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Development and validation 
of a prognostic model of survival 
for classic heatstroke patients: 
a multicenter study
Yu Wang 1,7, Donglin Li 2,7, Zongqian Wu 3, Chuan Zhong 2, Shengjie Tang 2, Haiyang Hu 2, 
Pei Lin 1, Xianqing Yang 4, Jiangming Liu 5, Xinyi He 6, Haining Zhou 2* & Fake Liu 4*

Classic heatstroke (CHS) is a life-threatening illness characterized by extreme hyperthermia, 
dysfunction of the central nervous system and multiorgan failure. Accurate predictive models are 
useful in the treatment decision-making process and risk stratification. This study was to develop 
and externally validate a prediction model of survival for hospitalized patients with CHS. In this 
retrospective study, we enrolled patients with CHS who were hospitalized from June 2022 to 
September 2022 at 3 hospitals in Southwest Sichuan (training cohort) and 1 hospital in Central Sichuan 
(external validation cohort). Prognostic factors were identified utilizing least absolute shrinkage and 
selection operator (LASSO) regression analysis and multivariate Cox regression analysis in the training 
cohort. A predictive model was developed based on identified prognostic factors, and a nomogram 
was built for visualization. The areas under the receiver operator characteristic (ROC) curves (AUCs) 
and the calibration curve were utilized to assess the prognostic performance of the model in both the 
training and external validation cohorts. The Kaplan‒Meier method was used to calculate survival 
rates. A total of 225 patients (median age, 74 [68–80] years) were included. Social isolation, self-care 
ability, comorbidities, body temperature, heart rate, Glasgow Coma Scale (GCS), procalcitonin (PCT), 
aspartate aminotransferase (AST) and diarrhea were found to have a significant or near-significant 
association with worse prognosis among hospitalized CHS patients. The AUCs of the model in the 
training and validation cohorts were 0.994 (95% [CI], 0.975–0.999) and 0.901 (95% [CI], 0.769–0.968), 
respectively. The model’s prediction and actual observation demonstrated strong concordance on 
the calibration curve regarding 7-day survival probability. According to K‒M survival plots, there 
were significant differences in survival between the low-risk and high-risk groups in the training and 
external validation cohorts. We designed and externally validated a prognostic prediction model for 
CHS. This model has promising predictive performance and could be applied in clinical practice for 
managing patients with CHS.
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AST	� Aspartate aminotransferase
K‒M	� Kaplan–Meier
IQR	� Interquartile range
CNS	� Central nervous system

Heatstroke (HS) is a most hazardous condition characterized by extreme hyperthermia (usually > 40.5 °C), central 
nervous system (CNS) dysfunction, and multiorgan failure that can be classified into two categories: classic or 
exertional1,2. Immediate alleviation of hyperthermia and support of organ system function are the main therapeu-
tic goals in patients with HS1,2. The primary cause of classic heatstroke (CHS) is exposure to high temperatures 
and inadequate heat dissipation mechanisms3,4. The most prevalent populations at risk for CHS include those with 
compromised ability to physiologically adapt to heat stress, individuals who are unable to care for themselves, 
and chronically ill persons3,4. Heat waves, attributed to global warming and urbanization-induced inner-city 
heat islands, are the primary external factors that lead to an increased number of fatalities, surpassing other 
extreme weather events1,4–8. Multiple intrinsic factors, such as social, physiological, and medical burdens, make 
elderly individuals more vulnerable to the effects of persistent heat3,4,9,10. Consequently, the mortality rate from 
heatstroke in the elderly population is reported to be over 50%11,12. Additionally, critical cases of CHS increased 
considerably in the summer of 2022 worldwide due to unprecedented high temperatures13,14.

Despite the high morbidity and mortality of CHS, limited data exist regarding the clinical characteristics and 
prognoses of patients with this critical illness. There have been several studies on the risk factors, pathogenesis, 
treatment, and prevention of HS15–18, but little is known about how to determine the prognosis of CHS early. 
Anticipating patient outcomes at the point of admission can facilitate the identification of individuals at an 
elevated risk of unfavorable results. Consequently, these patients may receive proactive supportive treatments to 
enhance their prognosis. Nomograms are graphically represented mathematical models, extensively utilized to 
forecast prognosis19,20. They achieve this by estimating clinical events and incorporating key prognostic factors 
across a wide spectrum of diseases. Given this, a predictive model with reliable performance is crucial for the 
clinical management of CHS.

