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Comprehensive characterization 
of TGFB1 across hematological 
malignancies
Cui‑zhu Wang 1,8, Zi‑qi Zhang 2,8, Yan Zhang 1,8, Liang‑feng Zheng 3, Yang Liu 4, Ai‑ting Yan 1, 
Yuan‑cui Zhang 5, Qing‑hua Chang 5*, Suo Sha 6* & Zi‑jun Xu 7*

TGFB1, which encodes TGF‑β1, a potent cytokine regulating varies cellular processes including 
immune responses. TGF‑β1 plays context‑dependent roles in cancers and is increasingly recognized as 
a therapeutic target to enhance immunotherapy responses. We comprehensively evaluated expression 
of TGFB1 and its clinical and biological effects across hematological malignancies. TGFB1 expression 
was first explored using data from the GTEx, CCLE, and TCGA databases. The expression and clinical 
significances of TGFB1 in hematological malignancies were analyzed using Hemap and our In Silico 
curated datasets. We also analyzed the relationship between TGFB1 with immune scores and immune 
cell infiltrations in Hemap. We further assessed the value of TGFB1 in predicting immunotherapy 
response using TIDE and real‑world immunotherapy datasets. TGFB1 showed a hematologic‑tissue‑
specific expression pattern both across normal tissues and cancer types. TGFB1 expression were 
broadly dysregulated in blood cancers and generally associated with adverse prognosis. TGFB1 
expression were associated with distinct TME properties among different blood cancer types. In 
addition, TGFB1 expression was found to be a useful marker in predicting immunotherapy responses. 
Our results suggest that TGFB1 is broadly dysregulated in hematological malignancies. TGFB1 might 
regulate the immune microenvironment in a cancer‑type‑specific manner, which could be applied in 
the development of new targeted drugs for immunotherapy.

Transforming growth factor β1 (TGF-β1) is a potent cytokine capable of regulating multiple cellular processes 
including cell proliferation, differentiation, wound healing, and immune response. TGF-β1 is identified in vari-
ous immune cells and its activity varies in different cell types or cells at different developmental  stages1. TGF-β1 
functions by binding to the TGFβ1 receptors, which subsequently activate the canonical SMAD pathway or 
non-canonical signaling cascades, such as the mitogen-activated protein kinase (MAPK) pathway, phosphati-
dylinositol-3 kinase and AKT (PI3K-AKT), and Rho family of GTPases (Rho GTPase)2. What is special about 
TGF-β1 is its context-dependent nature that is particularly true for tumors. Generally, in healthy epithelial tis-
sues and during the early stages of tumorigenesis, TGF-β1 negatively regulates the proliferation and growth on 
premalignant epithelial cells and thus suppresses tumor progression. Conversely, in late-stage cancers, tumor 
cells could rewire the TGFβ1 pathway to avoid apoptosis and suppress immune responses, which promotes 
tumor  progression3. Also, the opposing effects of TGF-β1 depend on cancer types and even cancer  subtypes4.

It is worth noting that TGF-β1 may mediate pro- and anti-tumor effects through both cell-intrinsic and 
-extrinsic factors; it might orchestrate the tumor microenvironment (TME) by promoting tumor-promoting 
components like cancer-associated fibroblasts (CAF)-like  cells5 and suppressing cytotoxic cells like CD8 + T 
 cells6,7. Indeed, TGF-β1 has already been experimentally exploited as a therapeutic target to enhance responses 
to  immunotherapy8,9. In hematological malignancies, for example, TGFβ signaling has been studied as a thera-
peutic target to treat the ineffective erythropoiesis in lower risk myelodysplastic syndromes (LR-MDS)  patients10. 
While immunotherapy-especially immune checkpoint blockade-seems to have limited effect on blood cancers, 
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TGFβ1 was shown to be deeply involved in the pathogenesis of these cancer  types11,12. However, there have 
been no comprehensive studies on TGFβ in a pan-blood-cancer level to date. In this study, we comprehensively 
evaluated the expression of TGFB1 (coding gene of TGFβ) and its clinical and biological effects across multiple 
blood cancer types. We also explored the association between TGFB1 and the immune cell infiltration, immune 
genes, and immunotherapy responses. Our results provide novel insights into the functional role of TGFB1 in 
hematological malignancies and the potential as cancer immunotherapy targets.

