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Simulation of bi‑directional 
pedestrian flow in corridor based 
on direction fuzzy visual field
Shiwei Li *, Qianqian Li , Ganglong Zhong  & Yuzhao Zhang 

Bi‑directional pedestrian flow in corridors is a complex dynamic system due to the diversity in 
pedestrian psychological characteristics. Incorporating individual differences of pedestrians is vital 
for improving pedestrian flow models. However, due to the inherent complexity and variability of 
pedestrian movement, model parameter calibration remains challenging. Controlled experiments are 
needed to collect empirical pedestrian movement data under different environments. This enriches the 
database on pedestrian movement patterns and provides necessary support for improving pedestrian 
flow models. To address this issue, we conducted controlled experiments to quantify pedestrian 
heterogeneity by defining the direction of fuzzy visual field (DFVF). The DFVF incorporates various 
static and dynamic pedestrian factors. We used it to modify the traditional cellular automata model. 
This improved model simulates bi‑directional pedestrian movements in the corridors, reproduces 
density‑speed and density‑volume relationships, and reveals self‑organization phenomena. 
Furthermore, an analysis was conducted to examine the impacts of pedestrian density and facility 
spatial layout on evacuation time. Pedestrian interactions were also studied to uncover fundamental 
bi‑directional flow properties. As pedestrian density increased, the evacuation time showed an 
exponential upward trend. Corridor length significantly impacts evacuation time, while increasing 
corridor width helps control it. As crowd density increases, pedestrian flows exhibit three distinct 
steady states: the strolling flow at low densities, directional separated flows at medium densities, 
and dynamic multi‑lane flows at high densities. In summary, the modified cellular automata model 
successfully incorporates pedestrian heterogeneity and reveals intrinsic bi‑directional pedestrian flow 
patterns. This study provides valuable insights for pedestrian facility design and optimizing pedestrian 
flow organization.

Bi-directional pedestrian flow refers to the scenario where two directions of pedestrian flow move in opposite 
directions and conflict with each other. There are two directions of pedestrian flow. This type of scenario is 
very common in real life, for example, in rail transit passages, urban sidewalks or pedestrian overpasses, school 
corridors or staircases, etc. Due to the effect of opposite conflicts, bi-directional pedestrian flow usually forms 
two contraflows by stratification. As pedestrian density increases, the two contraflows will impede each other, 
resulting in jamming and clogging.

Currently, there are many simulation research models on pedestrian flow, which can be divided into macro-
scopic and microscopic aspects. Macro models focus on the formation mechanisms of macroscopic pedestrian 
flow characteristics and phenomena in different environments from a global perspective. Micro models take 
individual pedestrians as the research object to describe individual movement in various environments. Recently, 
simulation research exploring macroscopic pedestrian flow movement mechanisms and characteristics in differ-
ent environments, based on studying microscopic pedestrian characteristics, has become a focus in pedestrian 
flow research. Among these, the cellular automata (CA) model is the most widely used simulation model. CA 
can be used to study macroscopic behavioral characteristics by simulating microscopic pedestrian behaviors in 
the system. There is considerable literature on bi-directional pedestrian flow based on the CA model.

Blue and  Adler1–3 defined two simple movement rules: lane changing and forward movement, and presented 
the use of CA micro-simulation for modeling bi-directional pedestrian walkways. They showed that there are 
three modes of bi-directional pedestrian flow: (a) interspersed flow, (b) flows in directional separated lanes, and 
(c) dynamic multi-lane flow. Based on Blue’s work, Fang et al.4 proposed a CA model assuming pedestrians can 
only move in four directions. They revealed that most pedestrian ’back-step strategies’ can significantly reduce 
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jamming conditions. By observing the behavior of several pedestrians in a scene, Wu and  Guo5 proposed that 
pedestrian movement is driven by a potential field, and established a microscopic pedestrian cellular automata 
model in discrete space to simulate pedestrian flow through multiple queues, obtaining ways to help improve 
pedestrian mobility. The essence of these CA models is to study the transition probability of pedestrian move-
ment. A pedestrian’s transition probability not only embodies the characteristics of pedestrian movement but 
also plays an important role in the emergence of self-organization phenomena in pedestrian flow. Consequently, 
the transition probability is a key parameter when using CA models to simulate bi-directional pedestrian flow.

Kretz et al.6 conducted counter-current experiments on bi-directional pedestrian flow in a straight corridor, 
deeply studying pedestrian evacuation time, pedestrian speed, system volume, stratification formation, symmetry 
destruction, etc. Moussaïd et al.7 found that the difference in pedestrian speeds is a key factor for instability in 
pedestrian flow stratification. When all pedestrians walk at the group’s average speed, the evacuation efficiency of 
the bi-directional pedestrian flow reaches the highest level. However, in reality, due to local interactions between 
slow and fast pedestrians, the stratification is destroyed, reducing pedestrian movement efficiency. Feliciani and 
 Nishinari8 experimentally studied the formation mechanism of the stratification phenomenon during bi-direc-
tional pedestrian flow. The results show the most stable stratification forms with balanced bi-directional flows, 
but compared to unbalanced flows, balanced flow requires pedestrians to have more space for lateral movement. 
At low densities, balanced bi-directional flow has the highest evacuation efficiency, but at high densities, jamming 
and deadlock clogging can occur. Xu et al.9 quantitatively described bi-directional pedestrian flow scenarios by 
introducing a minimum expected collision-free velocity model into pedestrian flow dynamics. The simulations 
show the minimum expected collision-free velocity effectively accelerates bi-directional flow stratification and 
reduces congestion. Therefore, studying the stratification mechanism of bi-directional pedestrian flow is key to 
improving pedestrian evacuation efficiency.

