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A non‑invasive method 
for concurrent detection of multiple 
early‑stage cancers in women
Ankur Gupta 1,2, Zaved Siddiqui 1,2, Ganga Sagar 2, Kanury V. S. Rao 1,2 & Najmuddin Saquib 1,2*

Untargeted serum metabolomics was combined with machine learning‑powered data analytics to 
develop a test for the concurrent detection of multiple cancers in women. A total of fifteen cancers 
were tested where the resulting metabolome data was sequentially analysed using two separate 
algorithms. The first algorithm successfully identified all the cancer‑positive samples with an 
overall accuracy of > 99%. This result was particularly significant given that the samples tested were 
predominantly from early‑stage cancers. Samples identified as cancer‑positive were next analysed 
using a multi‑class algorithm, which then enabled accurate discernment of the tissue of origin for 
the individual samples. Integration of serum metabolomics with appropriate data analytical tools, 
therefore, provides a powerful screening platform for early‑stage cancers.

Cancer is rapidly emerging as the leading cause of premature death  globally1–3. While development of more 
effective therapies is ongoing, early-stage detection of cancer offers a more viable strategy for reducing disease-
related morbidity and  mortality4–9. In addition to increasing the likelihood of treatment success, detection of 
cancer in its early stages also allows for improved quality of life, along with a significant reduction in the cost 
and complexity of  treatment10,11. Multiple studies have shown that the 5-year survival rates are markedly higher 
in patients diagnosed with Stage I–II cancers as opposed to those who are diagnosed at Stage III-IV12–17. Unfor-
tunately, however, screening tests are available only for a restricted set of cancers and these include breast, 
colorectal, cervical, lung, and prostate  cancers18–22. While tests for these cancers have indeed contributed to 
reducing cancer-specific  mortality23,24, their impact has remained sub-optimal because the efficacy of some of 
them remains  questionable25–28. Furthermore, these screening approaches are designed to individually detect 
only a single cancer  type29. Besides these five cancers, however, diagnosis for the remaining cancer types is still 
prompted by symptoms that appear only at the later stages of the disease.

Of the various approaches that are currently being marshalled to improve cancer  diagnosis30, recent devel-
opments in the field of multi-cancer early detection (MCED) have shown  promise31–35. MCED screening tests 
aim to capture signals from cell-free (cf)—or circulating tumour (ct)—DNA, or other circulating analytes shed 
by tumours into blood, that are associated with multiple cancers. Importantly, these tests also detect those can-
cers for which ‘standard of care’ screening modalities do not currently  exist28,32–35. MCED tests are now being 
viewed as viable strategies for enhancing the depth and scope of cancer screening programs, thereby facilitating 
significant reductions in the cancer death rate. Although MCED tests currently under development do provide 
grounds for optimism, the fact that biomarker concentrations are low—which then have to be distinguished from 
the background noise of normal human physiology—have hampered efforts to achieve high detection sensitivity 
for early-stage  cancers28,35,36. This poses a limitation because an effective screening test must have high detection 
sensitivity and specificity so that problems due either to under- or over-diagnosis are  minimized37,38.

In a previous study we had adopted an alternate approach wherein we interrogated the serum metabo-
lome for any modulations in metabolite patterns that correlated with the presence or absence of  cancer39. Our 
rationale was derived from the fact that the metabolite composition of biological fluids reflects the health of an 
 individual40,41. Furthermore, metabolome profiling appeared to be particularly relevant for cancer detection given 
that metabolic reprogramming is one of the key hallmarks of cancer  cells42–45. Therefore we had reasoned that, 
by using appropriate data analysis tools, it should be possible to accurately extract metabolite ‘signatures’ that are 
characteristic of cancer. Our expectations were indeed borne out by the results  obtained39. In that report we had 
shown, by combining untargeted serum metabolomics with machine learning-based data analysis, that we could 
detect Stage-0/I of the four female-specific cancers (breast, endometrial, cervical, and ovarian) with an average 
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accuracy of around 98%39. Subsequently, in a follow-up study, we were also able to validate the performance of 
this test in a clinical setting (manuscript submitted).

The encouraging nature of these earlier results suggested to us that our approach could potentially be devel-
oped as an early-stage multi-cancer detection platform. To this end, we first sought to explore whether the scope 
of this method could be expanded to detect additional cancers in women, especially those in Stage-I of the dis-
ease. Results described here reveal that our methodology could indeed be readily adapted to concurrently detect 
the early stages of a total of 15 cancers in women with high accuracy. At a specificity of 99.3%, the detection accu-
racy of the individual cancers ranged from 94 to 100%, with an average sensitivity of > 99%. Furthermore, we were 
also able to successfully identify the ‘tissue of origin’ for the test samples at an overall accuracy of close to 92%.

Results
Details of samples included in the study
The demographic and clinical information of samples included in the study are presented in Table 1 and Sup-
plementary Table 1. The age distribution of these samples ranged from 20 to 90 years. Nearly 95% of the samples 
came from individuals between the ages of 30 to 80 years, and the remaining 5% was split between individuals 
from the age groups of 20—30 years and 81–90 years (Supplementary Fig. 1). The majority of samples (92%) 
were from Caucasian with only 8% of samples coming from non-White who were either Hispanic, Asian, or 
African American women. The total number of cancer samples was 1926, which included samples from women 
with either breast, endometrial, cervical, ovarian, lung, AML, thyroid, melanoma, colorectal, kidney, NHL, 
pancreatic, head & neck, gastric, liver and bile duct cancers. Additionally, we also included 300 samples from 
healthy volunteers as the normal control subset.