Methods
Data collection
The mRNA expression data of normal tissues and cancer cell lines were obtained from Genotype-Tissue Expres-
sion (GTEx) project (www. gtexp ortal. org/) and Cancer Cell Line Encyclopedia (CCLE) (https:// www. broad insti 
tute. org/ ccle), respectively. The curated Hemap dataset comprising 16 major blood cancer types and normal 
blood cell types were defined by Dufva O et al. (Synapse ID: syn21991014; DOI: https:// doi. org/ 10. 7303/ syn21 
991014)13. The combined pan-cancer data of TCGA, TARGET, and GTEx were downloaded from UCSC Xena 
Browser (https:// xenab rowser. net). Additionally, we curated the Pan-Hem-Diff cohort which composed of 40 
datasets with matched tumor and normal samples encompassing 22 blood cancer types (n = 9101). We also com-
prehensively searched datasets for acute myeloid leukemia (AML), diffuse large B-cell lymphoma (DLBCL), and 
multiple myeloma (MM) with survival information from the following sources: GEO database (https:// www. ncbi. 
nlm. nih. gov/ geo/), GDC data portal (https:// portal. gdc. cancer. gov/), cBioPortal for Cancer Genomics (http:// 
www. cbiop ortal. org/), and PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG, https:// precog. 
stanf ord. edu/). Copy number variation (CNV) data and mutation data of blood cancers were gathered from the 
cBioPortal for Cancer Genomics (http:// www. cbiop ortal. org/). We used the methylation data downloaded from 
GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) to analyze the methylation status of TGFB1 in blood cancers. 
All the datasets utilized in this study were summarized with their accession numbers and usages in Table S1.

Single‑cell sequencing analysis
Single-cell RNA-seq (scRNA-seq) data of blood cancers were curated by Tumor Immune Single-cell Hub 2 
(TISCH2) (http:// tisch. comp- genom ics. org/ home/)14. The expression data of TGFB1 was downloaded and repro-
duced with ggplot2. The data matrix contained TGFB1 expression data from seven blood cancer types with 25 
scRNA-seq datasets and 19 cell types.

Tumor immune microenvironment analysis
29 functional gene expression signatures regarding various aspects of TME were retrieved from previous  study15 
and the signature scores were calculated using single-sample gene set enrichment analysis (ssGSEA). The immune 
scores and stromal scores for each sample were calculated using both the ESTIMATE and xCELL algorisms. 
CIBERSORT and MCP-counter algorithms was applied to estimate the relative fractions of infiltrating immune 
cell types in each blood cancers. The cytolytic score was originally calculated using the Hemap dataset by Dufva 
O et al.13.

Immunotherapy response analysis
The potential responses to immunotherapy in datasets covering five blood cancer types were predicted by the 
TIDE algorithm. We also collected real-world transcriptomics data of patients treated with immunotherapies. 
The transcriptomic data and response information of these studies were obtained from GEO, TIDE platform, 
or from the original publications. The accession number or source of each study was summarized in Table S1.

Survival analysis
Kaplan–Meier analysis was performed to evaluate the overall survival (OS), progression-free survival (PFS), and 
event-free survival (EFS) of patients. The Survminer package were used to determine of best cut-off of TGFB1 
expression and produce Kaplan–Meier survival plots. Univariate Cox regression analyses were conducted to 
assess the significance of TGFB1 in predicting OS in three blood cancers. Then we performed meta-analyses to 
combine p values and hazard ratios (HRs) using the survcomp package. The LSC17 and LI24 prognostic models 
were constructed as previously  described16,17.

Gene set enrichment analyses
To ensure that more meaningful biological interpretations could be derived from multiple blood cancer types, we 
used a more stringent criteria to dichotomize TGFB1 expression across cancer types. We calculated differentially 
expressed genes (DEGs) between the top 30% TGFB1 expression subgroup and bottom 30% TGFB1 expres-
sion subgroup in each blood cancer type in Hemap. DEGs between the high- and low- TGFB1 subgroups were 
selected for gene set enrichment analysis (GSEA). GSEA was performed using the R package clusterProfiler. The 
Hallmarks gene set from MySigDB (http:// www. broad. mit. edu/ gsea/ msigdb) were selected for GSEA. We also 
used the GSVA package to compute signature scores in the GSE116256 scRNA-seq dataset. Differential analyses 
of the gene expression or signature score data were performed using the limma package.