In scenes of bi-directional pedestrian flow, increasing numbers of researchers are studying pedestrian move-
ment characteristics by setting up specific facilities or introducing specific movement rules, exploring key factors 
affecting pedestrian flow efficiency, and providing support for formulating pedestrian control strategies. Helbing 
et al.10  analyzed two opposing pedestrian flows passing through a narrow gate, finding the flows oscillate alter-
nately, with each direction passing through separately over time. Yang et al.11,12 discussed right-moving preference 
effects on pedestrian movement by simulating bi-directional flow in a corridor. They found that right-moving 
preference is very effective for evacuating high-density bi-directional flow. Guo et al.13 and Jin et al.14 simulated 
bi-directional movement considering restricted pedestrian sightlines and sideways behavior respectively, further 
expanding bi-directional flow research scope. Molyneaux et al.15 proposed a dynamic traffic control framework 
for bi-directional flow by simulating gated and gateless scenarios and controlling gate usage time in gated cases. 
Jin et al.16 studied bi-directional flow characteristics under different corridor widths, obtaining the effect of width 
on average pedestrian velocity.

Over several decades, some researchers have conducted actual evacuation experiments to obtain key param-
eters for CA models, making pedestrian flow simulations more realistic. For instance, Shields and  Boyce17 carried 
out unannounced drills in four retail stores, collecting data through experiments and questionnaires to verify 
evacuation models. Yang et al.12 conducted large-scale evacuation experiments in a university building channel 
using typical student groups, using measured data as CA model parameters to simulate pedestrian movement 
characteristics. Zhang et al.18 proposed a synthetic approach to recognize and identify large pedestrian flows. 
Liberto et al.19 calibrated the model parameters with a behavioral-based approach that relies on observed move-
ment behaviors.  Nishihara20 revealed two interaction force fields in pedestrian movement: personal space as a 
repulsive force, and information processing space as an attractive force. During movement, pedestrians imitate 
others while maintaining distance. Therefore, the repulsive force of personal space and the attractive force of 
information space both influence pedestrians’ next-step positions.

However, few studies have examined how to determine personal space and information processing space. 
Most studies uniformly define these spaces based on statistical experience, without accounting for differences 
in pedestrians’ spatial judgment. Therefore, studying this difference is an important concern. Guo et al.21 found 
through controlled experiments that in the bi-directional flow, each pedestrian’s speed relates not only to sur-
rounding density but also to same-direction density ahead. Pedestrians within 1 m ahead in the same direction 
have the greatest impact on speed. Li and  Niu22, Li et al.23,24 found heterogeneity in pedestrians’ judgment of 
interaction force fields. This heterogeneity introduces obvious uncertainty and dynamism into personal decision-
making and movement methods.

In summary, research on bi-directional pedestrian flow simulation based on CA models demonstrates macro-
level complex phenomena emerging from micro-level individual interactions and finally reveals the evolution 
mechanism and macroscopic behavior of this complex system.

Based on some limitations of existing bi-directional pedestrian flow models, this paper proposes a direc-
tion fuzzy visual field (DFVF) to describe the randomness of pedestrian movement within personal space and 
information processing space, as well as express the difference in pedestrian behavior. It applies various static 
and dynamic factors in the DFVF to simulate bi-directional pedestrian movement in a corridor, analyzing the 
effects of pedestrian density and system scale on evacuation time. It also illustrates pedestrian flow density-speed 
and density-volume curves, observes self-organization phenomena during simulation, and presents pedestrian 
interactions to reveal inherent laws of bi-directional pedestrian flow in the complex system.
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Direction fuzzy visual field
Even within the same environment, pedestrians in facilities exhibit heterogeneity in psychological traits like 
cognition, emotion, attitude, and needs. This results in obvious differences when they determine the range of 
interaction force fields. Therefore, the traditional CA model’s assumption of no differences in how pedestrians 
determine the interaction force field range is inappropriate.

To study differences in how pedestrians judge the range of interaction force fields, we designed a controlled 
experiment to determine range sizes. By examining heterogeneity across different pedestrians experimentally, 
we can establish a model capable of more finely simulating the movement characteristics of pedestrian flow.

Problem definition and formulation
In the CA model, pedestrians can only move towards their neighbors. In addition to holding position, pedestrians 
will have a movement direction when they move to other positions in the neighborhood. There are 8 directions 
for pedestrians to choose from the Moore neighborhood, as shown in Fig. 1.

A key problem in model construction is how pedestrians determine the choice of neighbors in different 
directions when interacting with static and dynamic information in the range of the interaction force field. 
Pedestrians divide the whole force field into areas in different directions according to their characteristics (e.g. 
Moore neighborhood has 8 directional areas). Then, pedestrians can decide to move towards the neighbor in 
a certain direction according to the interaction with static and dynamic information in different directional 
areas. Here, we define different directional areas as Directional Visual Fields (DVF). DVF is an important factor 
affecting how pedestrians move.

In the process of movement, pedestrians will obtain static and dynamic information through their senses. 
When turning around is considered, pedestrians’ visual and auditory field is approximately a circle. Therefore, 
it is common to assume that the overall interaction force field of pedestrians is the circle. When the DVF is 
divided in the circular area, it is divided equally in 8 directions according to the characteristics of the Moore 
neighborhood. Figure 2 shows the DVF based on the circle with a radius of 5 cell lengths in the condition of a 

Figure 1.  The possible direction of pedestrian movement in the Moore neighborhood. There are 8 directions 
for pedestrians to choose from in the Moore neighborhood.
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Figure 2.  The DVF is based on a circle with a radius of 5 cell lengths.
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Moore neighborhood. The pedestrian’s interaction force field is divided into equal areas in 8 directions, and there 
is considerable overlap between the adjacent DVFs.

In essence, the DVFs based on the circle equally divide the interaction force field into 8 areas according to 
the Moore neighborhood, and each pedestrian has the same size of DVF. However, the obvious heterogeneity 
of pedestrians’ psychological characteristics affects their judgment of the DVF range. Therefore, when different 
pedestrians judge DVF, it is not assumed that there is no difference in most CA models. To show the differences of 
pedestrians in the DVF selection through control experiments is the key to refining and improving the CA model.