In this multicenter study, we aimed to identify prognostic factors from epidemiological and clinical char-
acteristics, as well as hematological indicators, and subsequently establish and externally validate a nomogram 
model to predict the survival of CHS patients.

Methods
Study design and patients
This study was retrospective and involved enrolling patients from 4 hospitals in Sichuan Province during the 
period between June 2022 and September 2022. The training group comprised patients diagnosed with CHS at 
three hospitals in southwestern Sichuan, which were employed to establish the nomogram prognostic model. 
In contrast, model external validation was performed using cases from a single hospital in central Sichuan. The 
research adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines throughout the investigation21.

The inclusion criteria were as follows: (1) participants aged over 18 years; and (2) individuals who satisfied 
the CHS diagnostic criteria, which primarily focused on recent exposure to high temperature, the presence of 
hyperthermia and neurologic anomalies. The exclusion criteria included the following: (1) patients experienc-
ing exertional heatstroke (EHS); (2) patients with irreversible underlying diseases affecting mortality; and (3) 
patients with incomplete information. The flowchart of this study is shown in Fig. 1.

Data collection
Detailed baseline sociodemographic characteristics, clinical data, hematological indices, treatment, and outcomes 
were collected from the CHS patients involved. Baseline sociodemographic characteristics included factors such 
as sex, height, age, weight, body surface area, body mass index (BMI), smoking, alcohol, marital status, ways to 
hospital, unventilated and non-air-conditioned living space, self-care ability, and social isolation. Clinical data 
encompassed comorbidities (including hypertension, diabetes, coronary heart disease, chronic obstructive pul-
monary disease [COPD] and mental illness), respiratory rate, body temperature, Glasgow Coma Scale (GCS), 
heart rate, blood pressure, peripheral oxygen saturation, acute respiratory distress syndrome (ARDS), brain 
edema, disseminated intravascular coagulation (DIC), diarrhea, multiple organ dysfunction syndrome (MODS), 
and hospital stay. Treatment information included antibiotic and mechanical ventilation. Outcome data, includ-
ing hospital discharge or death, were also collected. Various laboratory tests, including blood analyses, were 
conducted to measure numerous parameters, such as blood glucose, pH, base excess (BE), HCO3-, leucocytes, 
neutrophils, percentage of neutrophils, red blood cells, hemoglobin, lactate, prothrombin time (PT), platelets, 
fibrinogen (FIB), D-dimer, activated partial thromboplastin time (APTT), procalcitonin (PCT), urea nitrogen, 
creatinine, troponin, myoglobin, creatine kinase MB isoenzyme (CK-MB), aspartate transaminase (AST), total 
bilirubin, direct bilirubin, and alanine transaminase (ALT). To reduce sampling bias, researchers communicated 
effectively with medical staff and double-checked the information collected with them.

According to the Ministry of Health (Ethics review on biomedical research involving human subjects), WMA 
(Declarations of Helsinki) and CIOMS (International ethical guidelines for biomedical research involving), all 
methods were performed in accordance with the relevant guidelines and regulations.

Ethics approval and consent to participate
This study was approved by the ethics committees of the four participating hospitals, with approval numbers 
as follows: Rong County People’s Hospital: RY2023-015, Jiang’an County People’s Hospital: 2023-001-005, 
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Zhongjiang County People’s Hospital: JLSY-2023-056, and Suining Central Hospital: KYLLKS20230130. Due 
to the anonymous and retrospective nature of the study, the ethics committees of these four hospitals waived 
patient informed consent.