Statistical analyses
Differences between groups were analyzed using Wilcoxon rank sum tests for continuous variables. For differ-
ential gene expression results derived from Pan-Hem-Diff, the p-values and log-fold changes (FCs) for datasets 
belonging to the same cancer type were further combined using the MetaVolcanoR package. Chi-square tests 
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or Fisher’s exact tests were used to compare differences between categorical variables. Spearman correlation 
analysis was used to determine the correlation between two continuous variables. All statistical analyses were 
performed using the R software, with most plots produced using the ggplot2 package. p < 0.05 (two-tailed) was 
considered statistically significant.

Results
Landscape of expression of TGFB1 in normal tissues and across cancer types
We first determined the expression level of TGFB1 in normal tissues based on the GTEx database (http:// www. 
GTExp ortal. org/ home/). The top two TGFB1-enriched tissues were respiratory system and bone marrow & 
lymphoid tissues (Fig. 1A). Analyzing TGFB1 expression in normal cell types from Hemap revealed preferential 
TGFB1 expression in myeloid cell fractions, such as monocytes, neutrophils, and macrophages (Figure S1A). 
Next, using CCLE, we showed that TGFB1 were highly expressed in malignant hematological cell lines from 
chronic myeloid leukemia (CML), AML, chronic lymphocytic leukemia (CLL), and DLBCL (Fig. 1B). These 
results prompted us to investigate TGFB1 expression across hematological malignancies. In Hemap, higher 
TGFB1 expression in AML, CLL, and CML was again observed (Fig. 1C). Overall, these findings indicated a 
cellular-, tissue-, and disease- specific TGFB1 expression. Combining GTEx dataset with TCGA and TARGET 
pan-cancer datasets, we then systematically compared TGFB1 expression between tumor and adjacent normal 
tissue across 34 cancer types. Surprisingly, TGFB1 were significantly dysregulated in almost all cancer types: it 
was significantly up-regulated in 17 cancer types such as AML, breast invasive carcinoma (BRCA), and cholan-
giocarcinoma (CHOL), whereas it was significantly down-regulated in 12 cancer types (Fig. 1D).

Landscape of expression and (epi)genetic alterations of TGFB1 across blood cancer types
To further investigate TGFB1 expression across a broad subtypes of blood cancers, we retrieved 40 datasets with 
matched tumor and normal samples encompassing 22 blood cancer types (n = 9101, Pan-Hem-Diff cohort, 
Table S1). By performing a meta-analysis of datasets belonging to the same cancer type (Table S2, we observed 
that TGFB1 were largely dysregulated in blood cancers. Myeloid malignancies like AML, MDS, and CML gener-
ally showed higher TGFB1 expression when compared to normal samples and the opposite was seen in lymphoid 
leukemias (ALL and CLL) (Fig. 2A). We next investigated genetic alterations (including mutations, amplifica-
tions, and deletions) frequencies of TGFB1 across blood cancers. The highest alteration frequency of TGFB1 
were observed in AML with “mutation” as the primary type (Fig. 2B). Copy number alteration (CNA) was the 
altered primary type in ALL with amplifications more commonly seen. In CLL and MM, mutations were the 
only genetic alteration (Fig. 2B). By analyzing the methylome data of TGFB1 across 9 blood cancer types and 
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Figure 1.  Landscape of expression of TGFB1 in normal tissues and across cancer types. (A) Bar plot showing 
mRNA expression levels of TGFB1 in normal tissues from the Genotype-Tissue Expression (GTEx) database. 
(B) Boxplot showing mRNA expression levels of TGFB1 in various tumor cell lines from the Cancer Cell Line 
Encyclopedia (CCLE) database. (C) Boxplot showing mRNA expression levels of TGFB1 across main blood 
cancer types in Hemap. The dotted red line indicates median value of TGFB1 expression. (D) Boxplot showing 
mRNA expression differences of TGFB1 between tumor and normal tissue samples, combining data from 
TCGA, TARGET, and GTEx databases. Blue, normal control samples; red, tumor samples. *p < 0.05; **p < 0.01; 
***p < 0.001; -Not significant.
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healthy controls (GSE28094), we found only small variances of TGFB1 methylation among common blood 
cancer types and normal samples (Fig. 2C). Furthermore, analyzing differential methylation patterns of TGFB1 
between tumor and normal samples revealed no differences in AML and DLBCL but hypermethylated TGFB1 
in MM (Figure S1B–E).