Building experiments scene
Even in the same environment, different pedestrians in pedestrian facilities have obvious heterogeneity in the 
judgment of DVF due to the differences in psychological characteristics such as cognition, emotion, attitude, 
and demand. To study the difference in pedestrians’ DVF, the experimental scene in the judgment of DVF’s 
range is designed by using the method of control experiment. Through the experiment, the heterogeneity of 
pedestrians’ DVF is studied, to make the established model more refined and efficiently simulate the movement 
characteristics of pedestrian flow.

To reflect the behavior of pedestrians such as moving forward, changing lanes, waiting, and stepping back, 
the Moore neighborhood is used in the control experiment, as shown in Fig. 1. Assuming that pedestrians have 
no special requirements for the range shape when judging DVF, the overall interaction force field is defined as a 
circle with a radius of r. Figure 3 depicts the overall interaction force field with a radius r of 5 cell lengths, from 
which it can be seen that the maximum angle of DVF in each direction is 90°.

To describe the pedestrians’ DVF, the control experiment specifies that the pedestrian is used as the coor-
dinate origin to construct a two-dimensional coordinate system. In the pedestrian interaction force field, the 
intersection angle between each cell center and the coordinate origin is marked as θ, as shown in Fig. 4, where 
a black circle expresses a pedestrian, and a red square indicates a cell as a study object. Therefore, as can be seen 
from Fig. 4, direction 1 has angle θ1 = π/4, direction 2 has angle θ2 = π/2, direction 3 has angle θ3 = 3π/4, direction 
4 has angle θ4 = π, direction 5 has angle θ5 = 5π/4, direction 6 has angle θ6 = 3π/2, direction 7 has angle θ7 = π/4, 
and direction 8 has angle θ8 = 0 or θ8 = 2π.

When a pedestrian decides whether a cell belongs to this DVF, his or her decision is based on the absolute 
value x of the difference between the cellular intersection angle θ and the direction’s angle θd(d = 1, 2, · · · , 8 ), 
shown as formula (1). If the absolute value x of the difference between θ and θd is within the range of [0,π

/

4] , 
it is determined that the cell is within the DVF range of direction d.

Figure 5 shows the calculation process of x when d = 1 in the condition of r = 5.
Figure 6 demonstrates the calculation process of x when d = 8.
To study the difference in pedestrian DVF, a DVF judgment experimental scene with interaction force field 

radius r of 5, 10, and 15 cell lengths is designed by using the method of control experiment. To simplify the 
control experiment, nine values with equal spacing (0, π/32 , π/16 , 3π/32 , π/8 , 5π/32 , 3π/16 , 7π/32 , π/4 ) 
were chosen in x ∈ [0,π/4] , and test scenarios with radiuses r = 5, 10, 15 cells were constructed. Figures 7, 8, 
and 9 show the test scenarios with the radius r = 5, 10, 15 cells. In the test scenario, the organizer (grey circle) 
stood in a predefined position and asked the participant (black circle) to judge whether the pedestrian at the 
predefined position was in the DVF.

Data analysis
Following the experimental design with control groups established by Sun and  Elefteriadou25, we implemented 
a control experiment on pedestrians’ DVF judgment in major universities, railway stations, and bus stations 

(1)x =
{ ∣

∣θ − θd
∣

∣, d = 1, 2, · · · , 7
min {|θ − 0|, |θ − 2π |}, d = 8

Figure 3.  Pedestrians’ overall interaction force field and DVF. (a) The overall interaction force field, (b) The 
maximum DVF on direction 1,3,5,7, (c) The maximum DVF on direction 2,4,6,8
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in Lanzhou, Gansu Province, China (see, e.g.,22–24). Data were collected by questionnaire. First, because of the 
difference in pedestrians’ cultural level and the low participation degree of pedestrians, the proportion of col-
lege students in the questionnaires is large (65.3%). Second, pedestrian drop-out rates are relatively high due to 
various reasons, especially at the station. Therefore, it is difficult to deal with the validity of the questionnaires 
in the later stage. We classified the questionnaires and combined some incomplete questionnaires (22.8%) with 
the Variance Homogeneity Test, Factor Analysis Approach, and Significance Test of Difference. Finally, this 

Figure 4.  Schematic diagram of angle θ in pedestrians’ DVF coordinate system.

Figure 5.  Calculation diagram of x value when d = 1 (r = 5). (a) θ > θ1 , (b) θ < θ1 (c) θ=π/2 , (d) θ= 0 ,  (e) 
θ=θ1.
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control experiment collected a total of 1893 valid questionnaires. The questionnaire frequency statistics are 
listed in Table 1.

The study was performed according to the Declaration of Helsinki. The experimental protocols were approved 
by the Gansu Provincial Department of Transportation, the Gansu Provincial Department of Science and Tech-
nology, and the Academic Ethic Committee of Lanzhou Jiaotong University. Informed consent was obtained 
from all participants before they took part in the survey. This study obtains, stores, manages, interprets, analyzes, 
and applies data in a manner consistent with ethical standards and social responsibility.

Figure 6.  Calculation diagram of x value when d = 8 (r = 5). (a) θ ∈ (0,π/4) → θ8 = 0, (b) θ ∈ (7π/4, 2π) →
θ8 = 2π, (c) θ=π/4 → θ8 = 0 , (d) θ= 7π/4 → θ8 = 2π, (e) θ=θ8.

Figure 7.  Test scenarios with DVF radius r = 5 . (a) The maximum valid range in a certain direction, (b) x = 0 , 
(c) x = π/32 , (d) x = π/16 , (e) x = 3π/32 , (f) x = π/8 , (g) x = 5π/32 , (h) x = 3π/16 , (i) x = 7π/32 , (j) 
x = π/4.
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The questionnaire results indicate that pedestrian’s judgment of DVF is a fuzzy process, named direction fuzzy 
visual field (DFVF). Therefore, the fuzzy membership function A(x) of DFVF is key to addressing this problem.

