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Establishment and application 
of TSDPSO‑SVM model combined 
with multi‑dimensional feature 
fusion method in the identification 
of fracture‑related infection
Xiaofeng Hu , Jianmin Chen *, Xiaofei Zheng , Jianmei Li  & Mingwei Zhou 

Fracture‑related infection (FRI) is one of the most common and intractable complications in 
orthopedic trauma surgery. This complication can impose severe psychological burdens and socio‑
economic impacts on patients. Although the definition of FRI has been proposed recently by an 
expert group, the diagnostic criteria for FRI are not yet standardized. A total of 4761 FRI patients 
and 4761 fracture patients (Non‑FRI) were included in the study. The feature set of patients included 
imaging characteristics, demographic information, clinical symptoms, microbiological findings, 
and serum inflammatory markers, which were reduced by the Principal Component Analysis. To 
optimize the Support Vector Machine (SVM) model, the Traction Switching Delay Particle Swarm 
Optimization (TSDPSO) algorithm, a recognition method was proposed. Moreover, five machine 
learning models, including TSDPSO‑SVM, were employed to distinguish FRI from Non‑FRI. The 
Area under the Curve of TSDPSO‑SVM was 0.91, at least 5% higher than that of other models. 
Compared with the Random Forest, Backpropagation Neural Network (BP), SVM and eXtreme 
Gradient Boosting (XGBoost), TSDPSO‑SVM demonstrated remarkable accuracy in the test set 
( χ2

= 29.17, 50.46, 56.66, 35.88,P < 0.01 ). The recall of TSDPSO‑SVM was 98.32%, indicating 
a significant improvement ( χ2

= 91.78, 107.42, 135.69,P < 0.01 ). Compared with BP and 
SVM, TSDPSO‑SVM exhibited significantly superior specificity, false positive rate and precision 
( χ2 > 3.84,P < 0.05) . The five models yielded consistent results in the training and testing of 
FRI patients across different age groups. TSDPSO‑SVM is validated to have the maximum overall 
prediction ability and can effectively distinguish between FRI and Non‑FRI. For the early diagnosis 
of FRI, TSDPSO‑SVM may provide a reference basis for clinicians, especially those with insufficient 
experience. These results also lay a foundation for the intelligent diagnosis of FRI. Furthermore, these 
findings exhibit the application potential of this model in the diagnosis and classification of other 
diseases.

With the rapid advancement in industry and transportation in recent years, such accidental traumas as car acci-
dents and falls from heights, as well as trauma caused by machinery, have been increasing with each passing year. 
According to statistics, there are as many as 5 million patients with fractures in the United States every year. This 
number is set to surge to 60 million worldwide. In patients with open fractures, the presence of a wound indicates 
a high risk of fracture contact and soft tissue injury, which may induce post-fracture  infection1. Fracture-related 
infection (FRI) is a common, costly, destructive, and difficult-to-treat complication in orthopedics. The research 
group of the 2018 International Consensus Conference reported that the incidence of infection in all subspe-
cialties of orthopedics in North America ranged from 0 to 50.0%2. Postoperative infections may still be present 
after surgical treatment of open fractures. According to research results, the internal fixation infection rate was 
0–2% in non-open fractures and Type I open fractures, and that was 2–7% and 10–25% in Type II open fractures 
and Type III open fractures,  respectively3. Even if it is not an open fracture, there is a possibility of blood-borne 
infection. It has even been reported that after the reclassification of type III open fractures based on Gustilo 
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classification, the infection rate of Type IIIA was 10–50% of that of Type IIIB, while the infection rate of Type 
HIC was 25–50%4,5. The medical costs per patient ranged from 17,000 to 150,000 US  dollars3.

Severe multiple fractures have a higher likelihood of concomitant infection than single fractures, although 
the bacteriological culture of surrounding tissue or sinus secretions during surgery may yield negative results. 
However, some clinical manifestations similar to those associated with early infections, such as pain, fever, 
wound non-union or delayed healing, repeated swelling and pain, or continuous incision exudation, may still 
be observed preoperatively. Other clinical manifestations during the early stages of FRI mainly include wound 
redness and swelling, anorexia, fear of cold, chills, fever, vomiting, and so on. Some patients do not pay enough 
attention to the early changes in diseases or even forget the variations in clinical manifestations in the progression 
of diseases, making the diagnosis more difficult for  clinicians6,7. When treating fractures, clinicians not only pay 
attention to the clinical characteristics of the patient, but also comprehensively consider other characteristics, 
such as imaging characteristics, microbiological features, and serum inflammatory markers.