Statistical analysis
Continuous variables are represented as the mean (standard deviation [SD]) when data adhered to a normal 
distribution, whereas the median (interquartile range [IQR]) was used in cases where the data deviated from a 
normal distribution. Categorical variables are presented in the form of numerical values and proportions. Sur-
vival time was determined from the patient’s hospital admission until their death or discharge. LASSO regression 
analysis was utilized to determine potential prognostic factors in the training set. Subsequently, these identified 
factors underwent comprehensive analysis in a multivariate Cox proportional hazards model, aiming to discern 
the vital prognostic factors intimately associated with the survival of patients with CHS. Prognostically signifi-
cant factors identified through multivariate Cox regression analysis were used to develop an in-hospital survival 
prediction model, which was visualized using a nomogram.

To examine the generalizability of the model, an external validation cohort was provided by a tertiary general 
hospital in central Sichuan. The model’s discrimination was assessed using a receiver operating characteristic 
curve (ROC) and area under the ROC curve (AUC). We utilized calibration plots to evaluate the calibration of 
the model in both the training and validation cohorts. Apart from quantitatively evaluating the discrimination 
capacity through the AUC, we also endeavored to demonstrate the independent predictive ability of model at 
varying risk score levels. We categorized patients into different risk groups based on the overall risk score in the 
training cohort (from highest to lowest). The cutoff value was determined based on the median of the risk scores. 
Values greater than the median are labeled as high risk, while those less than the median are labeled as low risk. 
Subsequently, we utilized this identified value for the external validation cohort and delineated the respective 
Kaplan‒Meier survival curves. R software (version 3.6.3) was utilized for all statistical evaluations, and all tests 
adopted a significance threshold of 0.05.

Figure 1.   The flowchat of this study. HS: heatstroke; EHS: exertional heatstroke; CHS: classic heatstroke; 
LASSO: least absolute shrinkage and selection operator; ROC: receiver operator characteristic; K-M: Kaplan–
Meier.
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Results
Baseline sociodemographic and clinical features of enrolled CHS patients
From the primary database of 308 patients, we excluded those diagnosed with EHS (n = 29), patients suffering 
from irreversible underlying diseases affecting mortality (n = 33), and cases with missing details (n = 21). Thus, in 
alignment with the inclusion criteria, 225 patients were ultimately included in the study. The median age of the 
study participants was 74 years old (IQR: 68–80 years), and 123 were male patients, accounting for 55% of the 
total. Most patients (81%) arrived at the hospital via ambulance, while 43 (19%) admitted themselves. The mean 
BMI and body surface area were 21.6 kg/m2 and 1.51 m2, respectively. Among the patients, it was common to 
observe living conditions without ventilation or air conditioning (71%), an incapability for self-care (27%), and 
social isolation (22%). The median body temperature upon admission was 40.5 ℃ (IQR: 40–41.3). Furthermore, 
79% of patients had a heart rate exceeding 100 beats/min, and 17% exhibited oxygen saturation below 80% at 
admission. The median GCS score on admission was 8 (IQR: 5–12). The characteristics of patients in the training 
and validation cohorts are listed in Table 1.

Post‑admission laboratory results
In the entire cohort, atypical laboratory results were observed, including prolonged PT and increased levels 
of blood glucose, creatinine, neutrophil count, and neutrophil ratio. Over half of the patients displayed ele-
vated inflammatory biomarkers such as d-dimer, PCT, CK-MB, myoglobin, troponin, AST, and direct bilirubin 
(Table 1). Comparable observations were made in both the training and external validation cohorts.

Therapeutic measures and outcomes
CHS patients received symptomatic and conservative treatment, primarily focusing on reducing hyperthermia. 
Among hospitalized CHS patients, the most common treatment was antibiotic therapy (71%), followed by 
mechanical ventilation (52%). There were 28 patients with DIC, 64 with ARDS, and 70 with MODS. Diarrhea 
was reported in 67 patients, and eight exhibited brain edema on imaging. The median hospital stay duration 
was 6 days. In the total cohort, there were 60 fatalities (40 in the training set, 20 in the validation set), and 165 
patients were discharged after treatment (Table 1).