Pre‑processing of data prior to AI workflow
An untargeted metabolomics workflow involving positive ion mode ultra-pressure liquid chromatography cou-
pled to mass spectrometry (UPLC-MS/MS) was employed for the individual serum samples described in Table-1. 
This resulted in > 20,000 spectral features (RT, m/z pairs), which was then further resolved into known metabo-
lites by using the Human Metabolome Database (HMDB). The number of known metabolites obtained by this 
process for the individual groups of normal control, breast cancer, endometrial cancer, cervical cancer, ovarian 
cancer, lung cancer, AML, thyroid cancer, melanoma, colorectal cancer, kidney cancer, NHL, pancreatic cancer, 
head & neck cancer, gastric cancer and liver & bile duct cancer were 2821, 3119, 3209, 3237, 2638, 2238, 2215, 
2344, 2622, 2117, 1935, 2033, 2202, 2160, 2116, and 2045, respectively. The cumulative list across all the groups 
was found to comprise of 8312 unique metabolites, which were then used for further analysis. The distribution 
of these unique metabolites across the individual sample groups is shown in Fig. 1. We next processed this data 
through our in-house pipeline that included normalization, gap filling, data transformation, followed by feature 
filtering and selection (Methods, Fig. 2) to generate a matrix consisting of 5104 features representing the 1926 
cancer samples, as well as the 300 normal control samples.

To determine whether the information contained in these features could distinguish between cancer samples 
and normal controls we first generated a PCA plot of cancer samples and normal controls with and without the 
QC samples. The initial plot was indicative for class separation (supplementary Fig. 2). Following this generated 

Table 1.  Description of the sample set employed in the study. Distribution of the sample numbers in terms of 
cancer type, age-groups, BMI, and ethnicity is given here. In addition, information on the cancer stage is also 
provided.

Age (years) BMI (kg/m2) Ethnicity Cancer stage

20–30 31–40 41–50 51–60 61–70 71–80 81–90 10 to 30  > 30 White Non-white 0 I II III IV

Normal control (n = 300) 19 50 98 83 40 10 0 166 11 203 97 0 0 0 0 0

Endometrial cancer (n = 304) 0 6 48 156 76 14 4 130 172 302 2 0 304 0 0 0

Breast cancer (n = 303) 2 41 80 111 53 14 2 270 24 246 57 36 267 0 0 0

Cervical cancer (n = 250) 20 79 76 48 21 6 0 90 22 233 17 70 180 0 0 0

Ovarian cancer (n = 262) 6 43 72 72 60 6 3 86 50 256 6 19 243 0 0 0

Lung cancer (n = 81) 0 2 16 48 13 2 0 30 12 80 1 7 72 0 0 2

Adult-acute myeloid leukemia (n = 71) 5 0 7 23 20 13 3 10 10 71 0 0 0 0 0 0

Thyroid cancer (n = 70) 8 12 22 21 6 1 0 23 12 70 0 0 67 3 0 0

Melanoma cancer (n = 86) 4 9 13 23 21 11 5 37 18 86 0 2 58 16 4 6

Colorectal cancer (n = 87) 1 7 12 22 25 16 4 74 13 87 0 0 62 19 5 1

Kidney cancer (n = 80) 1 4 8 22 40 5 0 49 30 80 0 0 69 5 4 2

Non-Hodgkin lymphoma (n = 50) 0 6 4 12 13 14 1 31 18 50 0 0 0 0 0 0

Pancreatic cancer (n = 75) 0 0 7 16 40 11 1 62 13 75 0 0 23 52 0 0

Liver & bile cancer (n = 34) 1 1 3 15 10 4 0 12 5 34 0 0 26 8 0 0

Gastric cancer (n = 85) 1 9 10 16 31 15 3 65 16 85 0 0 65 20 0 0

Head and neck cancer (n = 88) 8 5 5 28 29 10 3 48 14 88 0 14 48 26 0 0
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Cancer type

Figure 1.  Distribution of metabolites detected across the individual cancer groups. Figure provides a graphical 
distribution of the number of metabolites in the individual samples of each of the 15 cancer types included in 
the study. The cumulative number of named metabolites for all samples within a given cancer type is given in 
the text.
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Figure 2.  The data processing pipeline. The data processing approach used to develop the CDAI algorithm is 
illustrated here. Details are provided in the text.

R2=.991
Q2=.806

Figure 3.  PLSDA plot distinguishes cancer samples from normal controls. Results of a partial least squares-
discriminant analysis (PLS-DA) is shown here as a plot of the matrix of samples and ion boxes versus metabolite 
intensity. The explained variation parameter R-squared parameter for cancer vs normal (R2 = 0.991). Q-squared 
value was evaluated using a separate test for the PLSDA fit which was equal to(Q2 = 0.8065).
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a PLSDA plot using the matrix. As shown in Fig. 3, the PLSDA plot could clearly differentiate cancer samples 
from normal control by segregating them into two distinct clusters (R2 = 0.991, Q2 = 0.806). To further develop 
this into a robust and sensitive method for cancer diagnosis, we resorted to AI analysis. The aim here was to 
more precisely capture variations in metabolite patterns that characterized the cancer samples on the one hand, 
and normal control samples on the other. In addition to cancer detection, we were also interested in developing 
an algorithm that enabled identification of the tissue of origin (TOO) in the case of cancer-positive samples. 
Accordingly then, we adopted a layered approach where we first focussed on accurately distinguishing cancer 
samples from the normal control, followed by the development of an algorithm for identifying the TOO of the 
cancer-positive samples.

Cancer detection artificial intelligence (CDAI) algorithm for distinguishing cancer samples 
from normal controls
The first step was to develop an algorithm for the differentiation of cancer samples from normal controls. We 
termed this as the Cancer Detection Artificial Intelligence (CDAI) model. For this, the matrix data was randomly 
divided into training and test sets in comparable proportion between the individual cancers and the normal 
controls in order to cumulatively distinguish all 15 cancers listed in Table 1 from normal controls. A total of 150 
normal control samples and 966 cancer samples were used as the training set, while the test set was comprised 
of 150 normal controls and 960 cancer samples (Table 2). The accuracy, sensitivity, and specificity values for 
the CDAI model were obtained by applying it to the training set and evaluating it on the test set (Table 2 and 
Fig. 2). To distinguish between cancer samples and normal control, the logistic regression function was applied 
to the training data.