Prognostic significance of TGFB1 in hematological malignancies
Our previous data reflects a hematologic-cancer-specific expression pattern of TGFB1. Following analyses will 
thus focus on TGFB1 in hematologic cancers. We next sought to examine the prognostic significances of dys-
regulated TGFB1 expression in three major blood cancer types (AML, DLBCL, and MM). We dichotomized 
high and low expression of TGFB1 in each cohort by the Maxstat method. Univariable cox regression analysis 
was used to assess the prognostic impact of TGFB1 in each dataset, followed by a meta-analysis of cox regression 
values (p values and HRs) inside each cancer type. Notably, TGFB1 turned out to be an adverse prognosticator 
of OS for all three cancers (Fig. 3A–C). In summary, these results suggest that TGFB1 was broadly dysregulated 
and significantly improved outcome predictions in blood cancers.

Correlations between TGFB1 expression and tumor microenvironment in hematological 
malignancies
As TGF-β signaling has been reported to be involved in the  TME18,19, we continued to explore the correlations 
between TGFB1 expression and 29 TME signature scores across hematological malignancies. In general, TGFB1 
expression was negatively correlated with stromal components such as angiogenesis, endothelium, CAFs, matrix, 
and matrix remodeling, especially in myeloid malignancies. In DLBCL and MM, a strong positive association 
was observed between TGFB1 expression and pro-tumor cytokines; whereas in MDS and CML, TGFB1 expres-
sion was positively correlated with tumor-suppressive components like NK and T cells and was negatively cor-
related with epithelial-to-mesenchymal transition (EMT) and tumor proliferation rate (Fig. 4A). This indicates 
context-specific roles of the TGF-β pathway across blood cancer types. We next examined the associations 
between TGFB1 expression with immune and stromal scores as calculated by ESTIMATE. TGFB1 expression 
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Figure 2.  Landscape of expression and (epi)genetic alterations of TGFB1 across blood cancer types. (A) 
Lollipop chart showing the difference of TGFB1 expression between normal and tumor samples across cancer 
types in Pan-Hem-Diff. Blue depicts down-regulation in tumor and yellow depicts up-regulation in tumor. 
Asterisks represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). (B) Genetic alteration frequencies 
of TGFB1 across four blood cancers. (C) Box plot showing methylation levels of TGFB1 across 9 blood cancer 
types and healthy controls (GSE28094).
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was positively correlated with immune score in most blood cancer types, the most prominent ones being MDS 
and CML (Fig. 4B). This was true when immune score was calculated by xCELL algorism (Fig. 4C). TGFB1 
expression was positively correlated with the stromal score in AML, classical Hodgkin lymphoma (CHL), CLL, 
CML, DLBCL, mantle cell lymphoma (MCL), MDS, MM, pre-B ALL, and T-ALL (Fig. 4D). In addition, we also 
computed the cytolytic score for these blood cancers. The results again revealed strongest correlation between 
TGFB1 expression and cytolytic score in CML and MDS (Fig. 4E). We then examined the correlation between 
TGFB1 levels and the degree of immune cell infiltration in diverse blood cancers using both CIBERSORT and 
MCP-counter algorithms. As shown, TGFB1 expression was positively associated with macrophages and mono-
cytes infiltration in most cancers. Interestingly, TGFB1 were positively correlated with the level of CD8 + T cells 
and NK cells but negatively correlated with that of CD4 + T cell (Fig. 4F). Furthermore, we investigated TGFB1 
expression at single-cell resolution in several blood cancer types. In line with previous results, TGFB1 is highly 
expressed in monocytes/macrophages, NK and CD8 + T cells in these cancers (Fig. 4G).