Predictors of survival in CHS patients
The baseline sociodemographic characteristics, clinical data and hematological parameter were analyzed as 
potential prognostic factors affecting in-hospital survival using LASSO regression. The results indicated that 
social isolation, self-care ability, comorbidities, body temperature, heart rate, peripheral oxygen saturation, GCS, 
leucocytes, FIB, PCT, CK-MB, myoglobin, AST, MODS, and diarrhea were associated with in-hospital survival at 
the optimal value of lambda in the training cohort (Fig. 2). To present the fitted coefficients and hazard ratios of 
each predictor within the model, these factors were integrated into our multivariate Cox regression analyses. Sig-
nificant or near-significant associations were found between social isolation, self-care ability, comorbidities, body 
temperature, heart rate, GCS, PCT, AST, and diarrhea and poor outcomes in CHS hospitalized patients (Fig. 3).

Model development
A predictive model was established for estimating the probability of in-hospital survival utilizing the nine inde-
pendent prognostic factors identified by LASSO and multivariate Cox regression analyses. Although social isola-
tion, heart rate and AST were borderline significant, we also included them in the construction of the nomogram, 
considering their clinical importance, without compromising the discriminative ability of the model. The risk 
score in the prognostic model for individuals was calculated by aggregating the nine variables multiplied by their 
corresponding coefficients: risk score = − 0.65038 × social isolation + 1.08138 × self-care ability + 0.86178 × comor-
bidities + 0.44265 × body temperature + 2.06185 × heart rate − 0.31373 × GCS + 0.89792 × PCT + 1.44939 × AST 
− 1.40371 × diarrhea. A nomogram was employed to visualize this model (Fig. 4). The nomogram demonstrated 
that the prognostic impact was dominated by GCS and body temperature, followed by heart rate, AST and diar-
rhea. Self-care ability, social isolation, comorbidities and PCT demonstrated a moderate influence on survival 
outcomes. On the point scale, each subcategory within these variables was assigned a score. By calculating the 
total score and positioning it on the total point scale, we could easily determine the estimated survival probability 
at each time point by drawing a vertical line.

Calibration and validation of the nomogram
The predictive model’s AUCs were 0.994 (95% [CI], 0.975–0.999) for the training group and 0.901 (95% [CI], 
0.769–0.968) for the validation group, demonstrating the model’s high discrimination capability. Calibration 
plots exhibited a strong concordance between the estimated 7-day survival probability and actual observations, 
indicating the model’s good calibration (Fig. 5).

Prognostic model risk score‑based survival analyses
Based on the median cutoff of the risk score, patients were categorized into two subgroups: a low-risk group 
(risk score ≤ 0.778) and a high-risk group (risk score > 0.778). Survival differences between the two groups were 
compared using Kaplan‒Meier curves. In the training cohort, the low-risk group exhibited a significantly higher 
survival rate than the high-risk group. A significant (p < 0.001) heterogeneity was observed between the two 
groups in the validation cohort (Fig. 5).
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Variables Total (n = 225) Train (n = 152) Validation (n = 73)

Age, median (IQR), years 74 (68, 80) 77 (70, 82) 70 (64, 77)

Sex, n (%)

 Male 123 (55) 83 (55) 40 (55)

 Female 102 (45) 69 (45) 33 (45)

Height, median (IQR), m 1.6 (1.53, 1.65) 1.58 (1.5, 1.64) 1.62 (1.58, 1.66)

Weight, median (IQR), Kg 53 (50, 60) 50 (45, 60) 56 (51, 62)

Body mass index (BMI), median (IQR), Kg/m2 21.56 (20, 23.1) 21.48(19.45, 23.55) 21.67(20.43, 22.68)

Body surface area, median (IQR), m2 1.51 (1.45, 1.65) 1.45 (1.35, 1.65) 1.57 (1.47, 1.69)

Smoking, n (%)

 Yes 79 (35) 64 (42) 15 (21)

 No 146 (65) 88 (58) 58 (79)

Alcohol, n (%)

 Yes 54 (24) 44 (29) 10 (14)

 No 171 (76) 108 (71) 63 (86)

Marital status, n (%)

 Sustained conjugal status 152 (68) 98 (64) 54 (74)

 Single 73 (32) 54 (36) 19 (26)

Ways to hospital, n (%)

 Emergency 182 (81) 131 (86) 51 (70)

 Other 43 (19) 21 (14) 22 (30)