The method of assigning a membership function is used to measure the DFVF of pedestrians. The method of 
assigning membership function is generally considered to take people’s practical experience into account, apply 
some existing fuzzy distribution according to the nature of the problem, and then determine the parameters of 
the fuzzy distribution based on the measured data.

Therefore, according to the judgment characteristics shown in Table 1, Fig. 10 shows the trend of frequency 
change with x . It can be found that this tendency approximately follows a descending half-mountain-shaped 
distribution, denoted as formula (2).

Figure 8.  Test scenarios with DVF radius r = 10 . (a) The maximum valid range in a certain direction, (b) 
x = 0 , (c) x = π/32 , (d) x = π/16 , (e) x = 3π/32 , (f) x = π/8 , (g) x = 5π/32 , (h) x = 3π/16 , (i) x = 7π/32 , 
(j) x = π/4.

Figure 9.  Test scenarios with DVF radius r = 15 . (a) The maximum valid range in a certain direction, (b) 
x = 0 , (c) x = π/32 , (d) x = π/16 , (e) x = 3π/32 , (f) x = π/8 , (g) x = 5π/32 , (h) x = 3π/16 , (i) x = 7π/32 , 
(j) x = π/4.

Table 1.  Questionnaire frequency statistical results (unit: %).

r

Defined scenario x

0 π/32 π/16 3π/32 π/8 5π/32 3π/16 7π/32 π/4

r= 5 100 99.3 82.6 72.8 55.9 38.6 11.4 3.1 0.3

r= 10 99.4 92.8 80.7 70.3 54.6 37.8 16.2 4.3 1.1

r= 15 99.8 90.9 84.8 60.7 53.3 34.5 16.1 5.1 0.9

Average 99.7 94.3 82.7 67.9 54.6 37.0 14.6 4.2 0.7
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where a and b are parameters of descending half-mountain-shaped distribution.
We fitted the data in Table 1 with Formula (2). The fitting results are shown in Formula (3) and Fig. 11.

where d = 1, 2, · · · , 8 and Ad(x) denotes the fuzzy distribution of the DFVF in direction d.
As shown in Fig. 12, when x = 0 , the cells on x are just in direction d , then the fuzzy membership function 

Ad(x) determines that these cells belong to direction d , and the fuzzy probability of DFVF is 1; when x = π/8 , the 
range within the included angle of x is exactly half of the maximum feasible range of DVF, then Ad(x) determines 

(2)A(x) =
{

1, x = 0
0.5− 0.5 sin a(x − b), 0 < x ≤ π/4
0, x > π/4

(3)Ad(x) =
{

1, x = 0
0.5− 0.5 sin 4.142(x − 0.401), 0 < x ≤ π/4
0, x > π/4
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Figure 10.  Trend chart of frequency.

0 π/32 π/16 3π/32 π/8 5π/32 3π/16 7π/32 π/4
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A(
x)

r=5
r=10
r=15
Average
Fitting Curve

Figure 11.  An illustration of a fitting curve.
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the fuzzy probability that the cell on x belongs to the DFVF of d is 0.5; when x = π/4 , the cells on x are just in 
the adjacent directions of direction d at this time, and the fuzzy probability of Ad(x) determining that the cell 
on x belongs to the DFVF of d is 0.

To describe the differences of pedestrians in the DFVF, we assume that the fuzzy distribution Ad(x) in formula 
(3) has the following ∀ � ∈ [0, 1][0, 1]:

Ad
�
(x) is the �-cut set of Ad(x) , where � is the threshold or confidence level.

Formula (4) shows that �-cut set Ad
�
(x) is a classic set, composed of members with a degree of membership 

equal to or above � . Its characteristic function is:

To simplify the simulation process, we assume that the choice of the DFVF on different pedestrians is com-
pletely random in the process of simulation. When any pedestrian is deciding upon his DFVF, a random number 
in [0, 1] is selected for � to be the threshold for this pedestrian in Ad(x) . Subsequently, the characteristic function 
Ad
�
(x) is used in the decision.
Pedestrians’ DFVF can effectively describe the heterogeneity of pedestrian interaction force field selection 

and can explain the phenomenon that there is no regional overlap or partial regional overlap between adjacent 
DFVFs through a fuzzy concept. This phenomenon cannot be represented by the traditional field models. When 
a pedestrian determines the DFVF, if there is no overlapping region between its adjacent DFVF, it indicates 
that the pedestrian has a narrow DVF, the adjacent DVFs have clear boundaries, and the pedestrian pays more 
attention to the maintenance of direction. If there are overlapping areas, it means that the pedestrian has a wide 
DVF, and the adjacent areas have no clear boundaries. The determination of DVF is a fuzzy concept. If the 
overlapping areas are larger, the definition of DVF is fuzzier, and the pedestrian is more inclined to constantly 
adjust the direction to move to the target position. This DFVF determination aligns with current observations 
of real-world pedestrian flows.

Model
The model is described in the L×W two-dimensional cellular system �2 , where L is the length, W is the width, 
and �2 is the cellular system. The corridor exits are located on the left and right sides of the cellular system. The 
size of a cell corresponds to approximately 0.4 m × 0.4 m (see, e.g.4,11. Based on empirical statistics, the average 
speed of a pedestrian is about 1.00 m/s (see, e.g.4,11). Therefore, a time-step is 0.4 s in the model. The pedestrian 
flow movement is divided into two directions based on the left and right proportion of pedestrians. There are two 
ways to process when a pedestrian moves to an exit: (a) this pedestrian will leave the system, (b) if this pedestrian 
is at the left exit, he or she will enter from the right exit, and if this pedestrian is at the right exit, he or she will 
enter from the left exit. This model is demonstrated in Fig. 13, where ’red circle’ shows a pedestrian moving left-
ward, and ’yellow circle’ indicates a pedestrian moving rightward. The initial states of pedestrians are randomly 
distributed throughout the system based on prescribed proportions of left-moving and right-moving pedestrians.

The model assumes that pedestrians can only move forward, change lanes, or wait in the situ, there is no 
backward behavior. Therefore, every pedestrian has 6 target positions to choose from based on the Moore 
neighborhood, as shown in Fig. 14.