Here, × 0 is a constant number,  Ii (1 ≤ i ≤ n) is the intensity of metabolite i present in the respective sample. 
The total number of metabolites is represented by the symbol n(n ∈ [1000, 5104]). Supplementary Fig. 3 gives 
the value of coefficient  xi(1 ≤ i ≤ n) for each metabolite.

The model was cross validated across 1000 random train-test split which yielded an average sensitivity, speci-
ficity of 99.6 (99.5–99.8), 99.3 (98.9–99.5) at 95 CI respectively. The evaluation of the trained model as applied on 
a single test set for a single partition of data is shown in Fig. 4. The scatter plot in panel A shows the Model Score 
for normal controls and cancer cases. It is evident that these scores are clearly different between normal controls 
and the samples derived from all the different cancer types being tested (Fig. 4A). Application of a threshold of 0 
to differentiate between cancer samples and normal controls resulted in the confusion matrix shown in Fig. 4B. 
From the results depicted in this matrix, the overall cancer detection sensitivity calculated was 99.7% whereas the 
specificity was 99.3%. The ROC-AUC curve obtained for the CDAI model results is also shown in Fig. 4C. The 
sensitivity of our CDAI algorithm for correctly identifying samples within each cancer type as cancer-positive 
is given in Table 3. It is evident from the results shown in this table that, barring one sample from the cervical 
cancer subset and another from the thyroid cancer subset, all other samples were correctly identified as cancer-
positive. These results confirm that our pipeline of untargeted serum metabolomics coupled with data analysis 
using our CDAI algorithm provides for cancer detection with very high sensitivity and specificity. Importantly, 

y_score = x0 + x1 ∗ I1 + x2 ∗ I2 + x3 ∗ I3 + · · · · · · + xn ∗ In

Table 2.  Distribution of samples between the training and testing sets for development of the CDAI 
algorithm. The partitioning of samples within each cancer group between the training and testing sets is given. 
Normal control samples were also similarly partitioned with 150 samples being taken for training and the 
remaining 150 samples being employed as the test subset.

Sample type Total sample number Train Test

Normal 300 300 normal 150 150 normal 150 150 normal

Breast 303

1926
Cancer samples

152

966
Cancer samples

151

960
Cancer samples

Cervical 250 125 125

Colorectal 87 44 43

Endometrial 304 152 152

Gastric 85 43 42

H&N 88 44 44

Kidney 80 40 40

Liver 34 17 17

Lung 81 41 40

Melanoma 86 43 43

NHL 50 25 25

AML 71 36 35

Ovarian 262 131 131

Pancreatic 75 38 37

Thyroid 70 35 35
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Random: ROC AUC = 0.500
Logis�c: ROC AUC = 0.997 

A

B
C

Figure 4.  The CDAI model accurately differentiates cancer samples from normal controls. (A) The results 
obtained with the trained CDAI model for cancer versus normal control samples in the test set. A scatter plot of 
the y-scores obtained for the individual samples within each of the cancer types is shown. The y-score of each 
of the 15 cancers are shown separately. The resulting confusion matrix obtained on applying a threshold of a 
y-score of 0 is shown in  (B) wherein the high cancer detection accuracy—independent of the cancer type—is 
clearly evident. The precision of the CDAI algorithm was also confirmed by the ROC-AUC curve shown in 
Panel C, where the Area under ROC_AUC curve was 0.997. Individual cancer types are abbreviated in  (A) as 
follows: BC breast cancer, EC endometrial cancer, CC cervical cancer, OC ovarian cancer, LC lung cancer, AML 
acute myeloid leukaemia, TC thyroid cancer, MC melanoma cancer, COC colorectal cancer, KC kidney cancer, 
NHL non-Hodgkin’s lymphoma, PC pancreatic cancer, HNC head and neck cancer, GC gastric cancer, LBC liver 
and bile duct cancer.

Table 3.  Accurate identification of cancer-positive samples by the CDAI algorithm. The number of samples 
from each cancer type that were tested are compared against those that were correctly identified as cancer-
positive in each cancer type by the CDAI algorithm. Results obtained for the normal samples are also included 
where correct identification implies their discernment as cancer-negative samples.

Cancer type Total no. of samples tested No. of samples correctly identified Correct prediction (%)

Breast 151 151 100

Cervical 125 124 99.2

Colorectal 43 43 100

Endometrial 152 152 100

Gastric 42 42 100

H&N 44 44 100

Kidney 40 40 100

Liver 17 17 100

Lung 40 40 100

Melanoma 43 43 100

NHL 25 25 100

AML 35 35 100

Ovarian 131 131 100

Pancreatic 37 37 100

Thyroid 35 34 97.1

Normal 150 149 99.3
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given that the majority of samples across all 15 cancers were either from Stage-0 or Stage-I of the disease, the 
results in Table 3 also underscore the particular utility of our method for early-stage cancer detection.

An artificial intelligence algorithm for determination of tissue of origin (TOOAI)
In the second step, our aim was to layer a multiclass AI model (tissue of origin, or, TOOAI model) on top of the 
CDAI model that would act on the cancer-positive samples from Table 3 to generate a multiclass score for each 
sample. That is, our aim was to score the relative probability with which the TOO of a given sample corresponded 
to each of the 15 cancer types that were being tested. Based on this grading then, it should be possible to identify 
the most likely TOO for that sample.