We also performed Spearman correlation analysis to uncover the associations between TGFB1 expression 
and immunomodulatory genes across blood cancers. We found that TGFB1 was positively correlated with most 
of the immunomodulatory factors in myeloid and lymphoid leukemias as well as DLBCL but negatively cor-
related with most in MM (Figure S2). This indicates that TGFB1 might play essential roles in the regulation of 
the immune response to these cancers.

Gene set enrichment analysis of TGFB1 reveals its association with the cancer immune 
response
To explore the biological processes associated with TGFB1 expression in blood cancers, we performed differen-
tial expression analysis between the top 30% TGFB1 expression subgroup and bottom 30% TGFB1 expression 
subgroup in each blood cancer type. Based on the differential expression genes (DEGs) between the high- and 
low- TGFB1 subgroups, we performed GSEA analysis across blood cancer types to evaluate the TGFB1-associated 
cancer hallmarks. We found that immune-related pathways, such as TNFA-signaling-via-NFKB, TGF-BETA 
signaling, IFN-γ response, IFN-α response, inflammatory response, and allograft-rejection pathways were sig-
nificantly enriched in most blood cancers. These results indicate that TGFB1 might be actively participated in 
the TME and ligand–receptor interactions between malignant tumor cells and immune cells. Moreover, we also 
found that TGFB1 was positively associated with the p53 pathway, KRAS signaling-up, and apical junction but 
was negatively associated with MYC targets, E2F targets, and G2M checkpoint in most cancers (Fig. 5A). Pathway 
analyses were also performed between single cells with high and low TGFB1 expression, using scRNA-seq data 
from AML (GSE116256). As expected, TGF-BETA signaling was the top enriched pathway, followed by IL6-
JAK-TAT3 signaling, allograft-rejection, p53 pathway, IFN-γ and IFN-α response. This agreed favorably with the 
results from bulk analyses. We also identified pathways negatively associated with TGFB1: KRAS signaling-down, 
apical surface, bile-acid metabolism, and WNT-BETA-CATENIN signaling (Fig. 5B).

TGFB1 predicts the response to cancer immunotherapy
According to the clues mentioned above, we continued to explore the value of TGFB1 as a tool to predict response 
to immunotherapy. We first calculated immune signature scores and predict immune checkpoint blockade 
(ICB) responses in datasets covering five blood cancer types using TIDE. Interestingly, we observed a consistent 
positive correlation between TGFB1 expression and the dysfunction score but a negative correlation with M2 
macrophages (Figure S3). Also, we found the predicted responders generally have significantly higher TGFB1 
expression than non-responders, especially in AML (Fig. 6A and Figure S4A). To test whether our findings could 
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Figure 3.  Prognostic Significance of TGFB1 in hematological malignancies. (A–C) Forest plot showing hazard 
ratios (HRs) and p-values of TGFB1 expression in each dataset among three blood cancers: AML (A), DLBCL 
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from Cox regression analysis in each dataset and combined using the weighted Z-method.
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Figure 4.  The relation between TGFB1 expression with tumor microenvironment in hematological 
malignancies. (A) Bubble chart depicting the association between TGFB1 expression and 29 TME signature 
scores across main blood cancer types in Hemap. (B–E) Radar chart showing correlations of TGFB1 expression 
with immune, stromal, and cytolytic score across main cancer types in Hemap. Asterisks represents the 
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with immune cell infiltration deconvoluted using CIBERSORT or MCP-counter algorithms in Hemap. Each 
pie chart indicates the correlation with each signature score in each cancer type. (G) Heatmap showing the 
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be generalized to solid tumors, we analyzed the predictive role of TGFB1 in patients with cancer who received ICB 
therapy. The results showed that response rate of patients with high TGFB1 expression was significantly higher 
than patients with low TGFB1 expression and patients with a response to ICB had higher TGFB1 expression than 
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Figure 6.  TGFB1 expression predicts responses to immunotherapy (A) Violin plots comparing TGFB1 
expression between patients who benefit and who do not benefit from immunotherapy in AML, as predicted 
by the TIDE algorithm. (B) Bar plots showing percentages of responders (complete response [CR] or partial 
response [PR]) and non-responders (stable disease [SD] or progressive disease [PD]) to ICB among indicated 
ICB cohorts between patients with high and low TGFB1 expression (as stratified by the median expression 
value). (C) Violin plots comparing TGFB1 expression in responders (complete response [CR] or partial response 
[PR]) and non-responders (stable disease [SD] or progressive disease [PD]). (D) Kaplan–Meier curves depicting 
the OS and PFS of ICB-treated patients with high and low TGFB1 expression. The optimal cut-off of TGFB1 was 
determined by the Maxstat method. In (B–D), each vertical column corresponds to one ICB cohort as indicated 
in (B).
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patients with no response, this could be applied to melanoma, lung cancer, and kidney cancer immunotherapy 
cohorts (Fig. 6B,C and Fig. S4B-C). Furthermore, we showed that patients with high TGFB1 expression had 
an improved survival (both OS and PFS) than patients with low TGFB1 expression (Fig. 6D and Figure S4D). 
Considering the type of immune checkpoint inhibitors, TGFB1 remains predictive in cohorts treated with anti-
PD1/PDL1 (Hwang_SciRep_2020, Ascierto_CancerImmunolRes_2016, Cho_ExpMolMed_2020, Du_NatCom-
mun_2021, Lee_NatCommun_2020, and Liu_NatMed_2019), anti-CTLA4 (Roh_SciTranslMed_2017), or their 
combination (Gide_CancerCell_2019 and Miao_Science_2018) (Fig. 6B–D and Figure S4B-D). Overall, these 
data confirm the potential ability of TGFB1 in predicting immunotherapy response across cancer types.