(4)Ad
�
(x)

def {x|Ad(x) ≥ �}

(5)χAd
�
(x) =

{

1, Ad(x) ≥ �

0, Ad(x) < �

Figure 12.  Schematic diagram of fuzzy probability of red cell belonging to direction 1 (r = 5). (a) x = 0 , (b) 
x = π/4.
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Fuzzy space
During movement, pedestrians will not only follow others but also try to keep a distance from others. This 
means that there are two dynamic action fields: (a) a repulsive force field named personal space, and (b) a gravi-
tational force field defined as information processing  space20. Pedestrians unconsciously divide their territory 
into personal space. Once someone gets too close to another, it will make most feel uncomfortable. Therefore, 
the pedestrian personal space is a repulsive force field in the process of movement. Apart from that, pedestrians 
have a certain herd mentality and will follow others in a certain range. This range is named pedestrian informa-
tion processing  space20. The pedestrian information processing space is a gravitational force field, which attracts 
pedestrians to maintain a certain flow direction. A pedestrian personal space and information processing space 
are shown in Fig. 15, where a small circle stands for a pedestrian personal space, and a big circle represents a 

Figure 13.  The model of bi-directional pedestrian flow based on CA.

Figure 14.  The target positions of pedestrian movement. (a) A pedestrian moves leftward, (b) a pedestrian 
moves rightward.

Figure 15.  The personal space and information processing space.
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pedestrian information processing space. Based on empirical statistics, the radius of personal space is approxi-
mately 2 m; the radius of information processing space is about 5  m20.

During movement, the personal space and information processing space jointly affect the choice of every 
pedestrian target position. When calibrating a pedestrian personal space and information processing space in 
the CA model, we suppose that these two force fields are composed of cells. Assuming that the two-dimensional 
cellular system has no boundaries, and each pedestrian’s force field has enough cells. Therefore, a pedestrian 
personal space is a region that is enlarged to 2 m based on his or her neighborhood (as shown in Fig. 14), and 
a pedestrian information processing space is an area that is enlarged to 5 m. In a pedestrian personal space, if a 
pedestrian is near the system boundary, the model supposes that there are in-existent cells that are all occupied 
by opposite pedestrians, this hypothesis shows that pedestrians do not like to crowd near the wall, which has 
a repulsive force on pedestrians. In a pedestrian information processing space, if a pedestrian is near the wall, 
the model assumes that there are in-existent cells that are all occupied by pedestrians in the same direction. 
Contrary to personal space, this hypothesis demonstrates that the wall has a gravitational force on pedestrians; 
the wall can help pedestrians effectively reach the exit. Thus, it can be seen that the wall also has two opposite 
forces on pedestrians.

In empirical statistics, pedestrians can still see the left and right sides in the forward process of movement. 
The maximum angle of DVF in each direction is 90° when a pedestrian judges his or her personal space and 
information processing space in a certain direction as shown in Fig. 14. Consequently, the maximum angle vision 
of a pedestrian is 270° in the process of movement. Figure 16 shows the maximum range of personal space and 
information processing space in the CA model, where θ1 = θ2 = θ3 = θ4 = θ5 = 90◦.

To show the heterogeneity of different pedestrians in a force field selection, based on the definition of direc-
tion fuzzy visual field, DFVFs of a pedestrian p in personal space ( r = 5 , the radius is 2 m) and information 
processing space ( r = 12.5 , the radius is 5 m) in five directions are constructed. This method can finely describe 
the heterogeneity of pedestrians in force field selection.

Direction force parameter
A pedestrian does not interact with all neighbors in the process of movement. Ballerini et al.26 revealed that the 
interaction does not depend on the metric distance, as most current models and theories assume, but rather on 
the topological distance through research on interaction ruling animal collective behavior. They discovered that 
each member interacts on average with a fixed number of neighbors (six or seven), rather than with all neighbors 
within a fixed metric distance.

To simulate pedestrian interaction in a simplified manner, empirical data from Ballerini et al.26 was directly 
adopted, and the interaction was depicted based on the principle of k-nearest neighbors ( k = 6 ). When the 
number of cells associated with a pedestrian is not less than six, we choose the nearest six cells to interact with 
this pedestrian in his or her personal space or information processing space. If the number is not more than six, 
we select all cells to interact with him or her.

For bi-directional pedestrian flow, a pedestrian should move to a target position in his or her personal 
space, which has more empty cells to keep a certain distance from others in the next time-step. Hence, this 
paper assumes that �2 is a two-dimensional discrete cells system, Ṡpd ⊂ �2  ( d = 0, 1, · · · , 5 ) is expressed as the 
personal space on direction d for a pedestrian p . It chooses the nearest six empty cells as the action scope in 
Ṡ
p
d . If the number of empty cells associated with p is not more than six, it uses the cell of p to supplement every 

Figure 16.  The maximum range of personal space and information processing space in CA. (a) A pedestrian 
moves leftward, (b) a pedestrian moves rightward.
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insufficient cell. d′k  ( k = 1, 2, · · · , 6 ) is described as the Euclidean distance from p to a cell in the interaction 
force field. Then we have that

is called the efficiency of Ṡpd for p , and Ėp0 is set zero.
Equation (6) shows that the efficiency of personal space is a mean value of d′k reciprocal sum, which is 

expressed as the average reachability of the personal space on direction d.
In the information processing space, a pedestrian will be attracted by other pedestrians in the same direc-

tion, and he or she should move to a target position in his or her information processing space, which has more 
cells occupied by other pedestrians in the same direction in the next time-step. Hence, we suppose that S̈pd ⊂ �2 
( d = 0, 1, · · · , 5 ) is expressed as the information processing space in the direction d for a pedestrian p in �2 . 
And we select the nearest six cells occupied by other pedestrians in the same direction as the action scope in S̈pd . 
If the number of cells associated with p is not more than six, we use the cell of p to supplement every insufficient 
cell. d′′k(k = 1, 2, · · · , 6 ) is described as the Euclidean distance from p to a cell in the interaction force field. Then 
we have that