FRI has always been a term difficult to define. Therefore, there are no accurate evaluation criteria, reference 
indicators, or diagnostic criteria for clinicians to assess the consequences of FRI. The serum inflammatory marker 
test is one of the most common auxiliary diagnostic methods for judging FRI in clinical practice. However, the 
specificity and sensitivity of these markers are not high. They are affected by the patient’s age, gender, and other 
systemic comorbidities (such as tuberculosis, gout, tumors, and other diseases)8–12. Therefore, serum inflam-
matory markers cannot be used as the single basis for the differential diagnosis in clinical practice. Imaging 
examinations play a crucial role in the preoperative assessment of infectious bone nonunion. They can also be 
applied to the observation of post-fracture surgery changes in the anatomical structure, such as the presence 
of loose internal fixation structures or dislocation of fracture ends. Imaging examinations are preferentially 
employed for patients suspected of postoperative bone  infection8,13. However, X-ray plain films, CT scans, or MRI 
(magnetic resonance imaging) are primarily used to evaluate the morphology, structure, and healing progress of 
fractures, with a limited ability in the diagnosis of  infections10,11,14. In addition, the diagnostics based on CT and 
MRI often requires more time and higher expenses in China. The microbial culture method has been considered 
the "gold standard" for diagnosing FRI for a long period. It is widely used in clinics due to its large sample size, 
affordability, and convenience. However, this method has such limitations as low sensitivity and slow diagnosis, 
which can be mainly attributed to bacterial biofilm and other factors. In certain patients with anaerobic and 
caustic infections, specific culture techniques are required. False negative results may also occur, especially in 
infections with low virulence, special pathogens, or when antibiotics have been administered prior to sampling. 
The drawbacks of conventional microbiological culture methods become particularly evident in the identifica-
tion of the etiology of FRI. Without proper guidance for etiological diagnosis, clinicians are left with no choice 
but to empirically administer broad-spectrum antibiotics, which often lead to ineffective treatment and poor 
 prognoses15–18. However, the diagnosis of FRI involves a complex clinical process. Due to different affected sites 
and fracture types, as well as individual factors, there is still a lack of a single and universal diagnostic method 
to help clinicians make a definite  diagnosis17.

The advancement of computer technology contributes to the emergence of various machine learning (ML) 
algorithms, such as SVM, Naive Bayes(NB), K-Nearest Neighbors(KNN), and RF, which have become increas-
ingly prominent in various  fields20,21. In the field of medicine, the availability of high-throughput data, charac-
terized by large sample sizes and extensive features, has laid a solid foundation for the application of ML. This 
technology has been proven to be highly beneficial in clinical disease diagnosis, as it enables the analysis of vast 
amounts of patient data using algorithms and statistical models. Consequently, the accuracy of disease diagnosis 
is also significantly  improved22. ML algorithms can be utilized to process and analyze large datasets containing 
patient information, such as medical records, genetic data, and clinical imaging results. These algorithms are 
designed to identify patterns and construct predictive models based on the data, allowing healthcare profes-
sionals to make more accurate and efficient diagnoses. However, ML algorithms rely on high-quality and com-
prehensive datasets for training and  validation23,24. There may be challenges in obtaining and maintaining such 
datasets, especially in patients with FRI where data may be limited or incomplete. This study was conducted to 
establish a foundation for clinicians to formulate evidence-based and effective therapeutic regimens for patients 
with FRI. Specifically, the data of patients in the past 12 years were collected. Besides, a model was constructed 
based on the TSDPSO algorithm to optimize the SVM. Additionally, a multi-modal feature fusion method was 
employed to systematically analyze the data of patients with FRI. By utilizing this model and methodology, 
valuable insights and recommendations may be provided for clinicians to perform the diagnosis and treatment 
of patients with FRI.

The sample data were systematically retrieved, selected, and processed. In addition, ML algorithms were 
established, including SVM, RF, BP, XGBoost, and TSDPSO-SVM, under the guidance of four research questions 
(RQs). Due to the systematic nature of this study, it may be reproduced and updated in the future to reflect new 
activity. The four RQs are elucidated as follows.

1. How does the TSDPSO-SVM algorithm perform in identifying FRI?
2. What are the strengths and weaknesses of the TSDPSO-SVM algorithm in identifying FRI?
3. Does the age of individual patients affect the effectiveness of the TSDPSO-SVM algorithm in identifying 

FRI?
4. What are the potential applications and prospects of the TSDPSO-SVM algorithm in identifying FRI?
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Methods
A total of 7124 patients were enrolled in the Registration Office of Fracture-associated Infections in Qinhuai 
Medical Area of the Eastern Theater General Hospital of the Chinese People’s Liberation Army from 2010 to 2022. 
In this study, 4761 patients with long bone FRIs (aged 8–95 years, the FRI group) and 4761 patients with non-FRIs 
(aged 8–95 years, the Non-FRI group) were selected as study participants. The follow-up continued until August 
2022. Besides, 97 features, including demographics, clinical features, laboratory test features, imaging features, 
and microbiological features, were extracted and collated from the Registration Office. All data used in this study 
were collected in accordance with relevant guidelines and regulations (Ministry of Science and Technology of the 
People’s Republic of China, Policy No. 2006398). This study will be conducted in accordance with good clinical 
practice and ethical standards set out in the Declaration of Helsinki of 1964 and its subsequent amendments. 
As a retrospective study, only clinical data were collected from patients, without interfering with their treat-
ment plans, and no physiological risks were posed to patients. In addition, informed consent was not obtained 
from participants due to objective reasons. The personal information related to all participants was protected 
properly. The need for informed consent was waived by the Ethics Committee of Jinling Hospital, owing to the 
retrospective nature of the study (Nanjing, China; 27 December 2022; approval number 2022NZKY-066-13).

