate the models at different depth 
layer. As shown in Fig. 6, the PSNR of each layer is approximately 5 dB higher than that of previous method, and 
the SSIM is around 0.02 higher. Results show that the quality can be improved with our method. If the zero phase 
is used, the input amplitude still should be combined with the phase to create a complex-valued input for ASM, 
and the required time is the same, without considering the time to read the phase file from disk.

It should be noted that HoloNet and our previous CCNN-CGH model used a CNN to predict an image-
dependent initial phase. However, it is inefficient for a layered 3D scene if each layer is input into the CNN 
separately. To accelerate the generation, a non-image-dependent initial phase is presented to avoid using CNN to 
process the input image. To further compare the proposed method, zero phase, CNN predicted phase, we show 
the numerical and optical experiment in Fig. 7. The encoding CNN is the same, and the CNN used to predict 
initial phase is the same from our CCNN-CGH.

In Fig. 7, we show the numerical and optical reconstructions obtained using different methods. The images 
are from DIV2K dataset. The generation speed for a 2D reconstruction is 18.03 ms, 54.82 ms and 18.03 ms, 
respectively. The proposed phase (w/learned phase) and zero phase (w/o phase) are not image-dependent, and 
they are applied to any target image. The CNN predicted phase is image-dependent, and it is generated accord-
ing to the input image through a CNN. In the reconstruction, the CNN predicted phase produces better results 
than the zero-phase method. But the generation time is much longer because a CNN is used to process the target 
image. Although real-time reconstruction can be achieved in the case of 2D reconstruction, where only a 2D 
image is processed by a CNN. It would be inefficient in the case of layered scene where multiple images are input 
into the CNN separately. In contrast, our proposed method achieves a comparable quality while maintaining a 
fast generation time.

The initial phase for a target image using CNN and proposed method is shown in Fig. 8. For 2D reconstruc-
tion, we have introduced a learnable initial phase and trained it using natural images through gradient descent 
to enhance its adaptability to a wide range of images. This approach is referred to as ’non-image-dependent’ since 
prior research utilizes CNNs to predict the phase based on the input  image11, resulting in a phase prediction 
that varies depending on the features of each input image. In contrast, our proposed initial phase is designed to 
be adaptable to any input image and remains independent of the specific features of the target image. This ’non-
image-dependent’ initial phase accelerates the process of CGH generation by eliminating the need for phase 

Figure 5.  Optical reconstruction of (a) w/o ZP, (b) w/ZP.

Figure 6.  Average PSNR and SSIM of each depth layers using proposed method with learned phase (w/phase) 
and traditional method with zero phase (w/o phase).
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prediction calculations based on the input image. For multiple layers, a distinct phase is assigned to each layer, 
and it can be regarded as training each phase independently at different depths.

In numerical and optical reconstructions, the ringing artifacts are more pronounced in the zero phase and 
CNN predicted phase methods, particularly at the edge of the reconstruction. The current CNN we use lacks 
position information input of the image pixels, and the CNN kernel is translation equivariant. The result of the 
proposed phase on the contrary vary according to the position. Incorporating positional information, in addition 
to image color information, may be a useful insight for future methods.

In summary, prior research has demonstrated the superiority of employing two separate CNNs for initial 
phase prediction and CGH encoding, as opposed to relying on a single CNN to predict the CGH  directly11. Our 
method, however, challenges this conventional approach by showing that utilizing a learned phase can yield 
comparable quality results to CNN-predicted phases while significantly improving processing speed. Moreover, 

Figure 7.  Numerical reconstructions and optical reconstructions of different methods.

Figure 8.  Initial phase for a target image using (a) CNN (b) proposed method.
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the inclusion of an additional phase in our approach outperforms previous methods that relied on a zero phase 
and a single CNN for encoding the complex amplitude of the CGH  plane19.

The encoding CNN converts the complex amplitude into a phase-only CGH, In Fig. 9, we compare between 
CNN encoding and Double-Phase Amplitude Coding (DPAC) . Existing research has demonstrated CNN’s 
superior performance over DPAC, particularly in terms of light  efficiency11 and spatial shifting  noises19. Our 
experimental result is shown in Fig. 9. Both optical reconstructions were captured under identical camera set-
tings, highlighting the advantage of CNN in terms of light efficiency. The encoded CGHs are also presented for 
visual comparison. CNN-encoded CGH exhibits a checkerboard-like pattern, but the rule is different compared 
to DPAC. In our simulation, The PSNR is 29.73 dB using our method, and 14.9 dB using DPAC. The SSIM is 0.93 
and 0.85 for our method and DPAC, respectively.