Social isolation, n (%)

 Yes 50 (22) 29 (19) 21 (29)

 No 175 (78) 123 (81) 52 (71)

Unventilated and non-air-conditioned living space, n (%)

 Yes 160 (71) 129 (85) 31 (42)

 No 65 (29) 23 (15) 42 (58)

Self-care ability, n (%)

 Yes 163 (73) 104 (68) 59 (81)

 No 62 (27) 48 (32) 14 (19)

Comorbidities, n (%)

 Yes 114 (51) 70 (46) 44 (60)

 No 111 (49) 82 (54) 29 (40)

Body temperature, median (IQR), ℃ 40.5 (40, 41.3) 40.25 (39.8, 41) 41 (40, 42)

Respiratory rate, n (%), breaths/min

 16–20 36 (16) 13 (9) 23 (32)

 > 20 189 (84) 139 (91) 50 (68)

Heart rate, n (%), beats/min

 60–100 48 (21) 14 (9) 34 (47)

 > 100 177 (79) 138 (91) 39 (53)

Initial systolic blood pressure, n (%), mmHg

 < 70 24 (11) 20 (13) 4 (5)

 70–105 98 (44) 67 (44) 31 (42)

 > 105 103 (46) 65 (43) 38 (52)

Peripheral oxygen saturation, n (%)

 < 80% 38 (17) 36 (24) 2 (3)

 80–90% 83 (37) 66 (43) 17 (23)

 > 90% 104 (46) 50 (33) 54 (74)

Glasgow Coma Scale (GCS), median (IQR) 8 (5, 12) 9 (6, 13) 6 (5, 8)

Blood glucose, median (IQR), mmol/L 10 (7.9, 12.9) 9.56 (7.97, 12.8) 10.8 (7.7, 13.95)

PH, mean ± SD 7.4 ± 0.1 7.38 ± 0.1 7.42 ± 0.1

Base excess (BE), median (IQR), mmol/L − 3.2 (− 7.1, − 0.8) − 4.1 (− 7.53, − 1.15) − 1.8 (− 5.3, 1.3)

HCO3-, median (IQR), mmol/L 18.8 (15.6, 21.7) 18.8 (14.8, 21.77) 19.2 (16.3, 21.6)

Lactate, median (IQR), mmol/L 3.88 (2.1, 7.28) 5.18 (3.03, 7.37) 2.5 (1.64, 3.5)

Leucocytes, median (IQR), ×109/L 11.75 (8, 15.17) 11.75 (8, 15.17) 11.7 (8.1, 15.1)

Neutrophil, median (IQR), ×109/L 9.46 (6.8, 12.95) 9.46 (6.53, 12.54) 9.69 (6.86, 13.2)

Percentage of neutrophils, median (IQR) 84.6 (78, 89.3) 85.1 (79.5, 89.7) 82.3 (75, 88.2)

Red blood cells, median (IQR), ×1012/L 3.93 (3.56, 4.32) 3.93 (3.52, 4.26) 3.9 (3.62, 4.47)

Continued
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Variables Total (n = 225) Train (n = 152) Validation (n = 73)

Hemoglobin, median (IQR), g/L 121 (109, 133) 121 (108, 130.25) 125 (111, 136)

Platelets, median (IQR), ×109/L 113 (73, 175) 101 (64, 162.25) 145 (102, 225)

Prothrombin time (PT), median (IQR), s 13.9 (12.9, 15.03) 13.9 (12.8, 15.05) 13.9 (13, 15.03)

Activated partial thromboplastin time (APTT), median (IQR), s 28.7 (25.45, 36.1) 26.6 (23.98, 29.63) 36.7 (32.2, 39.7)

Fibrinogen (FIB), median (IQR), g/L 2.63 (2.35, 3.16) 2.56 (2.27, 2.87) 3 (2.62, 4.01)

d.dimer, n (%), µg/ml

 ≤ 0.5 51 (23) 38 (25) 13 (18)

 > 0.5 174 (77) 114 (75) 60 (82)

Procalcitonin (PCT), n (%), ng/ml

 ≤ 1 122 (54) 81 (53) 41 (56)