Support vector machine
SVM is a binary linear classifier. Identifying the decision boundary is an essential classification link, namely 
solving the hyperplane of the maximum margin of the learning  sample25,26. The hyperplane equation can be 
expressed as:

where ω represents the normal vector of the hyperplane; B represents the offset of the hyperplane. By introducing 
the Lagrange coefficient, the objective function is transformed into a dual optimization problem:

Lagrange coefficient c is a penalty factor. The penalty factor c affects the loss value of the objective function. 
The larger the c, the larger the error. When the error is large, the SVM is prone to over-fitting. When c is too 
small, SVM may have the under-fitting problem. In the linear SVM, the formula for solving the optimization 
problem is computed in the form of inner products. As the algorithm complexity of the inner product is very 
large, the kernel function is used to replace the inner product. In this study, the Gaussian radial basis kernel 
function was selected as the kernel function.

where σ represents the radius of radial basis. The nuclear parameter γ = 1
2σ 2 affects the training speed and test 

speed. In order to quickly identify the optimal parameters and improve the speed and accuracy of classifica-
tion, the improved particle swarm optimization (PSO) was employed to optimize the SVM model in this study.

Standard particle swarm optimization algorithm
Particle swarm optimization (PSO) is a swarm intelligence optimization algorithm proposed by Kennedy and 
Eberhart according to the predation behavior of  birds27. The PSO algorithm involves a group of S particles mov-
ing at a certain speed in the D-dimensional search space, where the ith particle generates two vectors in the 
k-th iteration.

The two vectors represent the “flying” speed and the vector position vector, respectively. During the iteration 
process, the position of each particle will be automatically adjusted to the global optimal direction, and the best 
position (pbest) established by each particle  itself28. Pbest is expressed in pi = (pi1, pi2, pi3, . . . , piD) . The best 
position in the whole group (gbest) is represented by pg = (p

g1
, pg2, pg3, . . . , pgD) . After the two best positions 

are identified, particles will update their speed and position according to Formulas (5) and (6).

where ω represents the inertia weight; c1 and c2 represent acceleration coefficients; The two random numbers r1 
and r2 are uniformly distributed in [0,1].
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(4)
{

νi(k) = [νi1(k), νi2(k), νi3(k), . . . , νiD(k)]
xi(k) = [xi1(k), xi2(k), xi3(k), . . . , xiD(k)]

(5)νi(k + 1) = ωυi(k)+ c1r1
{

pi(k)− xi(k)+ c2r2
[

pg (k)− xi(k)
]}

(6)xi(k + 1) = xi(k)+ νi(k + 1)
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Particle swarm optimization algorithm with traction switching delay
The PSO algorithm has a good optimization ability in solving the optimization function. Through iteration, the 
algorithm can quickly identify the optimal approximate solution, but it is easy to fall into local optimization and 
thus causes large  errors29. In this study, a new traction switching delay particle swarm optimization (TSDPSO) 
was proposed based on the exchange particle swarm algorithm. The main idea of handover delay is to update 
the model adaptively according to the evolution factor and Markov  chain30. Using the delay information of the 
optimal position of the particle itself and the optimal position of the particle population, the particle speed in 
the current iteration is updated according to the iteration state to eliminate local optimization and premature 
convergence of PSO. The speed and position update equations of the switching delay PSO algorithm are expressed 
in Formulas (7) and (8).

where c1(ξ(k)) and c2(ξ(k)) represent the acceleration coefficients; τ1(ξ(k)) and τ2(ξ(k)) represent time delays. 
These four parameters are determined by the nonhomogeneous Markov chain ξ(k)(k ≥ 0) . The values of Markov 
chain are s = {1, 2,…, n}. Its probability transfer matrix can be expressed as follows:

In the TSDPSO algorithm, the probability transfer matrix �(k) is used for adaptive adjustment. According 
to the characteristics of the search process, four states can be defined according to the evolution factors: con-
vergence, exploration, development, and jump out. These four states are respectively used in the Markov chain 
ξ(k) = 1, ξ(k) = 2, ξ(k) = 3andξ(k) = 4 . The average distance between each particle and other particles in the 
cluster can be expressed by di.

where, s and D represent the size and size of particle swarm, respectively. The evolution factor Ef  is defined in 
Formula (11).

where dg represents the global best particle in the average distance di. dmax and dmin represent the maximum and 
minimum distances in di, respectively.

According to the value of Ef  , the state of the Markov chain is determined by Formula (12).

Formula (9) can be modified as follows:

Therefore, the Markov process in the next iteration can switch its state based on the probability distribution 
matrix. In the iterative process, the inertia weight ω and the evolution factor Ef  have the same trend. A large ω 
tends to jump out and explore in the global search. Smaller ω is beneficial to local search. Assuming that the 
initial value of ω is set to 0.9, the function describing the inertia weight ω and Ef  is shown in Formula (14).