is called the efficiency of S̈pd for p , and Ëp0 is set zero.
Equation (7) shows that the efficiency of information processing space is a mean value of d′′k  reciprocal sum, 

which is expressed as the average reachability of the information processing space on direction d.
To synthesize a repulsive force of personal space and a gravitational force of information processing space, 

this paper assumes that lp is a pedestrian moving leftwards in �2 , (i, j) is his or her current position’s coordinate, 
his or her 6 optional position’s coordinate is (x, y) ∈ {i − 1, i} × {j − 1, j, j + 1} . Then we have that

is called the direction force parameter of lp on direction d . Thereinto, {i − 1, i} × {j − 1, j, j + 1} is shown as the 
set of Cartesian products between {i − 1, i} and {j − 1, j, j + 1} , ω(0 ≤ ω ≤ 1) is the inertia weight, ω is taken as 
0.5 in this paper.

Again, if rp is a pedestrian moving rightwards, (i, j) is his or her current position’s coordinate, his or her 6 
optional position’s coordinate is (x, y) ∈ {i, i + 1} × {j − 1, j, j + 1} . Then we have that

is called the direction force parameter of rp on direction d.
The values of Flpd  and Frpd  calculated in Eqs. (8) and (9) are normalized as shown in Eq. (10)

where F̃lpd  and F̃rpd  are normalized values, max
d

(F
lp
d ) is the maximum direction force parameter in his or her 

neighbors of lp , min
d

(F
lp
d ) is the minimum direction force parameter, max

d
(F

rp
d ) is the maximum direction force 

parameter in his or her neighbors of rp , min
d

(F
rp
d ) is the minimum direction force parameter.

Distance parameter
In addition to the direction force parameters affecting pedestrian movement, the exits also have an important 
impact on pedestrians. Pedestrians will not walk aimlessly in corridors. The purpose of pedestrians is to leave 
the corridor through the exit. Pedestrians tend to choose the neighborhood closest to the exit as the moving 
target. Therefore, we use the shortest distance between a cell and an exit to express the attraction of this cell to 
pedestrians in the CA model. In the scene of bi-directional pedestrian flow, the cell is closer to the left exit, the 
greater attraction to pedestrians walking to the left and vice versa.

In this paper, the Euclidean distance between a cell and an exit is used as the distance parameter, as shown 
in Eq. (11)

where c is for all a cell, (x, y) is the coordinate of c , Dl
c is the shortest distance between c and the left exit, Dr

c is the 
shortest distance to the right exit, (xlw , ylw) is the coordinate of cell w (w = 1, 2, · · · ,W) in the left exit, (xrw , yrw) 
is the coordinate of w in the right exit.
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The space movement distance is 1 when a pedestrian moves to directly ahead, left, or right cell in a time-
step. However, the space movement distance is 

√
2 , when a pedestrian moves to the front left or front right 

cell. Therefore, If lp is for all a pedestrian moving leftwards, (i, j) is the current position’s coordinate, and his 
or her 6 neighborhood coordinate is (x, y) ∈ {i − 1, i} × {j − 1, j, j + 1} . Again, if rp is for all a pedestrian 
moving rightwards, (i, j) is the current position’s coordinate, and his or her 6 neighborhood coordinates is 
(x, y) ∈ {i, i + 1} × {j − 1, j, j + 1} . The shortest distances of lp or rp moving to 6 neighborhood positions are 
shown in Eq. (12)

where Slpd  is the distance parameter from (i, j) to (x, y) in the process of lp moving to the neighbors, and Srpd  is the 
distance parameter to (x, y) in the process of rp movement.

The values of Slpd  and Srpd  calculated in Eq. (12) are normalized as shown in Eq. (13)

where S̃lpd  and S̃rpd  are normalized values. max
d

(S
lp
d ) is the maximum distance parameter in the process of lp moving 

to the neighbors, and min
d

(S
lp
d ) is the minimum distance parameter. max

d
(S

rp
d ) is the maximum distance parameter 

in the process of rp moving to the neighbors, and min
d

(S
rp
d ) is the minimum distance parameter.

Transition probability
At each time-step t  , the transition probability of a pedestrian lp moving to the neighbors is

where Clp
d  is the transition probability of lp choosing the d-th neighbor ( d = 0, 1, · · · , 5 ). Nlp

d  is the attraction 
value of the d-th neighbor to lp.

The transition probability of a pedestrian rp moving to the neighbors is

where Crp
d  is the transition probability of rp choosing the d-th neighbor. Nrp

d  is the attraction value of the d-th 
neighbor to rp.

Movement rules
The model adopts a synchronous parallel update mechanism. At each time-step t  , pedestrians decide on the 
next movement according to the direction force parameter and distance parameter. Each pedestrian follows the 
following movement rules during the simulation.

At each time step, pedestrians can only choose the target position from the neighborhood as shown in Fig. 14.

• The model calculates the transition probability Clp
d  of each lp’s neighbors and Crp

d  of every rp’s neighbors at 
each time step.

• When a pedestrian determines the target position, he or she chooses the neighbor with the maximum transi-
tion probability. The system randomly selects a neighbor, when there are multiple maximum values.

• When multiple pedestrians choose the same neighbor at a time-step, the system will randomly select a 
pedestrian to enter this neighborhood, while not being selected pedestrians will wait in the situ in the next 
time-step.

• If two opposite pedestrians choose each other’s positions at the same time, they will exchange their positions 
in the next time-step.
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• When the pedestrian moves to the exit, the system adopts two ways to simulate: (a) this pedestrian will leave 
the system in the next time-step, (b) if a pedestrian exits through the left exit, he or she will re-enter through 
the right exit, these two exits have the same x-coordinate, meaning they are located on the same horizontal 
line; and if this pedestrian at the right exit, he or she will re-enter through the left exit.