Our cumulative set of 1926 cancer samples included those from endometrial cancer (n = 304), breast cancer 
(n = 303), cervical cancer (n = 250), ovarian cancer (n = 262), lung cancer (n = 81), leukemia (n = 71), thyroid can-
cer (n = 70), melanoma (n = 86), colorectal cancer (n = 87), kidney cancer (n = 80), lymphoma (n = 50), pancreatic 
cancer (n = 75), liver & bile duct cancer (n = 34), gastric cancer (n = 85), head & neck cancer (n = 88). The matrix 
data generated for these samples was randomly partitioned into training and test datasets in equal proportion as 
shown in Fig. 5 and Table 4. Then, a SVM multiclass classification model was made using the training samples to 
generate the TOOAI algorithm. The TOOAI algorithm was applied on those samples identified as cancer-positive 
by the CDAI algorithm, which generated 15 scores for each sample. Here, for a given samples, each score defined 
the probability of that sample belonging to one of the fifteen classes, or cancer types.

The multiclass classification TOOAI model was made using the training samples. The trained algorithm 
estimated tissue of origin probability of each of the sample, for each of the 15 cancer types, according to the 
formulae below:

P(Endometrial) =
1

1+ ey0+y1∗I1+y2+I2+······ .

P(Breast) =
1

1+ ea0+y1∗I1+y2+I2+······ .

P(Cervical) =
1

1+ ea1+y1∗I1+y2+I2+······ .

P(Ovarian) =
1

1+ ea2+y1∗I1+y2+I2+······ .

Total 
Dataset

Train 
Dataset

Test
Dataset

Randomly

Selected  

Samples

(across each 

cancer type)

Train-Test Par��on

gnitaroprocnI
rorrEssa

M

noitceleS
erutaeF

No
rm

al
iza

�o
n

Im
pu

ta
�o

n

Fe
at

ur
e 

Re
du

c�
on

Data Processing

SVM
Grid search 

Hyper 
Parameter 

tuning 

Machine Learning 
Model

TOOAI Workflow

Model Results 
TOOAI assignment

Predic�on probabili�es of 
test Samples belonging 

�ssue types

Best Model 
Assessment 

( ∩ ( , ) ∈ ( , , … . . , ( ))Accuracy =

Figure 5.  The workflow employed for development of the TOOAI algorithm. The workflow for the multi cancer 
detection TOOAI platform involves three major compartments common to the layer model. These include 
model building, assessment of the models, and determination of double class prediction accuracy.
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Here,  a0,  a1,  a2,….,  an are constant number,  Ii (1 ≤ i ≤ 8312) is the Normalized intensity of metabolite i present 
in the respective sample. N is number of cancer type classes included in the training set.

The models were first assessed on the basis of their single class accuracy, wherein the first prediction (i.e. 
the highest probability score) was taken as the correct identification of the cancer TOO for a given sample. This 
analysis yielded an average accuracy across 15 cancers of 81% 95 CI (78.9–81.6) (results not shown). To further 
improve the accuracy, therefore, we considered a double-class prediction model in which the correct TOO likely 
occurred within the top two predictions from the model, calculated on the basis of the probability functions 
obtained as defined above. The double class prediction accuracies were evaluated for the test dataset and the 
confusion matrix for the final prediction is shown in Fig. 6. Double class prediction accuracy was obtained from 
the model by using the following formula:

P(Thyroid) =
1

1+ ea3+y1∗I1+y2+I2+······ .

P(N) =
1

1+ ean+y1∗I1+y2+I2+······ .

Table 4.  Distribution of samples between the training and testing sets for development of the TOOAI 
algorithm. The partitioning of cancer-positive samples across the individual cancer groups into training and 
test sets is given. The total number of cancer samples employed for training was 1064, while that taken for 
testing was 862.

Cancer type Total sample number Train Test

Breast 303 159

1064
Cancer samples

144

862
Cancer samples

Endometrial 304 159 145

Cervical 250 133 117

Ovarian 262 137 125

Lung 81 30 51

AML 71 18 53

Thyroid 70 36 34

Melanoma 86 61 25

Colorectal 87 62 25

Kidney 80 55 25

NHL 50 31 19

Pancreatic 75 50 25

H&N 88 63 25

Gastric 85 61 24

Liver 34 9 25

Figure 6.  Performance of the TOOAI model. The confusion matrix built for discriminating between the 15 
cancers, on the basis of a double class TOO prediction accuracy, by the TOOAI model is shown here. Details 
of model development are provided in Methods while an interpretation of the results is discussed in the text. 
Individual cancer types are abbreviated as follows: BC breast cancer, EC endometrial cancer, CC cervical cancer, 
OC ovarian cancer, LC lung cancer, AML acute myeloid leukaemia, TC thyroid cancer, MC melanoma cancer, 
COC colorectal cancer, KC kidney cancer, NHL non-Hodgkin’s lymphoma, PC pancreatic cancer, HNC head and 
neck cancer, GC gastric cancer, LBC liver and bile duct cancer.
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Table 5 gives the results obtained for the double class prediction analysis. The significant improvement in 
prediction accuracy is evident here, which ranged from a low of 82% for gastric cancer to as high as 100% for 
Non-Hodgkin’s lymphoma and pancreatic cancer. Of the total of 862 cancer samples that were tested, TOO of 
795 were correctly predicted resulting in an average accuracy of 92.2% (Table 5).

Robustness of the CDAI
We also wanted to assess whether our method was subject to the vagaries of batch specific variability that is often 
seen in mass spectrometry  data46. For this, we performed an experiment using a sample set that comprised of a 
pre-defined number of samples from each of the 15 cancers and normal controls as shown in Table 6 and Sup-
plementary Table 3. This sample set was subsequently analysed over multiple times at intervals of 4–6 weeks, 
spanning a total period of 18 months. Analysis involved a UPLC-MS/MS run for the individual samples, followed 
by determination of the cancer-positive versus cancer-negative status with the CDAI algorithm. A total of ten 
such test runs were performed and the results, in terms of the CDAI accuracy, are shown in Table 6 and illus-
trated in Supplementary Fig. 4. Importantly, the coefficient of variation for the net sensitivity for cancer detection 
obtained across these ten test runs was as low as 0.003 (Supplementary Fig. 4), confirming the robustness of our 
overall methodology. We believe that this is a significant finding from the standpoint of further development of 
our approach as a possible MCED test.