Additional value of TGFB1 expression in refining risk stratification in AML
The prominent prognostic role of TGFB1 expression prompted us to investigate if TGFB1 may add prognostic 
value to the established prognostication systems. We first tested the prognostic value of TGFB1 in intermediate-
risk AML-a heterogeneous group of AML patients with various outcomes. In the GSE6891 cohort, the interme-
diate-risk group could be further dichotomized into two groups with remarkably different outcomes, for both 
OS and EFS (P = 0.003 for OS and P = 0.003 for EFS; Fig. 7A). We further tested the predictive value of TGFB1 
expression in the context of two gene expression-based prognostic models-LSC17 and LI24, which have shown 
their superior prognostic performance in risk stratification for AML  patients20,21. In the GSE6891 cohort, TGFB1 
expression failed to further refine the two models (Figure S5). However, in the GSE10358 cohort, TGFB1 status 
could dichotomize survival in the LI24 low-risk group and it could still discriminate between shorter and longer 
OS both within the LSC17 high- and low-risk groups (Fig. 7B and C). These results suggest TGFB1 as a potential 
candidate for refining existing classification schemes.

Clinical correlation analysis of TGFB1 in AML
Our results suggests that TGFB1 might perform a key role in the pathogenesis of AML. We continued to examine 
the associations between TGFB1 expression and the clinical and genetic characteristics in the TCGA AML cohort. 
We found an association between TGFB1 expression and the risk classification in AML: patients with high TGFB1 
expression were more frequently classified in the intermediate risk group and less frequently in the favorable 
risk group than patients with low TGFB1 expression. For French-American-British (FAB) classification of AML, 
more M4 and M5 subtypes and less M2 and M3 subtypes were presented in patients with high TGFB1 expres-
sion (Fig. 8A). No significant associations were found between TGFB1 expression and other clinical parameters, 
although patients with high TGFB1 expression tended to have higher white blood cell (WBC) counts than those 
with low TGFB1 expression (Fig. 8A). To determine whether TGFB1 correlated with distinct mutational profiles 
characterized for AML, we identified significantly mutated genes that occurred in patients with high and low 
TGFB1 expression. As shown in Fig. 8B, patients with high TGFB1 expression more frequently harbored NRAS 
and DNMT3A mutations and less frequently harbored WT1 mutation (Fig. 8B).