The initial values of acceleration coefficients c1 and c2 are set to 2, and they can automatically adjust their 
values according to the evolution state given in Table 1

Selection strategy of delay information
TSDPSO uses the delay information of pbest and gbest to update the velocity equation according to the evolu-
tion state. The strategy for selecting the delay information is elucidated as follows. In the jump state, the current 
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globally optimal particle is willing to fly to a better solution, thus escaping from the local optimal solution. 
The delay information of pbest and gbest is more widely distributed in the search space. pi[k − τ1(ξ(k))] and 
pg [k − τ2(ξ(k))] are the best locations of the particles and groups encountered in the last iteration, which contain 
information about particles and groups. Therefore, selecting them to update the velocity equation contributes 
to jumping out of the local optimum. In the exploration state, selecting the delay value of pbest and gbest in the 
current iteration allows the particles to make autonomous exploration and also guides them to the historical 
global best position. In the development state, each particle uses its historical best position in the current itera-
tion pi[k − τ1(ξ(k))] and gbest, which can enhance local search and development. In the convergence state, all 
particles are willing to converge to the optimal solution as soon as possible within the global optimal region 
found. Therefore, particles should follow pbest and gbest in the current iteration to achieve the goal in this state.

Traction operation
Traction operation (PO) can be used to perform particle traction operation on the best position direction of the 
trapped particle in the last 10 movements in order to accelerate the convergence speed of PSO when the particle 
falls into the search area with poor fitness  values31. The operation allows particles to quickly leave the global 
poor region and search for the global optimal solution region, which can improve the particle search speed and 
algorithm convergence speed.

where fi represents the fitness value of particle i; fmin represents the minimum fitness value of the population; 
favg represents the average fitness value of the population. The adaptive traction factor fi−fmin

favg−fmin
 exerts a significant 

impact on the particles in the poor search area. In this study, PO was used to update the speed and position of 
particles (Formulae (7) and (8)). Figure 1A presents the TSDPSO algorithm to optimize SVM parameters.

Main reagents and instruments
A 128 row CT machine (Siemens, Germany), full-automatic biochemical analyzer (Sumikon, Japan), high-speed 
centrifuge (Shanghai Luxianyi Centrifuge Instrument Co., Ltd.), ultraviolet spectrophotometer (Hitachi Scientific 
Instrument Co., Ltd., USA), full-automatic radioimmunoassay γ counter (Science and Technology University 
Innovation Co., Ltd.), VITEK 2 compact full-automatic microbial analysis system (France BioMerier Co., Ltd.), 
API qualification system (France BioMerier Co., Ltd.), and Autopol V Plus AutoFill (Rudolph Company, USA) 
were adopted in this study.

Data processing
Data preprocessing is one of the biggest challenges in data mining. Typically, data preprocessing includes iden-
tification and processing of non-normal data, data coding, missing value process, data transformation and 
integration, data dimension reduction, etc. The uncertainty, inconsistency, and missing values of data are also 
other challenges in the data mining process. In this study, the collected data were preprocessed through the 
following  steps32–35.

Data cleaning
The primary objective of data cleaning is to ensure the accuracy, completeness, and reliability of the data for sub-
sequent analysis. Firstly, the data inspection stage entails carefully examining the data for any evident mistakes or 
discrepancies, such as missing values, duplicate entries, or incorrect data formats. Through the inspection process, 
a deeper understanding of the organization and potential problems related to datasets can be obtained. Then, 
any missing or duplicate data are eliminated from the collected dataset to ensure the integrity and uniqueness of 
the data. Moreover, the data are converted into a common data type that can be easily processed and analyzed. 
For example, if there is a mix of numeric and string data, all the values can be converted into numeric data if 
possible. Furthermore, in statistics, an outlier is an observation that lies an abnormal distance from other values 
in a random sample from a population. These extreme values can distort the results of the analysis and hence 
should be either removed or adjusted. In this study, the Z-score statistical method was employed to detect outliers 
( 68.26% ∈ [−σ , σ ]) . Once identified, the rows that contain these outliers would be excluded from the dataset.

(15)PO = fi − fmin

favg − fmin
rand(1)

{

pg [k − τ1(ξ(k))]− pi[k − τ1(ξ(k))]
}

Table 1.  TSDPSO algorithm parameter setting.

State ξ(k) c1 c2

Convergence 1 2 2

Exploration 2 2.1 1.9

Development 3 2.2 1.8

Jump out 4 1.8 2.2
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Feature normalization
Feature normalization is a technique used in ML and data analysis to standardize the features or variables of a 
dataset. It involves transforming the values of features so that they can have a similar scale or range. The purpose 
of feature normalization is to ensure that no specific feature dominates the learning process or algorithm due to 
its larger value range. This contributes to improving the performance and accuracy of the model. In this study, 
a method called min–max normalization was used to scale the features to a specific range. This normalization 
technique can be utilized to standardize the features and make them more comparable.