 > 1 103 (46) 71 (47) 32 (44)

Urea nitrogen, median (IQR), mmol/L 7.89 (5.86, 11.67) 8.41 (6.5, 11.68) 6.78 (5.3, 9.3)

Creatinine, median (IQR), µmmol/L 112.05(70.85,161.07) 112.1(71.22,163.5) 107 (70.25, 146.25)

CK-MB, n (%), µ/L

 ≤ 5 86 (38) 52 (34) 34 (47)

 > 5 139 (62) 100 (66) 39 (53)

Myoglobin, n (%), ng/ml

 ≤ 1000 141 (63) 96 (63) 45 (62)

 > 1000 84 (37) 56 (37) 28 (38)

Troponin, n (%), ng/ml

 ≤ 0.1 107 (48) 72 (47) 35 (48)

 > 0.1 118 (52) 80 (53) 38 (52)

Alanine transaminase (ALT), n (%), µ/L

 7–40 121 (54) 78 (51) 43 (59)

 > 40 104 (46) 74 (49) 30 (41)

Aspartate transaminase (AST), n (%), µ/L

 13–35 100 (44) 62 (41) 38 (52)

 > 35 125 (56) 90 (59) 35 (48)

Total bilirubin, median (IQR), µmmol/L 19 (14.5, 25.2) 19.6 (15.8, 26.85) 16 (10, 22.8)

Direct bilirubin, median (IQR), µmmol/L 7.3 (5.3, 10.6) 7.7 (5.88, 10.33) 5.5 (3.9, 11.1)

Disseminated intravascular coagulation (DIC), n (%)

 Yes 28 (12) 25 (16) 3 (4)

 No 197 (88) 127 (84) 70 (96)

Acute respiratory distress syndrome (ARDS), n (%)

 Yes 64 (28) 46 (30) 18 (25)

 No 161 (72) 106 (70) 55 (75)

Multiple organ dysfunction syndrome (MODS), n (%)

 Yes 70 (31) 53 (35) 17 (23)

 No 155 (69) 99 (65) 56 (77)

Brain edema, n (%)

 Yes 8 (4) 4 (3) 4 (5)

 No 217 (96) 148 (97) 69 (95)

Antibiotic treatment, n (%)

 Yes 160 (71) 99 (65) 61 (84)

 No 65 (29) 53 (35) 12 (16)

Mechanical ventilation, n (%)

 Yes 118 (52) 85 (56) 33 (45)

 No 107 (48) 67 (44) 40 (55)

Diarrhea, n (%)

 Yes 67 (30) 42 (28) 25 (34)

 No 158 (70) 110 (72) 48 (66)

Hospital stay, median (IQR), d 6 (2, 9) 4 (1, 7) 8 (5, 12)

Outcome, n (%)

 Discharged 165 (73) 112 (74) 53 (73)

 Died 60 (27) 40 (26) 20 (27)

Table 1.   Demographic and clinical features, treatment and outcomes of patients in the training and validation 
cohorts.
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Discussion
CHS is a life-threatening condition resulting from exposure to high temperatures and inadequate heat dissipa-
tion mechanisms and has high morbidity and mortality rates, posing a substantial burden on human health and 
healthcare systems1,2,22. In this multicenter study, a prognostic model was developed and externally validated 
employing a substantial cohort of CHS patients. Importantly, the model allows for the incorporation of social 
risk factors, clinical data and hematological indices to provide personalized, patient-specific in-hospital survival 
estimates and can be utilized for risk stratification and prognosis analysis of CHS patients.