At last, our method has limitations that need to be addressed in further research.

Natural defocus blur
In our method, only the focused part is optimized, and it can be observed that artifacts occur when the images 
are defocused. Those artifacts will affect the quality of 3D scenes. Recent progress for defocus optimization such 
as time-multiplex and diffraction-engineered holography can be combined to further optimize the quality of 
3D  scenes17,26.

Occlusion culling for 3D scenes
Our method has not been optimized to reconstruct 2D+D scenes with continue depth currently. In the depth-
map CGH, artifacts will be observed in the discontinuous edges of each depth layer, which can negatively impact 
the quality of the 3D displays. As the depth gap of adjacent layers increases, the presence of inter-layer edge 
artifacts becomes more pronounced. In our approach, each layer has a depth gap of 10 mm, resulting in a total 
depth range of 50 mm. Displaying 3D scenes with continuous depth will face severe artifacts. Thus, only 3D 
scenes composed of different objects are presented. Recent methods for smoothing inter-layer edge artifacts can 
be used to optimize the 3D  reconstruction27.

Accurate wave propagation
Our method is optimized with the ideal ASM, which may not accurately simulate the wave propagation in actual 
displays. Recent advances in learned diffraction models, such as Neural 3D Holography and Time-multiplexed 
Neural Holography, can be used for accurate wave propagation and as a loss  function16,17.

Color display
Our method only calculates a single color CGH at a time. Color display can be achieved by training three models 
for three color channels separately. But the generation time is three times. Future work can be done for generate 
color CGH using a model with multiple output channel such as Ref.14.

Methods
Architecture of the proposed method
Figure 1 shows the training process of our model. At first the input amplitude A is assigned a random depth layer 
d and the corresponding phase ϕd . The complex amplitude Cd is:

Figure 9.  CGH and experimental result of DPAC and our method.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19372  | https://doi.org/10.1038/s41598-023-46575-1

www.nature.com/scientificreports/

Then ASM is used to calculate the diffraction from the image plane to the SLM plane. The complex amplitude 
Dd in the SLM plane is calculated by:

where F  represents the two-dimensional fast Fourier transform, and F−1 represents the reverse two-dimensional 
fast Fourier transform. k is the wave number, and zd is the distance of propagation. � is the wavelength, fx and fy 
are the spatial frequencies in the x and y directions respectively. We used zero-padding and band-limited ASM 
for more accurate diffraction  calculation28,29.

If the CGH is generated for a 2D reconstruction, Dd is directly input into the encoding CNN. Note that using 
a CNN to generate 2D scenes for different depth layers has been proposed by Ryu et al.30, but their method is not 
optimized for layered CGH generation because the CNN need to be used multiple times for each layer. In our 
method, the CNN is used once for multiples layers. For layered 3D scenes, the complex amplitude in the CGH 
plane from different each layer is added before encoding. For example, if the 3D scene is composed of 2 layers 
d1 and d2 , the complex amplitude in the CGH plane is calculated by adding the complex amplitude Dd1 and Dd2 
propagated from each layer:

Then the CNN is used to encode the complex amplitude to CGH. The output of the CNN is also a complex 
amplitude. Its phase p is used for phase-only CGH. The simulated complex amplitude D′ modulated by the 
phase-only SLM is:

Then ASM is used to simulate the reconstruction, the complex amplitude C′ of the reconstruction is:

H̄d is the conjugate of the original transfer function Hd , because the direction is opposite. After the simulation 
of reconstruction, MSE loss is used as the loss function between original amplitude A and the reconstructed 
amplitude. Perceptual loss function and phase constraint can also be used to further enhance the  quality31,32. 
Adam optimizer is used to optimize the CNN and initial phase.

The architecture of the encoding CNN is shown in Fig. 10. Here, we use the same Down-sampling and Up-
sampling block as our previous CCNN-CGH  network21. The encoding CNN uses only one complex-valued 
convolution (C-Conv) layer, ReLU (C-ReLU) layer and deconvolution (C-Deconv) layer. The input is the complex 
amplitude after ASM from the image plane. The convolution kernel size of C-Conv is 3 × 3, and the stride is 2. 
The channel number is 18 after the C-Conv. The convolution kernel size of C-Deconv is 4 × 4, and the stride is 
2. The output is a complex amplitude and its phase is used as the phase-only CGH.