Data reduction
In datasets containing a large number of variables, dimensionality reduction techniques can be employed to 
decrease the number of variables while preserving the most significant information. The Principal Component 
Analysis (PCA) is a widely used method for dimensionality reduction in data analysis. As it can identify the 
most crucial features and simplify the dataset, this method exhibits special advantages in dealing with high-
dimensional data. The PCA algorithm comprises several steps, which are outlined below:

Step 1: Standardization: The first step in PCA is to standardize the data using the min–max method, where 
the minimum value is set to 0 and the maximum value is set to 1. This can be achieved by subtracting the mean 
from each feature and dividing by the standard deviation. Standardization ensures that all features are on the 
same scale, which is necessary for PCA to function effectively.

Step 2: Calculation of the Covariance Matrix: After standardization, the next step involves the calculation 
of the covariance matrix. The covariance matrix quantifies the relationship between each pair of features. It is 
a square matrix, with each element representing the covariance between two features. The covariance between 
feature i and feature j is calculated as the average of the product of their standardized values.

The formula above represents the covariance matrix C. In this formula, n represents the sample size, X rep-
resents the standardized data matrix, and XT represents the transpose of X.

(16)x̂i =
xi − min

j=1...n
xj

max
j=1...n

xj − min
j=1...n

xj

(17)C = 1

n
∗XXT

Figure 1.  Flowchart of data collection and algorithm optimization process in this study. (A) The Process of 
TSDPSO_SVM. (B) The overall design process.
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Step 3: Eigenvalue decomposition Once the covariance matrix is calculated, it would be decomposed into 
corresponding eigenvectors and eigenvalues. The eigenvectors represent the directions in the original feature 
space where the data varies the most, while the eigenvalues represent the amount of variance explained by each 
eigenvector. These eigenvectors are also referred to as the principal components.

Step 4: Selection of principal components In this step, the principal components can be selected based on their 
corresponding eigenvalues, with the aim of selecting the principal components that can explain the most variance 
in the data. These principal components can be ranked in descending order using the eigenvalues. A threshold 
can be set to determine the number of principal components to retain. To find the optimal eigenvectors, the scale 
parameter (n_components) can be set within the range of [0,1].

Step 5: Projection After selecting the principal components, the data can be projected onto the new feature 
space defined by these components. This can be achieved by taking the dot product of standardized data and 
selected principal components. The result is a transformed dataset with reduced dimensionality.

SPSS24.0 was used to randomly select 80% of the samples as the training set (3809 patients in the FRI group 
and 3809 patients in the Non-FRI group) for the training of the model, and 20% of the samples as the test set 
(1904 patients in the FRI group and 1904 patients in the Non-FRI group). The quantitative characteristic val-
ues (height, age, etc.) of samples were normalized, so that the sample characteristics were distributed between 
[− 1,1]. This can eliminate the impact of differences in the quantity order and unit of quantitative samples on 
model training and prediction. The feature set of initially selected patients comprised medical imaging features, 
demographic features, clinical signs, microbiology features, and serum inflammatory markers. In this study, the 
PCA was adopted to reduce the dimension of  features36.

Model establishment and evaluation
A multi-dimensional feature fusion joint classification algorithm was proposed to design an FRI recognition 
method. The overall design process of this method is shown in Fig. 1B. After feature extraction, feature dimen-
sionality reduction, and feature fusion, the training set and test set of patients in the FRI group and benign 
group were trained and tested, respectively, by SVM, BP, RF, XGBoost, and TSDPSO-SVM. Evaluation indica-
tors, including the confusion matrix, accuracy, area under the curve (AUC), recall (TPR, sensitivity), specificity, 
F1, false positive rate (FPR,1- specificity), and precision calculated by true positives (TP), false positives (FP), 
true negatives (TN), and false negatives (FN), were used to evaluate the performance of each model. A higher 
AUC value indicated a better overall performance of the current feature. AUC < 0.5 indicated that there was no 
diagnostic significance; AUC ranging from 0.5 to 0.7 indicated that the diagnostic accuracy of the model was 
low; AUC ranging from 0.7 to 0.9 indicated that the degree of authenticity was good; AUC > 0.9 indicated that 
the degree of authenticity was very high.

Ethics approval and consent to participate
As a retrospective study, the research involving human subjects underwent review and received approval from 
the Ethics Committee of Jinling Hospital. The study adhered to the guidelines set in the Helsinki Declaration. The 
need for Informed Consent was waived by the Ethics Committee of Jinling Hospital, owing to the retrospective 
nature of the study (Nanjing, China; 27 December 2022; approval number 2022NZKY-066-13).