The primary cohort was obtained from four medical institutions from Western China. The broad geo-
graphical distribution of patients in this cohort and the consistently high temperature (exceeding 40 °C) in 
these regions during the previous summer ensured its representativeness and generalizability to Chinese CHS 
patients. Utilizing LASSO and Cox multivariable regression analysis, we identified social isolation, self-care 
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ability, comorbidities, body temperature, heart rate, GCS, PCT, AST, and diarrhea as independent prognostic 
factors. Notably, although social isolation, heart rate and AST were borderline significant, we also included 
them in the construction of the model considering their clinical importance. Evaluated by the AUC values and 
calibration plots, this model exhibited strong discrimination and calibration in predicting CHS patient survival 
probabilities. Our multicenter study design and externally validated model shared some similarities with the 
previously published HS model and may offer some advantages23. Predictors such as HR and GCS are presented 
in our nomogram, which is consistent with the validated nomogram of Shao et al.23. However, compared to their 
model, ours may has several advantages. Firstly, the AUCs of both our training and validation sets are higher than 
theirs, indicating that our model has higher discriminative ability. Secondly, our training set encompasses a larger 
sample size than theirs (as the model originates from the training set), suggesting that our model might possess 
enhanced reliability. Furthermore, with a multitude of independent variables, there’s potential for inter-variable 
interference. By employing Lasso regression, we are able to eliminate variables that cause such disturbances, 
ensuring a more robust multicollinearity among the variables.

In this study, poor prognosis of CHS was found to be associated with social isolation and inability to care for 
oneself. In a meta-analysis of prognostic factors for heat wave-related deaths, being bedridden, being unable to 
care for oneself, and not leaving home daily were associated with the highest risk of death24. Conversely, augment-
ing social connections was strongly associated with improved outcomes24. Elderly individuals frequently show a 
lower tendency to adopt protective actions, as they often underestimate their vulnerability4,25. Additionally, heat 
waves in the Northern hemisphere generally happen during holiday months when families commonly depart 
from urban centers, and there are many left-behind elderly people in the rural areas of western China, leaving 
the elderly with compromised social support. Comorbidity was another important prognostic factor found 
in our study. Patients with chronic obstructive pulmonary disease, cardiovascular disease, diabetes mellitus, 
mental disease, cerebrovascular disease, neurologic disease, and chronic kidney disease face a heightened risk 
of disease worsening and mortality when exposed to extreme temperatures4. Preexisting mental health disor-
ders resulted in a threefold increase in the risk of death, followed by cardiovascular and respiratory illnesses24. 
Furthermore, medications such as tranquilizers, neuroleptics, diuretics, anticholinergics, and antipsychotics 
can reduce patients’ heat tolerance; thus, these patients are at an elevated risk of inadequate water consumption, 
compromised thermoregulation, and mortality26,27.

Elevated core temperature can cause thermoregulation failure, exacerbate acute-phase responses, and alter 
heat shock protein expression, potentially leading to progression from heat stress to heat stroke1. A worsen-
ing prognosis occurs when the core body temperature consistently exceeds the critical threshold1,28–30. Animal 
model studies suggest that heat directly causes tissue damage31. The intensity of the injury is contingent upon 
the critical thermal maximum. Observations in select groups, such as marathon runners, healthy volunteers, 
and cancer patients undergoing whole-body hyperthermia treatment, suggest that the critical thermal maxi-
mum for humans ranges between 41.6 and 42 °C, lasting from 45 min to 8 h32. Routinely, people are exposed to 
high temperatures and cool down through an increase in heart rate, which in turn increases blood flow to the 
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Figure 4.   Nomogram for predicting probability of CHS in-hospital survival. The presence of each clinical 
characteristic indicates a certain number of points. Number of points for each clinical characteristic is on the 
top row. The points for each characteristic are summed together to generate a total-points score. The total points 
correspond to in-hospital survival probabilities. GCS: Glasgow Coma Scale; PCT: procalcitonin; AST: aspartate 
aminotransferase.
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skin22. However, this protective mechanism increases myocardial oxygen consumption and may lead to myo-
cardial infarction33. Patients with HS combined with acute myocardial infarction often have poor prognosis33. 
GCS was another significant predictor in our COX regression analysis, aligning with the findings of Shimazaki 
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Figure 5.   ROC curves and AUCs, Calibration plots and Kaplan–Meier survival curves of the model. (A) ROC 
curves and AUCs of the nomogram in the training and external validation cohort. (B) Calibration plots of the 
nomogram-predicted probability of 7-day survival in the training and validation cohorts. Nomogram-predicted 
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et al.34. The GCS score provides a straightforward and trustworthy means to assess the severity and prognosis 
of patients with CNS conditions. Evidence from several studies highlights that a depressed GCS suggests a poor 
prognosis35–37. Nervous system damage is particularly prominent in organ damage in heat stroke patients1. Brain 
damage appears to be focused in the cerebellum, characterized by widespread atrophy and signs of Purkinje cell 
layer involvement38. Inflammation, hypotension, and dehydration are believed to contribute to the initial stages 
of CNS damage resulting from heat stress39.