Identification of features critical for cancer detection
Our matrix features were able to recognize named metabolites in the HMDB database. This renders our model 
results more amenable towards gaining useful insights into the metabolic adaptations that seemingly correlate 
with cancer development. To facilitate such future analysis, we sought to short-list those metabolites that con-
tributed significantly to the cancer-specific signatures detected by the CDAI algorithm. For this we employed 
feature ranking, wherein weights of the CDAI model’s individual features—or named metabolites—involved in 
distinguishing between cancer and normal control samples were first sorted. Subsequently, these features were 
ranked using the recursive feature elimination technique, which involved elimination of one feature at a time. 
The top ranking metabolites that resulted from this exercise are listed in Supplementary Table 2.

Discussion
Efforts to improve the detection of cancers at an early stage are currently being spurred by the development of 
MCED tests based on ctDNA analysis, which can detect multiple cancers with a single blood  draw47. The attrac-
tion posed by such tests is that they facilitate detection of many additional cancers that would otherwise remain 
undetected until later stages, when prognosis is generally  poor48. Mathematical modelling has suggested that 
inclusion of MCED tests to usual care can yield a significant positive effect in terms of substantially reducing 
the overall cancer  mortality49. Nonetheless, despite the potential shown by ctDNA-based MCED tests, concerns 
have emerged that this approach may not represent a satisfactory proxy for biopsies of tumour tissues, especially 

Accuracy =
Total correctly predicted sample(True prediction ∩ Prediction(1, 2) ∈ max(P(breast), P(Uterine), . . . .., P(N))

Total number of sample in Cancer subclass

Table 5.  Determination of the tissue of origin by the TOOAI algorithm. Table lists the number of samples 
tested from each of the individual cancer type and compares this against that proportion of samples that were 
either correctly or incorrectly classified by the double class prediction of the TOOAI algorithm. The resulting 
sensitivity that was obtained for each cancer type is also included, along with the average sensitivity value 
across all the cancer types.

Cancer type # samples tested # samples correctly classified # samples incorrectly classified Sensitivity

Breast 144 134 10 93.08

Endometrial 145 134 11 92.65

Cervical 117 113 4 96.64

Ovarian 125 115 10 91.60

Lung 51 47 4 93.02

AML (leukemia) 53 45 8 85.71

Thyroid 34 30 4 88.89

Melanoma 25 23 2 93.33

Colorectal 25 23 2 93.02

Kidney 25 22 3 88.10

NHL (lymphoma) 19 19 0 100

Pancreatic 25 25 0 100

Head & neck 25 24 1 94.12

Gastric 24 20 4 82.05

Liver & bile duct 25 21 4 83.33

Total 862 795 67 91.7 (average sensitivity)
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for early-stage cancer detection. These concerns derive from the fact that the detection sensitivity and/or speci-
ficity obtained for early-stage cancers has generally been less than  satisfactory50,51. While the low to negligible 
concentration of ctDNA present in the early stages of cancer has been identified as the primary cause, ctDNA 
variability based on type and status of the tumour is also another likely complicating  factor52–54.

To circumvent the limitations inherent to ctDNA-based MCED tests, we had adopted an alternate approach 
that built on the widely accepted notion that metabolites serve better as proximal reporters of disease since 
their relative abundances are often directly related to pathogenic  mechanisms55–57. Accordingly, we employed 
untargeted metabolomics—using high-resolution mass spectrometry—to generate a dense representation of the 
serum metabolome. The resulting data was then deconvoluted using a set of machine learning algorithms to first 
distinguish between cancer-positive and cancer-negative cases, followed by a further analysis of samples from 
the former group to identify the likely tissue of origin of the cancer. As demonstrated in our earlier  report39, 
this approach was indeed unconstrained by the factors that limit accuracy of ctDNA-based MCED tests, at least 
for the cancers evaluated. An overall detection accuracy of as high as 98% was achieved for Stage-0/I of these 
cancers (39, manuscript submitted). However, since this previous study was restricted to detection of only the 
four female-specific cancers, we wanted to explore whether additional cancers could also be brought within 
the scope of this test. In this report we examined the ability of this method to detect a total of fifteen cancers in 
women, including the four previously evaluated female-specific cancers.

Results described here confirm that our approach of integrating untargeted metabolomics with machine 
learning-powered data analytics has strong potential for development as a high-fidelity screening test for early-
stages of multiple cancers. This is evident from our finding that all 15 cancers tested could be detected with a 
sensitivity that ranged from 94 to 100%, at a specificity of 99.3%. Importantly, these cancers also included those 
that are known to be notoriously difficult to detect such as cancers of the pancreas, lung, kidney, ovary, liver, and 
sarcoma. Besides the fact that the early stages are largely asymptomatic, detection of these cancers is further hin-
dered by their occurrence in tissues that are not readily accessible. The absence of any overt or specific symptoms 
in the early stages is also a characteristic of many of the remaining cancers in our list, as a result of which they 
too normally tend to go undetected for long periods of  time58–60. Despite these inherent impediments, however, 
we were able to uniformly detect each of the individual cancers with high sensitivity and specificity. That is, our 
method facilitates concurrent detection of multiple cancers including those that are intractable to discernment 
by available screening modalities.