Results
Simulation analysis of algorithm performance
In order to verify the performance of TSDPSO, six common algorithm performance test functions (Griewank 
function, Rastigin function, Alpine function, Ackley function, Rosenbrock function, and Sphere function) were 
selected to evaluate the algorithm performance. The six functions can be expressed as follows:

In this study, six test functions were selected to test the performance of TSDPSO-SVM (Fig. 2). The superior-
ity of TSDPSO-SVM was verified by comparing the results of six test functions of the BP neural network model, 
RF random forest model, SVM model, and XGBoost model. Through comparison, it was found that compared 
with the other three algorithms, TSDPSO-SVM delivered the best robustness, the fastest convergence speed, 
and the best optimization ability.
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Results of feature dimension reduction based on the PCA method
The multi-dimensional feature data set collected in this study included 97 features, covering medical imaging fea-
tures, demographic features, clinical signs, microbiology features, and serum inflammatory markers of patients. 
In this study, the PCA method was employed to reduce the dimensions of these collected multidimensional 
features. In order to find the optimal eigenvector, the scale parameter (n_components) was set to be [0,1] and 
dynamically increased. BP, RF, SVM, XGBoost, and TSDPSO-SVM were used to perform unsupervised learning 
on the “optimal feature set” after dimensionality reduction. The results are shown in Figs. 3A–E. When the value 
of n_components was 0.227, the training accuracy of each model tended to be stable, and the number of features 
after dimensionality reduction was 22. When the value of n_components was 0.227, the variance contribution 
rate and cumulative variance contribution rate were analyzed for the selected “optimal feature set” (Fig. 3F).

Identification results of each model
According to PCA, 22 indicators were selected, including nonunion of bone, fracture, staphylocus aureus, pseu-
domonas aeruginosa, persistent exudation, age, hyperosteogeny, bone defect, periodic reaction, sinus, fibrous or 
decision rule, discharge pus, trauma, escherichia coli, etc., to establish models, including RF, BP, SVM, XGBoost, 
and TSDPSO-SVM. First, the data were preprocessed as described above and then randomly divided into a train-
ing set (7618, 80%) and a test set (1904, 20%). The proportion (1:1) of the FRI group and the Non-FRI group 
in the training set was consistent with that in the test set. Besides, the tenfold cross-test method was utilized to 
train the model and obtain the best model parameters. Specifically, the training set was divided into ten parts, 
nine of which were used to train the model, and the rest one was used to validate the model. The average value 
of ROC (AV-ROC) (calculated ten times) was recorded as an indicator of the evaluation model. The number 
of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) of the training model and 
test model results were recorded. The evaluation indicators of each model, including recall, specificity, F1 score 
accuracy, area under the curve (AUC), recall (TPR, sensitivity), specificity, F1, false positive rate FPR, and speci-
ficity, were calculated by TP, FP, TN, and FN. The training and test results are shown in Fig. 4A. The test results 
are shown in Table 2. The ROC curve and PR curve of the five models are plotted, as shown in Figs. 4B and 4C.

As per these findings, age was identified as a significant factor. However, clinical observations suggested that 
there might be variations in infection characteristics among patients in different age groups. As a result, for the 
purpose of this study, patients were divided into four distinct groups based on their age: the children group 
(8–17 years old, FRI vs. Non-FRI: 64 vs. 107), the youth group (18–34 years old, FRI vs. Non-FRI: 800 vs. 814), the 
middle-age group (35–65 years old, FRI vs. Non-FRI: 1,766 vs. 1842), and the elderly group (≥ 66 years old, FRI 
vs Non-FRI: 2131 vs. 1998). To ensure statistical validity, the children group and the youth group were combined 
into a single teenager group due to the limited number of patients. The classification is illustrated in Fig. 5A.

In this study, five models (RF, BP, SVM, XGBoost, and TSDPSO-SVM) were constructed based on other 
21 features, including nonunion of bone, fracture, staphylocus aureus, pseudomonas aeruginosa, etc. (without 
age). Each age group underwent separate analyses, and five models were also trained based on these patients, 
with 80% of patients as the training set and the remaining 20% as the test set. The results of these analyses are 
presented in Table 3 and Figs. 5B–G.

Figure 2.  Performance test results of these algorithms. (A) Results of the algorithm performance test using 
Griewank function (A), Rastigin function (B), Alpine function (C), Ackley function (D), Rosenbrock function 
(E), and Sphere function (F). The abscissa represents the number of iterations, and the ordinate represents the 
missing function.
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Discussion
In the twenty-first century, with the advancement of transportation and industry, the incidence of various high-
energy injuries caused by traffic accidents and high-altitude falls has increased  significantly37,38. Most of these 
patients have open wounds, with a significantly increased risk of soft tissue injury and exposure to external con-
ditions. The risk of postoperative infection is also increased. In recent years, although many surgical treatments 
have been applied in clinical practice, surgical stability and anti-infection treatment have reached a certain level. 
The incidence of postoperative infection is still high, and perioperative anti-infection treatment remains a clinical 
 challenge39. FRI is a common serious complication in orthopedics. Staphylococcus aureus and Escherichia coli are 
the main pathogens of FRI. It has been demonstrated that FRI will not only aggravate the patient’s condition but 
also increase the difficulty of  treatment40. Postoperative infection without timely treatment can easily affect the 
efficacy of orthopedic surgery, and may even induce lung infection, kidney infection, and other life-threatening 
diseases. Therefore, in the treatment of such patients, it is of great significance to predict the FRI of patients by 
analyzing the infectivity index of patients in time to improve the prognosis of  patients41.