Discussion
TGFB1 encodes a secreted ligand of the TGF-β1 superfamily of proteins. TGF-β1 could bind various TGF-beta 
receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expres-
sion. This protein has been shown to execute seemingly contradictory roles in both normal and malignant  states3. 
In this study, we first analyzed TGFB1 expression across normal and malignant tissue/cell types. Interestingly, we 
observed a hematologic-tissue-specific expression pattern of TGFB1. Indeed, TGFB1 has been shown to be an 
important regulator of hematopoietic lineage determination and TGFB1 dysregulation has been found in vari-
ous hematologic  malignancies12. Accordingly, when comparing TGFB1 expression between tumor and normal 
samples encompassing 22 blood cancer types, we found TGFB1 to be largely dysregulated in blood cancers: it was 
generally up-regulated in myeloid malignancies like AML, MDS, and CML and down-regulated in lymphoid leu-
kemias (ALL and CLL) when compared to normal samples. Interestingly, the expression of TGFB1 appears to be 
increased in low-risk lymphomas, whereas its expression appears to be decreased in Peripheral T-cell lymphoma 
(PTCL) (Fig. 2A). It should be mentioned that these analyses were performed in different datasets that reflect 
bulk expression states of respective tumors. Therefore, the differential expression of TGFB1 might be contributed 
not only by malignant cells, but also immune/stromal cells from the TME. Also, previous findings reported that 
the expression of TGFB signaling components could be either up-regulated or down-regulated in lymphomas, 
depending on the context, histological subtype, and stage of  development22. It is highly recommended that 
future studies could examine TGFB1 expression in specific subtypes of lymphomas and at a single-cell level. 
Previous studies have reported somewhat contradictory roles of the TGF-β1 pathway across blood cancer types. 
For example, Xu et al. found that TGF-β1 exerted pro-survival effects in myelo-monocytic leukemia  cells23. 
Whereas another study by Wu et al. reported that TGF-β1 mRNA expression levels were significantly down-
regulated in leukemic cells compared with normal CD34 + cells. Transfection of the TGF-β1 gene to leukemia 
cells induced cell apoptosis and inhibited cell  proliferation24. These opposing results of TGF-β were probably 
due to the context-dependent effects of this gene. In our analyses, we showed that high TGFB1 expression was 
more commonly seen in the M4 (acute myleomonocytic leukemia) and M5 (acute monocytic leukemia) FAB 
subtypes (Fig. 8A), which agreed favorably with the preferential expression of TGFB1 in monocytes (Figure S1A). 
This observation together with Xu et al. indicated a potential subtype-specific role of TGF-β1 in leukemogenesis. 
We also observed that patients with high TGFB1 expression more frequently harbored DNMT3A mutations. 
Interestingly, previous study has reported that high TGF-β1 expression correlated with increased expression of 
DNMTs25. The functional link between two gene alterations awaits further investigation.