The fact that the samples employed for all cancer types were primarily derived from patients in Stage-I of 
the disease is another notable aspect of our study. As described in Table 1, while 31% of pancreatic cancer sam-
ples were from Stage-I, the proportion of early-stage cancers (Stage-0/I) was between 70 and 80% in the case 
of melanoma, colorectal, liver and bile, gastric, and head & neck cancers. For kidney cancer 86% of samples 
employed were derived from Stage-I, while this proportion was 96% for thyroid cancer and 98% (Stage-0/I) for 
lung cancer. For the remaining cancers, all samples tested were from Stage-0/I of the disease (see Table 1). Thus, 
given the preponderance of very early-stage cancer samples in our test set, results presented in this report go to 
further substantiate the unique capability of our method to accurately detect early-stages of at least the spectrum 
of cancers that were tested. This feature represents a significant advance given that early-stage detection has for 
long persisted as one of the principle challenges in the field of cancer diagnosis. Our earlier inference that a 

Table 6.  Robustness evaluation of the pipeline for cancer detection. While details of the experiment 
performed are described in the text, this table indicates the number of samples taken from each cancer type. 
Also included here is the cancer detection sensitivity obtained for each cancer type sample subset across all the 
ten runs. As shown in Supplementary Fig. 4, a comparison of net sensitivity yielded a CV of 0.003.

Cancer type

Batch runs

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Breast 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 24/25: -96% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100%

Endometrial 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100%

Cervical 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100% 23/23: -100%

Ovarian 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100% 25/25: -100%

Lung 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100%

AML (leukemia) 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100% 24/24-100%

Thyroid 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100%

Melanoma 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100%

Colorectal 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100%

Kidney 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100%

NHL (lym-
phoma) 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100% 10/10-100%

Pancreatic 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100% 12/12-100%

Head & neck 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100%

Gastric 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100%

Liver & bile duct 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100% 15/15-100%
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metabolomics-based approach is not confounded by limitations that plague ctDNA, circulating tumour cells, 
or protein biomarker-based  strategies39, is also reinforced by these findings.

In addition to cancer detection, the inclusion of a multiclass algorithm (TOOAI model) in the data analysis 
pipeline also allowed us to predict the likely tissue of origin for those samples that proved to be cancer positive. 
For each test sample, the TOOAI model generated a list of 15 probability scores that defined the likelihood with 
which the tissue of origin of that sample corresponded to each of the cancer types tested. While an assignment 
of cancer type simply on the basis of the highest probability score yielded an overall accuracy of about 81%, 
this could be further enhanced to 92% by considering a double-class prediction where the tissue of origin was 
circumscribed to within the two most likely cancer types. Thus, tandem analysis of the serum metabolome using 
two separate algorithms enabled cancer detection to be coupled with localization of the tissue of origin. Comple-
menting cancer detection with identification of the tissue of origin should aid in directing the subsequent tests 
required for diagnostic confirmation of the cancer.

Although it is an accepted truism that early diagnosis of cancer can save lives this goal has, nonetheless, 
proven elusive to date. However, results presented in both our  previous38 and present study confirm that an 
interrogation of the serum metabolome, using a machine learning algorithm, for disease-specific metabolite 
signatures provides a fruitful strategy for detection of early-stage cancers with very high accuracy. Furthermore, 
by inclusion of a multiclass algorithm to further resolve the cancer-specific metabolite signatures, cancer detec-
tion could also be supplemented with tissue of origin identification. Thus, the approach described here clearly 
has potential for development as a multi-cancer screening test that is especially relevant for early-stage cancer 
detection and identification. We do acknowledge, however, that more rigorous clinical validation will be required 
before its potential can be translated into application in the field. Furthermore, the skewed distribution between 
the cancer and normal control samples in our sample set, as well as our adoption of a supervised approach for 
building the model, also demand a more rigorous assessment of the test robustness and reproducibility.

Another important question is the likely effect that comorbidities could have on the accuracy of our results. 
As shown in Supplementary Table 1, several of the donors for our sample set were those afflicted with other 
metabolism related diseases such as diabetes, heart disease, and hypertension among others (see Supplementary 
Table 1). The high cancer-detection accuracy that we, nonetheless, obtained suggests that at least these comor-
bidities do not exert a negative impact on the performance of our algorithm. This, however, does not rule out 
the possibility that there may be other classes of diseases (e.g. those related to inflammation, aging, etc.) that 
could affect the outcome. Studies are currently underway to address these diverse issues, and also evaluate the 
potential of our method as a multi-cancer screening test.

Methods
Sample details
A schematic of overall methodology is illustrated in Supplementary Fig. 5. A total of 1926 different cancer 
samples (Breast, Endometrial, Cervical, Ovarian, Lung, AML, Thyroid, Melanoma, Colorectal, Kidney, NHL, 
Pancreatic, Head & Neck, Gastric and Liver & bile duct) were taken to perform this study (Table 1, Supplemen-
tary Table 1). These samples were purchased from different biobanks such as Dx Biosamples (San Diego, CA), 
Reprocell USA Inc. (Beltsville, MD), and Fidelis Research AD (Beltsville, MD) (Sofia, Bulgaria). Samples includ-
ing both cancer and healthy controls were from these three biobanks. The distribution of total number of cancer 
samples among these biobanks were 742 from Dx Biosciences, 807 from Reprocell USA and 377 from Fidelis 
Research AD. While, 150 Normal samples from Dx Biosciences, 100 from Reprocell USA and 50 from Fidelis 
Research AD. Samples obtained were categorically from treatment naïve women patients in various stages of 
the individual cancers (Table 1). Clinical information of the samples that included histological stage and grade, 
along with cancer’s TNM classification of the cancer.

Sample indexing
A unique identification number was used to index the samples. To correctly assign samples for extraction and 
relative registering of result output, this number was used. This number was used to track and recall each sample 
with derived aliquots. Samples were kept at −80 °C until they were processed.

Extraction of metabolites from serum samples
Extraction of metabolites from serum was done as previously  described39. Briefly, serum samples were thawed 
on ice and then mixed prior to extraction. For metabolite extraction, 10 µl of serum was aliquoted into a 1.5 ml 
microcentrifuge tube (Genaxy, Cat No. GEN-MT-150-C. S). To this, 30 µl of chilled methanol (Merck, Cat. No. 
1.06018.1000) was added and briefly vortexed. This mixture was then kept at −20 °C for 60 min.