The lack of a clear definition has hindered the diagnosis and treatment of FRI. According to the research 
group of 2018 International Consensus Conference, suppurative drainage and wound dehiscence/rupture are 

Figure 3.  Results of feature dimension reduction based on the PCA method. RF (A), BP (B), SVM (C), 
XGBoost (D), and TSDPSO-SVM (E). When setting the parameters for the RF model, there are several 
important factors to consider: Number of trees: 100, Maximum depth: 6, Minimum samples split: 2, Minimum 
samples per leaf: 1, Maximum features: 5. The parameters of the BP model can exert a significant impact on its 
performance and convergence. There are several important parameters that need to be set: Learning rate (η): 
0.01, Activation function: sigmoid, Training target error: 1e−3, Maximum number of iterations: 10,000, Power 
factor: 0.9, and Number of hidden layers and neurons: 2 and 10*6. When training an SVM model, there are 
several important parameters that need to be considered: Kernel function: RBF, Penalty parameter: 1, and Error 
convergence conditions: 1e−3, and there is no limit on the maximum number of iterations. Some important 
parameter settings for the XGBoost model are presented as follows: Booster type: gbtree, Learning rate: 0.1, 
Gamma: 0, Lambda: 0, Alpha: 0, Maximum depth of a tree: 6, Minimum sum of instance weight needed in a 
child: 1, Subsample ratio of the training instance: 1, Subsample ratio of columns when constructing each tree: 
1, and Number of boosting rounds: 10. In the TSDPSO-SVM model, there are several important parameters 
that need to be set: Swarm size: 20, Maximum number of iterations: 500, Cognitive parameter (C1): 2, Social 
parameter (C2): 2, Maximum speed: 4, Inertia weight: 0.9, and Convergence criteria: 1e−3. All parameter 
settings in the SVM process are specific to the SVM model. In the models, the feature set after dimensionality 
reduction is used to conduct unsupervised learning on FRI case samples. The abscissa represents the number 
of features in the feature set. The ordinate represents the test error rate. (F) Results of the variance contribution 
rate and cumulative variance contribution rate of the “optimal feature set”. The histogram represents the variance 
contribution rate, and the red line represents the cumulative variance contribution rate. The ordinate represents 
the selected feature set.
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considered confirmatory signs of infection, while other local clinical symptoms, such as pain, fever, redness, and 
swelling, can only be regarded as indicative features of  infection42,43. It is important to interpret serum inflam-
matory markers carefully when diagnosing FRI. Although patients with FRI tend to exhibit higher levels of ESR, 
CRP, and lysozyme activity, the diagnosis of FRI cannot be made relying solely on a single serum inflammatory 
 marker44. Common imaging methods used for diagnosing FRI include conventional X-ray, CT, and MRI. In 
addition, techniques such as bone scan (BS), positron emission tomography (PET), and scintigraphy using white 
blood cells or antigranulocyte antibodies are also  employed45–47. Typically, conventional radiography is the initial 
step when FRI is suspected. Radiological signs that suggest FRI include implant loosening, bone lysis, non-union, 
sequestration, and periosteal bone formation. The choice of imaging modality depends on such factors as local 
availability, clinical inquiries, and the expertise of medical  specialists48. Although nuclear imaging has favorable 
diagnostic accuracy, the presence of FRI cannot be definitively established only based on this method. While 
conventional culture is considered the “gold standard” for diagnosing bacterial infections, it may still produce 
false negative and false positive results for complex fractures like tibial plateau  fractures49,50.

In recent years, there has been an increasing number of scholars conducting research on the diagnosis and 
treatment of FRI, which has resulted in significant advancements. In 2019, Justin V C Lemans et al. conducted a 
retrospective cohort study that included all patients who were suspected of having FRI and underwent 18F-FDG 

Figure 4.  Calculation results of training and test accuracy of each model. (A) The recognition results of five 
models in the training set, in which red represents TP, green represents FN, yellow represents FP, and blue 
represents TN. (B) ROC curves of five models. (C) PR curves of five models.

Table 2.  Test results of each model in the test set. AUC represents the area under the curve value of the 
variable.