The parameter number in a real valued CNN is calculated by:

where S is the size of the convolution kernel, Cin is the input channel number, 1 is the bias of the kernel. Cout 
is the output channel number. In C-Conv, the parameters are doubled. Thus, the parameter number for our 
encoding CNN is 938. Compared with millions of parameters in previous methods. The number of parameters 
is very small in our CNN.

(1)Cd = A exp (iϕd)

(2)Dd = F
−1[F(Cd) ·Hd]
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Figure 10.  Detailed structure of the encoding CNN.
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Experiment setup
DIV2K training dataset is used to train the neural networks. The training is performed on a computer with an 
Intel i7-12700K processor, 32GB of RAM, and an NVIDIA RTX 3090 GPU with 24GB memory, running on the 
Windows 10 operating system. The learning rate is 0.001. It takes approximately 1.5 hour to train our model for 
50 epochs. The GPU memory occupation is 5.9 GB for 1 layer and 8.8GB for 6 layers.

The optical setup of the holographic display prototype is shown in Fig. 11. Coherent light is provided by 
a laser and the wavelength is 520 nm. A beam expander (BE) is used to expand the laser. The optical path is 
adjusted with a beam splitter (BS). An SLM (HDSLM36R) is used with a pixel pitch of 3.6 μm and a resolution of 
3840*2160 to reflect and modulate the incident light. The holographic reconstruction is captured with a Canon 
EOS 5D Mark IV camera.

Conclusion
In summary, a novel approach for generating 3D CGHs is presented. A non-image-dependent learned phase 
is proposed for each target depth layers. After diffraction from the image planes to the CGH plane, a CNN is 
used to encode the CGH by the complex amplitude on the CGH plane. We show that our method can generate 
high-quality 4K CGH in real-time, and the CGH can be generated for different depth layers and layered 3D 
scenes. The generation time is 18 ms for 2D reconstruction, and increased by 12 ms for each additional layer for 
3D scenes. The average PSNR is above 30dB in our target depth layers. Our method can be applied to real-time 
4K holographic displays.

Data availability
The code is available in our GitHub repository, https:// github. com/ flyin gwolfz/ RT- 4K- CGH.
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References
 1. Cem, A., Hedili, M. K., Ulusoy, E. & Urey, H. Foveated near-eye display using computational holography. Sci. Rep. 10, 14905 (2020).
 2. Chang, C., Bang, K., Wetzstein, G., Lee, B. & Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye 

displays from a human-centric perspective. Optica 7, 1563–1578 (2020).
 3. Jang, S.-W. et al. Complex spatial light modulation capability of a dual layer in-plane switching liquid crystal panel. Sci. Rep. 12, 

1–14 (2022).
 4. Georgieva, A., Belashov, A. V. & Petrov, N. V. Optimization of DMD-based independent amplitude and phase modulation by 

analysis of target complex wavefront. Sci. Rep. 12, 7754 (2022).
 5. Lee, B., Kim, D., Lee, S., Chen, C. & Lee, B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci. 

Rep. 12, 2811 (2022).
 6. Zhong, C. et al. Real-time realistic computer-generated hologram with accurate depth precision and a large depth range. Opt. 

Express 30, 40087–40100 (2022).
 7. Chakravarthula, P., Peng, Y., Kollin, J., Fuchs, H. & Heide, F. Wirtinger holography for near-eye displays. ACM Trans. Graph. (TOG) 

38, 1–13 (2019).
 8. Chakravarthula, P. et al. Gaze-contingent retinal speckle suppression for perceptually-matched foveated holographic displays. 

IEEE Trans. Vis. Comput. Graph. 27, 4194–4203 (2021).
 9. Yolalmaz, A. & Yüce, E. Comprehensive deep learning model for 3D color holography. Sci. Rep. 12, 1–9 (2022).
 10. Chakravarthula, P., Tseng, E., Srivastava, T., Fuchs, H. & Heide, F. Learned hardware-in-the-loop phase retrieval for holographic 

near-eye displays. ACM Trans. Graph. (TOG) 39, 1–18 (2020).
 11. Peng, Y., Choi, S., Padmanaban, N. & Wetzstein, G. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 

(TOG) 39, 1–14 (2020).
 12. Liu, S.-C. & Chu, D. Deep learning for hologram generation. Opt. Express 29, 27373–27395 (2021).
 13. Wu, J., Liu, K., Sui, X. & Cao, L. High-speed computer-generated holography using an autoencoder-based deep neural network. 