After the incubation, the sample was centrifuged (Sorvall Legend Micro17, Thermo Fisher Scientific, Cat. 
No. Ligend Micro 17) at 10,000 rpm for 10 min. Supernatant (27 µl) was then carefully aspirated into a fresh 
microfuge tube without disturbing the pellet. Speed vacuum (ThermoFisher Scientific, Cat. No. SPD1030-230) 
was employed at low energy for 30 min to dry the supernatant. This dried sample was either stored at −80 °C for 
later use or reconstituted immediately with 30 µl methanol: water (1:1) for LCMS injection.

Liquid chromatography and mass spectrometric (LC–MS/MS) analysis of serum metabolites
An untargeted metabolomics approach was adopted for this  study39. In this method, a scan range (66.7–1000 Da) 
was typically selected to capture the metabolite pattern in the sample. A Dionex LC system (Ultimate 3000) 
coupled with a QExactive (Thermo Scientific) mass spectrometer was employed for this analysis. Samples were 
analyzed using positive polarity in ESI ionization, after injecting 10 µl of sample onto an Acquity UPLC HSS T3 
column (Waters, 1.8 micron, 2.1 × 100 mm, Part No. 186003539). The working temperature for this stationary 
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phase was 37 °C. Mobile phase A (water + 0.1% formic acid) and mobile phase B (methanol + 0.1% formic acid) 
was used for the gradient where the total run time was14 minutes. The gradient was initially held constant for 
one minute at 5% B. Then, was increased to 95% B in 7 min and was held for another 2 min at 95% B. Finally, 
gradient returned to 5% B by 14 min. The eluent was connected online to the QExactive source for ionization 
using 4 kV of voltage. The mass spectrometer was calibrated with the vendor recommended schedule to main-
tain the mass accuracy of 5 ppm. Optimized resolution for sample run was 70,000 with an AGC target of 1e6.

Maintenance of mass spectrometric data quality
Mass spectrometry data variation was reduced by combining several controls with the experimental samples. 
Instrument performance and chromatographic alignment over the time was maintained using the QC sam-
ples. Additionally, this QC also served as a technical replicate throughout the study. A blank gradient run was 
incorporated after each sample injection to reduce the carryover problem associated with the stationary phase.

Pre‑processing of mass spectrometry data prior to AI workflow
The mass spectrometry data produced frequently varies between batches. We sought to control this variation 
by incorporating a set of pre-processing steps before applying the AI workflow. While a schematic of the overall 
process is depicted in Figs. 2 and 5, the individual steps involved were as follows.

1. Inclusion of mass error in the data: Despite using very rigorous procedure to avoid possible variation in data, 
mass errors are prevalent in metabolomics data. This error results in slightly different masses for the same 
metabolite in two samples. This posed a challenge to compare the intensity of the same metabolite across 
samples. This step of intensity comparison is essential to form patterns that are required in AI data analysis. 
As previously  described39, an approach of adaptive virtual lock mass (VLM) was used to counter such varia-
tions. In principle, this approach relies on the fact that mass errors increase with increasing mass. We adapted 
this approach with our dataset and combined parts per million (ppm) mass errors with the metabolite identi-
fied by HMDB database. VLM boxes were created in alignment with the masses of metabolites identified by 
HMDB database and searched across the batches. The outcome of this exercise was an initial matrix of 8312 
metabolites or features. Further, this matrix was trimmed with the removal of both plant or plant-derived, 
and drug or drug-derived metabolites. This resulted in a refined matrix of 5104 metabolites or features.

2. Data filtering: The presence of noise in a data set can increase the model complexity and time of learning, 
which degrades the performance of learning algorithms. Data filtering is a process of noise reduction as 
well as dimensionality reduction by which an initial set of raw data contains target specific attributes and is 
reduced to a more manageable data format.

3. Data normalization/standardization: Normalization techniques are required to reduce the variations in the 
data since the metabolic data fluctuate under different mass spectrometer parameters. Different normaliza-
tion methods were tried such as Quantile Normalization, Variance Stabilization Normalization, Best Nor-
malization, Probabilistic Quotient Normalization.

  Data standardization is a data processing workflow that converts the structure of different datasets into 
one common format of data. It deals with the transformation of datasets after the data is collected from dif-
ferent sources and before it is loaded into target systems. Various data standardization methods like standard 
normalization, L1 and L2 norm standardization were employed in the data set.

  A combination of Standardization and Normalization was used for the two-tiered algorithm. We found 
Quantile normalization was best suited for CDAI based on the accuracy in the training set and across the 
validation batches. This method was further adapted to our datasets to enable the normalization of new 
samples with respect to training datasets and testing one sample at a time. For TOOAI the raw data was first 
transformed using log base 10, and then subjected to Quantile normalization followed by standard scaler 
standardization.

4. Missing value imputation: It is well established that missing values in untargeted metabolomics data can be 
troublesome. In large metabolite panels, measurement values are frequently missing and, if neglected or sub-
optimally imputed, can cause biased study results. Various supervised and unsupervised multiple imputation 
techniques like Iterative Imputer, missforest, simple impute, KNN impute were employed and the effects of 
sample size, percentage missing, and correlation structure on the accuracy of the imputation methods were 
evaluated. Finally, KNN imputation (n_neighbours = 5) was chosen out to be the most appropriate for our 
dataset. For CDAI we imputed the whole dataset uniformly. However, we followed selective imputation for 
TOOAI algorithm, where we selectively imputed 15 cancer classes in the training set, but the test set was 
kept non imputed.

5. Feature reduction: Dimensionality reduction is the process of reducing the number of random variables 
under consideration, by obtaining a set of principal variables. This is a critical step in high dimensional data 
as it takes care of curse of dimensionality, multi-collinearity, noise, computational cost, and visualization. 
Feature Extraction can be unsupervised (PCA) or supervised (LDA, PLS-DA etc.). Various Feature reduction 
techniques were evaluated based on data variance capture and class separation namely PLSDA R2 maximiza-
tion, RFE, PCA, Non-negative Matrix Factorization, LDA. These were evaluated on the basis of their effect 
on overall accuracy in CDAI classification and, finally, PLSDA was used for feature reduction in CDAI as 
well as for the TOOAI.