To further dissect the overall effects of TGFB1 in blood cancers, we investigated the prognostic values of 
dysregulated TGFB1 expression in three major blood cancer types (AML, DLBCL, and MM). Remarkably, 
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higher TGFB1 expression negatively correlated with patient outcomes in all three types of cancers by performing 
meta-analyses. In line with this, high TGFβ levels were shown to be generally associated with poor prognosis in 
solid  tumors26–28. The reason that TGFB1 adversely impacts prognosis might be: first, TGFβ1 binds its receptors, 
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Figure 7.  Additional value of TGFB1 expression in refining risk stratification in AML. (A) OS and EFS 
according to TGFB1 expression status among intermediate-risk patients from GSE6891. (B) OS of patients 
from GSE10358 as stratified by the LI24 and LSC17 score. Patients with a low- and high-risk score were further 
dichotomized by TGFB1 expression status. The optimal cut-off of TGFB1 was determined by the Maxstat 
method.
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activating the downstream signaling pathway and regulating the tumor-promoting gene-expression programs; 
second, TGFβ1 signaling could lead to a pro-tumoral niche by reprogramming stromal components and sup-
pressing immune cells, as evidenced by the finding that TGFB1 expression was strongly positively correlated 
with pro-tumor cytokines in DLBCL and MM. We also noticed that TGFB1 expression was positively associated 
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Figure 8.  TGFB1 expression correlates with distinct clinical parameters and mutation profiles in AML. (A) Pie 
charts showing the Chi-squared test results of clinical parameters for TGFB1 status using the median expression 
as the cut off. (B) Co-bar plots showing the comparison of mutational profiles between patients with high and 
low TGFB1 expression (as stratified by the median expression value) in the TCGA AML dataset.
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with CAF signature in DLBCL (Fig. 4A). Thus, it is reasonable to hypothesize that targeting TGF-β signaling 
could disrupt these pro-tumor components and benefit patients. It should be noted that the prognostic impact 
of TGFB1 expression was evaluated using bulk expression profile data, which averages the diverse cells within 
each tumor, making the percentage of tumor cells hard to determine and masking the influences of TME. We 
therefore analyzed the correlations between TGFB1 expression and TME in hematological malignancies. In 
MDS and CML, TGFB1 expression was positively correlated with tumor-suppressive components like NK and 
T cells but was negatively correlated with EMT and tumor proliferation rate. In CML, it was reported that TGF-β 
signaling was repressed by the Evi-1 oncoprotein to facilitate this disease into blast  crisis29,30. On the other hand, 
it was shown that inhibiting TGFβ1 signaling could improve anemia in MDS  patients31,32. That said, these studies 
provided little information about how TGFβ1 might impact the TME of these diseases. Further analyses revealed 
that TGFB1 expression was positively correlated with immune score and cytolytic score in MDS and CML. Our 
results indicated that TGFβ1 might induce a protective niche with enriched immune cells in MDS and CML 
patients. However, future functional studies were warranted to test this hypothesis.

TGF-β1 and its binding proteins have been proposed as promising targets of therapies for different blood 
cancers. For example, modulating TGFβ1 signaling could be utilized to improve the ineffective erythropoiesis 
in  MDS31,32. Also, since TGF-β1 is a strong immunosuppressor, existing data suggests that TGFβ1-inhibitory 
therapies could restore cancer immunity and even synergize with other  immunotherapies3. In a study by Tau-
riello et al., researchers developed human-like mouse models of metastatic colorectal cancer (CRC) and show 
that TGFβ1 inhibition could synergize with anti-PD-L1 therapy to exert robust T cell responses against meta-
static  disease8. Another study has also shown that TGFβ1 inhibition facilitated T-cell penetration and improved 
the outcomes of anti-PD-L1 treatment using experimental  models9. These findings prompted us to explore 
whether TGFB1 expression could be used as a tool to predict response to immunotherapy. We first predicted 
ICB responses in datasets covering five blood cancer types using TIDE and found that predicted responders 
generally have significantly higher TGFB1 expression than non-responders, especially in AML. Importantly, 
further evaluating using real-world ICB datasets revealed that patients with high TGFB1 expression gener-
ally had higher response rate and improved survival (both OS and PFS) for immunotherapy than those with 
low TGFB1 expression. However, these results were somewhat conflicting with previous reports that enriched 
TGFβ1 signaling in stromal cells were associated with primary resistance to  immunotherapy33,34. It should be 
mentioned that both studies used signatures derived from TGFβ1-activated CAFs to evaluate patients’ response 
to immunotherapy. Whereas our results were based on bulk tumor transcriptomic profiling cohorts and the 
predictive value was focused on a single gene, which can hardly reflect the complex networks of TGFβ1 signal-
ing and cell-to-cell communication. Future prospective immunotherapy studies regarding both the mRNA and 
protein aspects of TGFβ1 are warranted. Further, it is useful to construct TGFβ1-specific gene signatures to 
predict immunotherapy responses.

In summary, we performed the first comprehensive analysis of TGFB1 across blood cancers. We found that 
TGFB1 expression were broadly dysregulated in blood cancers and generally associated with adverse prognosis. 
Additionally, TGFB1 expression were associated with distinct TME properties among different blood cancer 
types. Our results also suggest that TGFB1 expression could be a useful marker to predict immunotherapy 
responses. Functional and mechanistic studies are needed to further understand the role of TGFβ1 signaling 
in blood cancers.
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