Opt. Lett. 46, 2908–2911 (2021).

Figure 11.  Optical setup.

https://github.com/flyingwolfz/RT-4K-CGH


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19372  | https://doi.org/10.1038/s41598-023-46575-1

www.nature.com/scientificreports/

 14. Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. 
Nature 591, 234–239 (2021).

 15. Shi, L., Li, B. & Matusik, W. End-to-end learning of 3d phase-only holograms for holographic display. Light Sci. Appl. 11, 247 
(2022).

 16. Choi, S., Gopakumar, M., Peng, Y., Kim, J. & Wetzstein, G. Neural 3D holography: Learning accurate wave propagation models 
for 3D holographic virtual and augmented reality display. ACM Trans. Graph. (TOG) 40, 1–12 (2021).

 17. Choi, S. et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-
quantized spatial light modulators. In ACM SIGGRAPH 2022 Conference Proceedings, 1–9 (2022).

 18. Liu, K., Wu, J., He, Z. & Cao, L. 4K-DMDNet: Diffraction model-driven network for 4k computer-generated holography. Opto-
Electron. Adv. 220135–1 (2023).

 19. Liu, X., Yan, X. & Wang, X. The u-net-based phase-only CGH using the two-dimensional phase grating. Opt. Express 30, 41624–
41643 (2022).

 20. Dong, Z., Xu, C., Ling, Y., Li, Y. & Su, Y. Fourier-inspired neural module for real-time and high-fidelity computer-generated 
holography. Opt. Lett. 48, 759–762 (2023).

 21. Zhong, C. et al. Real-time high-quality computer-generated hologram using complex-valued convolutional neural network. IEEE 
Trans. Vis. Comput. Graph. (2023).

 22. Shui, X. et al. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography. Opt. 
Express 30, 44814–44826 (2022).

 23. Zhu, R., Chen, L. & Zhang, H. Computer holography using deep neural network with Fourier basis. Opt. Lett. 48, 2333–2336 
(2023).

 24. Wang, X. et al. Phase-only hologram generated by a convolutional neural network trained using low-frequency mixed noise. Opt. 
Express 30, 35189–35201 (2022).

 25. Chen, C. et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt. 
Express 29, 15089–15103 (2021).

 26. Yang, D. et al. Diffraction-engineered holography: Beyond the depth representation limit of holographic displays. Nat. Commun. 
13, 6012 (2022).

 27. Park, S., Lee, J., Choi, W., Park, S.-W. & Kim, H. Smoothing of inter-layer edge artifacts in depth-map computer-generated holo-
grams. Opt. Lett. 47, 6421–6424 (2022).

 28. Xiao, J., Zhang, W. & Zhang, H. Sampling analysis for Fresnel diffraction fields based on phase space representation. JOSA A 39, 
A15–A28 (2022).

 29. Matsushima, K. & Shimobaba, T. Band-limited angular spectrum method for numerical simulation of free-space propagation in 
far and near fields. Opt. Express 17, 19662–19673 (2009).

 30. Ryu, W. J., Lee, J. S. & Won, Y. H. Continuous depth control of phase-only hologram with depth embedding block. IEEE Photon. 
J. 14, 1–7 (2022).

 31. Yang, F. et al. Perceptually motivated loss functions for computer generated holographic displays. Sci. Rep. 12, 7709 (2022).
 32. Chen, L., Zhu, R. & Zhang, H. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with 

phase constraint. Opt. Express 30, 46649–46665 (2022).

Acknowledgements
The phase-only SLM HDSLM36R is supported by UPOlabs. This work is supported by the National Natural Sci-
ence Foundation of China (62075016, 62175017), and Beijing Municipal Science & Technology Commission, 
Administrative Commission of Zhongguancun Science Park (Z221100006722023).

Author contributions
C.Z. conceived the idea, and realized the proposed method. C.Z. and H.L. built the optical systems, and con-
ducted the experiment. C.Z., X.S. and X.X. wrote the manuscript. X.S. and B.Y. supervised the project. X.X., X.Q., 
and C.S. verified the analytical methods. All of the authors discussed the results and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.S. or B.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Real-time 4K computer-generated hologram based on encoding conventional neural network with learned layered phase
	Results
	Structure and experiment results of proposed method
	Generation speed and quality of proposed method

	Discussion
	Natural defocus blur
	Occlusion culling for 3D scenes
	Accurate wave propagation
	Color display

	Methods
	Architecture of the proposed method
	Experiment setup

	Conclusion
	References
	Acknowledgements