6. Machine learning model development: After completing the above pipeline, the data was then fed into the 
AI machinery. AI models were made to differentiate cancers from normal and then between the individual 
cancers.
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Keeping in mind the potential clinical applications of our data analysis pipeline, a tiered approach was used 
here in which an AI model was first developed for cancer signal detection (the CDAI Model). Following this, 
the TOOAI Model was developed to classify the tissue of origin for the cancer positive sample. The total 2226 
samples taken for this study included endometrial cancer (n = 304), breast cancer (n = 303), cervical cancer 
(n = 250), ovarian cancer (n = 262), lung cancer (n = 81), leukemia (n = 71), thyroid cancer (n = 70), melanoma 
(n = 86), colorectal cancer (n = 87), kidney cancer (n = 80), lymphoma (n = 50), pancreatic cancer (n = 75), liver 
& bile duct cancer (n = 34), gastric cancer (n = 85), head & neck cancer (n = 88), and 300 normal control sam-
ples. The matrix produced from the data generated from these samples was then utilized for further analysis as 
described in “Results”.

Development of the algorithm for the CDAI model
Of the total of 2226 samples, 1926 samples were from the 15 cancer classes and 300 were normal controls. 
Normal controls were samples from volunteers who had no cancer. The data was randomly partitioned into 
training and test datasets in equal proportion. This resulted in 966 Cancer samples and 150 Normal Controls in 
training set, and 960 Cancer samples and 150 Normal Controls in test set (Table 2). A complete schematic of the 
steps for cancer detection is shown in Fig. 2 and the model was evaluated using parameters log loss, Accuracy, 
Sensitivity, Specificity.

Parametric machine learning models were applied on the training data to obtain a score function depending 
on the intensity values of the features. The Class balancing parameters were configured in the model to deal 
with the imbalance of cancer and the control samples in the training dataset. The final trained model generated 
a score of each sample by using the following formulae:

Here, × 0 is a constant number,  Ii (1 ≤ i ≤ n) is the intensity of metabolite i present in the respective sample. 
The total number of metabolites is represented by the symbol n(n ∈ [1000,5104]). Supplementary Fig. 3 gives 
the value of coefficient  xi(1 ≤ i ≤ n) for each metabolite.

The model was cross validated using 1000 random train test split and the average sensitivity, specificity, and 
accuracy at 95 CI was obtained. The y score plot of the trained model as applied on test set for a single partition 
of data containing 15 cancer classes and normal control is shown in Fig. 4. The scatter plot shows the Model Score 
for Controls and Cancer cases. The ROC-AUC probability curve showed a high degree of separability between 
the cancer and the normal controls. The model scores are clearly seen to be different between Controls and 
Cancer samples where on applying a threshold of y-score of zero to differentiate between two types of results in 
a confusion matrix as shown. Sensitivity, Specificity, and Accuracy can be calculated from the below formulae:

Predicted

Negative Positive

Actual
Negative True negative (TN) False positive 

(FP)

Positive False negative (FN) True positive 
(TP)

Development of the algorithm for the TOOAI model
In brief, the TOOAI model is a multiclass algorithm that evaluates the probability score for each cancer posi-
tive sample, which defines the tissue from which the cancer positive signal has originated. For developing this 
algorithm the dataset containing the cancer samples was first processed according to the steps explained in the 
earlier section. Here, out of total 1926 Cancer samples, samples were Endometrial Cancer, Breast Cancer, Cervical 
Cancer, Ovarian Cancer, Lung Cancer, Kidney Cancer, Thyroid cancer, Acute myeloid lymphoma, non-Hodgkin’s 
lymphoma, Pancreatic cancer, Colorectal cancer, Liver cancer, Gastric cancer, Melanoma cancer, head & neck 
cancer (Table 1). The data was randomly partitioned into training and test datasets in equal proportion and 
complete distribution of training and testing distribution in this layer is shown in Table 4.

The Machine learning environment was set for python 3.10.4. Various algorithms for example Support Vec-
tor Machine (SVM), Logistic one versus rest (LOVR), Stochastic gradient descent (SGD) algorithms etc. were 
evaluated in order to ascertain the best possible model for cancer type identification. The optimal set of hyper-
parameters for these models were obtained using exhaustive training testing by python Grid search CV package.

This Predict probability output of these models resulted in `15 probability scores for each sample, with each 
score defining probability of the respective sample belonging to one of the 15 cancer tissue types. The models 

y_score = x0 + x1 ∗ I1 + x2 ∗ I2 + x3 ∗ I3 + · · · · · · + xn ∗ In

Accuracy :
TP + TN

TP + TN + FP + FN

Sensitivity :
TP

TP + FN

Specificity :
TN

TN + FP
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were assessed based on their single class prediction accuracy and the best model was chosen for further evalua-
tion. Out of these SVM gave the best test accuracy which was further cross validated using 100 random train-test 
split of the data. The trained algorithm finds tissue of origin probability for each of the sample according to the 
formulae below:

Here,  a0,  a1,  a2,….,  an are constant number,  Ii (1 ≤ i ≤ 5104) is the Normalized intensity of metabolite i present 
in the respective sample. N is the number of cancer type classes included in the training set.

Using the scores for each class obtained we defined a double class prediction accuracy of the model, here the 
double class prediction accuracy will mean an occurrence of correct prediction in the top two predictions from 
the model using the above defined probability function.

The double class prediction accuracies were evaluated for the single test dataset as an example and the 
confusion matrix for the final prediction are shown in Fig. 6. Table 5 shows double class prediction accuracy 
for the same. The prediction accuracy for the double class prediction from the model were evaluated using the 
following formulae:

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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