• Since there are two processing methods for pedestrians to arrive at the exit, the end conditions of the simula-
tion corresponding to each method are: (a) all pedestrians leave the system, and (b) the simulation reaches 
a steady state.

Simulation and results
Pedestrians are randomly distributed in the system �2 . N is the total number of pedestrians. Pedestrian density 
K(%) is defined as the value of N divided by the total number of cells L×W . Moving left and right proportion 
of pedestrians Pl/Pr is expressed as the ratio of the total number of moving left pedestrians to the total number 
of moving right pedestrians. Pedestrian evacuation time T(s) is described as the required time of all pedestrians 
leaving the system. The space moving distance is 

√
2 , when a pedestrian moves to the front left or front right 

cell in a time-step, but the moving distance to his or her destination is 1. We stipulate that the moving speed to 
directly ahead, front left or front right cell is 1.0 m/s. The space moving distance is 1 when a pedestrian moves 
to the left or right cell, but the moving distance to his or her destination is 0. We stipulate that the moving speed 
to the left, right, or current cell is 0 m/s. Hence, the average speed of pedestrian flow V (%) is defined as the 
total number of pedestrians, who have a speed of 1.0 m/s, divided by the value of N . The system volume F(%) is 
expressed as the product of pedestrian density K and the average speed of pedestrian flow V  . In the process of 
the simulation, we take the average value of the operated 10 results as a statistical index to reduce the effect of 
the initial condition on the statistical indexes.

Pedestrian flow evacuation simulation
When the simulation chooses the first end condition, this paper studies the curves of pedestrian evacu-
ation time T  changing with pedestrian density K  as shown in Fig.  17, based on L×W = 40× 20 , and 
Pl/Pr = 0/100, 10/90, 20/80, 30/70, 40/60, 50/50 . In the case of fixed system scale, there is a significant dif-
ference between unidirectional pedestrian flow and bi-directional pedestrian flow, because the movement of 
bi-directional pedestrian flow is more complex than unidirectional pedestrian flow. Figure 17 shows that there 
is an increasing trend in the process of pedestrian evacuation time changing with pedestrian density. There is no 
significant increasing trend in the condition of the small value K . However, there is a significant increasing trend 
in the condition of the higher value. This difference should have a significant change when pedestrian density 
approximately equals 0.5. It is demonstrated that K = 0.5 is a critical value. In the condition of high value K  , 
the curves of different Pl/Pr will have a reversal point. The lower curve will be in above this point because the 
probability of exchanging position is small between moving left pedestrians and moving right pedestrians in 
the case of small value K , yet the probability of exchanging position is significantly increased in the condition of 
high value K . Hence, a more balanced Pl/Pr of bi-directional pedestrian flow should have a higher probability 
of exchanging position and the average speed.
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Figure 17.  The curves of pedestrian evacuation time change with pedestrian density.
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Pedestrian evacuation time is approximately linear increasing trend changing with pedestrian density in the 
traditional model of CA. However, the model in this paper shows that pedestrian evacuation time is approxi-
mately exponentially increasing trend changing with pedestrian density, this result meets the actual circus bet-
ter, more external, and easier to understand. When the pedestrian density reaches a critical value, pedestrians 
begin to feel crowded, and the average speed will decrease rapidly, which should lead evacuation time to increase 
significantly.

Figure 18 shows the curves of pedestrian evacuation time T changing with pedestrian density K , based on 
different lengths of the system, W = 20 and Pl/Pr = 20/80, 50/50 . In the case of fixed system width, the pedes-
trian evacuation time has a significant difference in the condition of different system lengths. It is shown that 
the length is a key factor in pedestrian evacuation time.

Figure 19 demonstrates the curves of pedestrian evacuation time T changing with pedestrian density K , based 
on different widths of the system, L = 40 , and Pl/Pr = 20/80,50/50 . In the case of fixed system length, there 
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Figure 18.  The curves of pedestrian evacuation time based on different lengths of the system. (a) Pl/Pr = 20/80 , 
(b) Pl/Pr = 50/50.
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Figure 19.  The curves of pedestrian evacuation time based on different widths of the system. (a) Pl/Pr = 20/80 , 
(b) Pl/Pr = 50/50.
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is no significant difference in the condition of different system width. It is expressed that expanding the system 
width is an effective way to control pedestrian evacuation time in the case of big gatherings.

Pedestrian flow steady‑state simulation
When the simulation selects the second end condition, this paper analyzes the process and evolution of pedes-
trian movement as demonstrated in Fig. 20, based on L×W = 40× 20 , K = 0.2, 0.5, 0.8 , and Pl/Pr = 50/50 . 
In the condition of K = 0.2 , Fig. 20a shows the initial status, and Fig. 20b demonstrates the status of the strolling 
flow when the system is running to a steady state. Despite the impact of the direction force parameter, pedestrians 
are still strolling in the system when pedestrian density is small. In this case of K = 0.5 , Fig. 20c shows the initial 
status, and Fig. 20d demonstrates the status of flows in directional separated lanes. There is an appearance to 
separate bi-directional pedestrians when pedestrian density is a moderate value. In the circumstance of K = 0.8 , 
Fig. 20e shows the initial status, and Fig. 20f demonstrates the status of dynamic multi-lane flow. The pedestrian 
movement in one direction should form a line when pedestrian density is high. These experimental results agree 
well with Blue’s  studies3. The status of bi-directional pedestrian flow is changing in the process of movement 
because every pedestrian should choose the target position based on his or her psychological characteristics 

Figure 20.  The status of bi-directional pedestrian flow in different pedestrian densities during the process of 
simulation. (a) Initial status ( K = 0.2 ), (b) the status of strolling flow ( K = 0.2 ), (c) initial status ( K = 0.5 ), (d) 
the status of flows in directional separated lanes ( K = 0.5 ), (e) initial status ( K = 0.8 ), (f) the status of dynamic 
multi-lane flow ( K = 0.8).
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and the circumstances surrounding it on a microscopic level. Therefore, it is expressed the self-organization 
phenomena on a macroscopic level.