PCT is a biomarker of systemic inflammation, particularly of bacterial origin, and is useful in clinical practice 
for diagnosing and predicting the prognosis of bacterial infections. Although serum PCT levels typically increase 
in heatstroke cases, the association between PCT and heatstroke is often overlooked in clinical practice40. Two 
studies have demonstrated a connection between heatstroke and elevated serum PCT levels41,42. The underly-
ing physiological link between heatstroke and procalcitonin could be mediated by the exaggerated systemic 
inflammatory response that characterizes heatstroke40. Liver injury is a common complication of CHS and a 
significant cause of mortality43. When heat stroke occurs, the blood flow of the liver decreases, and at the same 
time, extensive microthrombosis occurs in the liver due to concurrent DIC, causing liver ischemia and hypoxia 
and eventually leading to liver damage44. Study has reported liver injury marked by an early increase in AST and 
lactate dehydrogenase (LDH), peaking after 3 to 4 days, and a rise in bilirubin by the second or third day45. In this 
study, diarrhea was additionally recognized as a factor linked to unfavorable outcomes. Heatstroke can lead to 
gastrointestinal ischemia, which adversely affects cell viability and cell wall permeability1; the resulting oxidative 
and nitrosative stress disrupts cell membranes, allowing endotoxins and potential pathogens to enter the systemic 
circulation, overwhelming the detoxification capacity of the liver and resulting in endotoxemia46,47. Although 
the link between heatstroke and endotoxemia is not a new concept, many physicians tend to overlook or misun-
derstand applicable laboratory findings, further worsening the clinical condition and prognosis of CHS patients.

This is the first study, to our knowledge, to develop and externally validate a prognostic model for predicting 
the in-hospital survival of CHS patients based on social risk factors, clinical data and hematologic indices. This 
easy-to-use model can assist both physicians and patients in making personalized survival predictions. Valida-
tion of the model is crucial to prevent model overfitting and ensure generalizability. In this study, it’s important 
to note that although there are differences in some variables between the training and validation sets, external 
validation is primarily aimed at validating and testing the model’s performance, not for comparison with the 
training set. Therefore, it doesn’t affect our results. Ultimately, the external validation cohort achieved high 
AUC value, and calibration plots demonstrated excellent agreement between prediction and actual observation, 
ensuring the repeatability and reliability of the established nomogram. Importantly, the model included patients 
from different levels of hospitals, supporting the nationwide application of the nomogram in both large medical 
centers and county hospitals. Discrimination was revealed by the significantly high AUC values of the nomogram, 
with only a slight reduction in the external validation cohort. Additionally, patients were stratified into high-risk 
and low-risk groups based on their risk scores, allowing for the identification of patients with distinct survival 
outcomes in the cohorts. The low-risk group exhibited significantly higher survival than the high-risk group in 
both training cohort and validation cohort.

Several limitations should be acknowledged. This study was retrospective with a limited sample size, which 
might affect the robustness of the model. Therefore, there’s a need for a prospective study on a larger population 
to further validate our findings. The outcomes of hospitalized patients may vary depending on factors such as 
medical resources and economic levels. Patients with similar conditions but with a lower regional medical bur-
den may experience better outcomes than those treated at overburdened centers. In such cases, we recommend 
integrating the survival predictions in the model with the actual clinical situation. Further efforts should be made 
to improve the model by incorporating additional factors, recruiting a more diverse and broader geographic 
sample, and conducting prospective data collection with long-term patient follow-up.

Conclusion
In conclusion, we designed and externally validated a prognostic prediction model for CHS. This model has 
promising predictive performance and carries the potential to be applied in clinical practice for managing 
patients with CHS.

Data availability
Data sets analyzed during the current study are available from the corresponding authors upon reasonable 
request.
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