Figure 20f shows that bi-directional pedestrian flow appears as dynamic multi-lane flow when the pedestrian 
density is high. Although the dynamic multi-lane flow in the same direction can improve pedestrian evacua-
tion efficiency, it still cannot effectively reduce the opposite conflict between the bi-directional pedestrian flow. 
Therefore, the pedestrian "right-leaning" rule is introduced into the model, that is, the pedestrians tend to choose 
to move toward the front or right cell in the target position selection. Only when the front and right cells are 
occupied, the pedestrian will choose the left cell. In the circumstance of L×W = 40× 20 , Pl/Pr = 50/50 , and 
K = 0.8 , Fig. 21 demonstrates the pedestrian flow state in the simulation process when pedestrians adopt the 
"right-leaning" rule. As can be seen from Fig. 21, the bi-directional pedestrian flow quickly realizes the strati-
fication under the action of the "right-leaning" rule and effectively avoids the opposite conflict of pedestrians. 
However, if all pedestrians adopt the "right-leaning" rule, pedestrians will be excessively concentrated near the 
wall; it will increase the risk of pedestrian evacuation in this area. Therefore, the moderate introduction of the 
pedestrian "right-leaning" rule cannot only effectively avoid the opposite conflict of pedestrians, but also reduce 
the pressure of pedestrian evacuation near the wall to a certain extent.

The paper further analyses the curves of the average speed V  and system volume F  chang-
ing with pedestrian density K  as demonstrated in Fig.  22, based on L×W=40× 20 , and 
Pl/Pr = 0/100, 10/90, 20/80, 30/70, 40/60, 50/50 . It is shown that there is a decreasing trend in the process of 
the average speed changing with pedestrian density. There is a slow decline in the case of small value K . However, 
there is a significant decline in the condition of higher value. This difference will have a significant change when 
pedestrian density approximately equals 0.5. This demonstrates that there should be a certain degree of conges-
tion in the process of pedestrian movement when pedestrian density exceeds this critical value. Influenced by 

Figure 21.  The status of bi-directional pedestrian flow under the pedestrian "right-leaning" rule ( K = 0.8).
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Figure 22.  The curves of average speed and system volume change with pedestrian density. (a) The density-
speed curve, (b) the density-volume curve.
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the average speed, the system volume has an increasing trend in the process of changing with pedestrian density 
based on small value K . There is a significant decline in the case of pedestrian density exceeding this critical value.

In the process of simulation, pedestrian density K is defined as the total number of pedestrians divided by 
the total cell number in the system. This is different from the actual pedestrian flow density. Consequently, 
pedestrian density K is needed to convert before the comparison between the experimental results and the real-
istic pedestrian flow characteristics. When pedestrian density K equals 0.5 in the model, the actual pedestrian 
flow density is 3.125 ped/m2 based on the size of a cell corresponding to 0.4 m × 0.4 m. The average speed of 
pedestrian flow will have a significant decline when pedestrian density is about 3.125 ped/m2. For unidirectional 
pedestrian flow, the average speed is close to zero when pedestrian density K approximately equals 0.9 (5.625 
ped/m2). This experimental result agrees well with Tregenza ’s  study27 which observed the real pedestrian flow. 
It is shown that pedestrians begin to drag and move slowly in the process of movement when pedestrian density 
is more than 3.125 ped/m2, so the average speed begins to decline significantly. When pedestrian density is more 
than 5.625 ped/m2, the average speed is close to zero. For bi-directional pedestrian flow, the average speed equals 
zero in the circumstance of high pedestrian density based on the traditional CA model. However, the model 
in this paper is shown that the average speed is a small value, but is not zero. And a more balanced Pl/Pr of bi-
directional pedestrian flow has a relatively high average speed. Because the probability of exchanging position 
has a significant increase in the condition of a high pedestrian density, a more balanced Pl/Pr will have a higher 
probability and average speed. But overall, the values of average speed and system volume are very small when 
pedestrian density is more than 5.625 ped/m2, and bi-directional pedestrian flow is in a very congested state at 
this time. This result is more consistent with the observation of real pedestrian flow.

Conclusion
This paper redefines pedestrian personal space and information processing space based on the direction fuzzy 
visual field (DFVF). The k-nearest neighbor rule constructs the topology of the pedestrian interaction force field. 
It uses the direction force parameter and distance parameter in DFVF to establish the modified bi-directional 
pedestrian flow CA model. It analyses the relationship between system scale, evacuation time, pedestrian density, 
average speed, and system volume, and studies the self-organization phenomenon of bi-directional pedestrian 
flow emerging in the simulation process. The results show that:

(a) Evacuation time increases exponentially with pedestrian density. System length is the key factor impacting 
evacuation time. Appropriately increasing system width is an effective way to reduce evacuation time.

(b) As the actual pedestrian flow density rises beyond the critical point of around 3.125 ped/m2, the average 
speed starts to drop markedly with any further increase in density. This indicates conspicuous congestion 
emerges in bi-directional pedestrian flow when density surpasses this critical threshold.

(c) Under varying pedestrian densities, bi-directional pedestrian flow exhibits three states: strolling flow, 
directional separated lane flow, and dynamic multi-lane flow.

(d) The moderate introduction of a pedestrian "right-leaning" rule can not only effectively avoid opposite 
pedestrian conflicts, but also relieve evacuation pressure near walls to some extent.

The proposed model is beneficial to simulate the diversity in pedestrians’ psychological characteristics and 
would work as a supplement to the theory of bi-directional pedestrian flow. This study provides valuable insights 
for pedestrian facility design and optimizing pedestrian flow organization.
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used only for this study. Participants have the right to skip or refuse to answer any question. There are no nega-
tive consequences for refusal or withdrawal from participation. The data collected will be anonymously analyzed 
and used only for the stated research purpose. The participants will not be contacted again in the future. The 
researchers will make every effort to maintain the anonymity and confidentiality of the participants’ data and 
ensure that it is kept secure.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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