Model AUC ACC (%) Recall (%) Specificity (%) FPR (%) Precision (%) F1

RF 0.86 92.86 91.49 94.22 5.78 94.06 0.93

BP 0.79 91.28 90.65 92.11 7.89 92.00 0.91

SVM 0.74 90.86 89.18 92.54 7.46 92.28 0.91

XGBoost 0.84 92.33 91.91 92.75 7.25 92.69 0.92

TSDPSO-SVM 0.91 96.74 98.32 95.17 4.83 95.32 0.97
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PET/CT at two primary trauma centers between 2011 and 2017. The qualitative assessment of 18F-FDG PET/
CT scans showed a sensitivity of 0.89, specificity of 0.80, PPV of 0.74, NPV of 0.91, and diagnostic accuracy 
of 0.8314. In 2022, Hassan Farooq et al. conducted a prospective case–control study to compare plasma protein 
inflammatory biomarkers and mid-infrared (MIR) spectral patterns between patients with confirmed FRI and 
an uninfected control group. They developed a predictive model based on multivariate analysis and enzyme-
linked immunosorbent assay–based biomarkers. The model had a sensitivity of 69.2% and an accuracy of 84.5%12. 
In 2018, a quantitative study was conducted by M. Morgenstern et al. This study aimed to analyze the clinical 
features, microbiology culture results, and historical data of 156 ecologically treated non-observations in order 
to determine the likelihood of associated infections. A cut-off point was established, whereby the absence of 
neutrophils in any high-power field was used to diagnose aseptic non-union. The study found a sensitivity of 
85% and specificity of 98%, resulting in an overall accuracy of 92%15.

In this study, the records of 4761 patients from the FRI Registry of Qinhuai Medical District, the General 
Hospital of the Eastern Theater of the Chinese People’s Liberation Army from January 1, 2010 to May 31, 
2022 were retrospectively analyzed. Besides, multidimensional characteristics of the sample set were collected, 
including imaging features, demographic features, clinical signs, microbiology features, and serum inflamma-
tory markers. In addition, the principal component analysis (PCA) method was used to reduce the dimension 
of features, thus reducing the redundancy of data and improving the generalization ability of the models. A new 
classification model was developed based on the improved PSO SVM model. Guided by the selection strategy 
and traction operation of delayed information, the particles can jump out of the local optimum and converge 
to the global optimum faster. Moreover, five ML algorithms, including TSDPSO-SVM, were used to distinguish 
FRI from Non-FRI. A 4761 * 2 * 22 data set was used and randomly divided into the training set and the test set 
with a ratio of 8:2 (FRI: Non-FRI = 1:1).

In this study, the data on patients with FRI over the past 12 years were collected, and a novel ML algorithm 
called TSDPSO-SVM was also constructed. Additionally, RF, BP, SVM, and XGBoost models were also established 
based on the research objectives and research questions (RQs). Through these scientific efforts, the following 
conclusions regarding the four RQs were reached.

RQ-1 In order to evaluate the performance of the TSDPSO-SVM algorithm in identifying FRI, a series of 
experiments were conducted. Compared with conventional diagnostic methods, TSDPSO-SVM increased the 
accuracy in the recognition of FRI by 4.74–13.74%12,14,15. By comparing the accuracy, recall, precision, and F1 
score of TSDPSO-SVM with those of RF, BP, SVM, and XGBoost, its effectiveness can be verified. Griewank 

Figure 5.  Age distribution of patients in each group and test results of patients in each group. (A) Age 
distribution results of FRI and Non-FRI patients. Green represents the age distribution of adolescent patients 
with FRI, comprising 864 patients. Black represents the age distribution of middle-aged patients with FRI, 
comprising 1766 patients. Blue represents the age distribution of the elderly with FRI, comprising 2131 patients. 
Additionally, brown represents a group of adolescents with Non-FRI, consisting of 921 patients. Purple 
represents middle-aged patients with Non-FRI, totaling 1842 patients. Lastly, yellow represents the elderly with 
non-FRI, including 1998 patients. (B–G) represent the evaluation metrics of the test set for each age group used 
by RF, BP, SVM, XGBoost, and TSDPSO-SVM. These metrics include the area under the curve (AUC), recall, 
specificity, false positive rate (FPR), precision, and F1 score.
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and other test functions were also adopted to validate the superiority of TSDPSO-SVM. FRI and Non-FRI were 
distinguished by using the sample characteristics collected from various aspects. The AUC of TSDPSO-SVM was 
higher than 0.91, at least 5% higher than that of the other three models. Compared with Random Forest (RF), 
Backpropagation Neural Network (BP), and SVM, TSDPSO-SVM demonstrated remarkable accuracy in the 
test set ( χ2 = 29.17, 50.46, 56.66, 35.88,P < 0.01 ). The recall of TSDPSO-SVM was also significantly improved 
( χ2 = 91.78, 107.42, 135.69, 97.61P < 0.01 ). Compared with BP and SVM, the specificity of TSDPSO-SVM was 
significantly improved (FPR was significantly reduced) ( χ2 = 14.84, 11.38,P < 0.01 ). In terms of precision, the 
same results were obtained in TSDPSO-SVM. Compared with other algorithms, TSDPSO-SVM has the best 
robustness, the fastest convergence speed, and the best optimization ability.

RQ-2 Regarding the identification of FRI, TSDPSO-SVM may have the following advantages. SVM performed 
well in handling non-linear classification problems, and TSDPSO can help optimize the parameters of SVM mod-
els, thereby improving accuracy and stability (They have been described in RQ-1). However, TSDPSO-SVM also 
has some limitations. For example, it has higher computational complexity and lacks interpretability, which can 
be considered as black boxes, indicating that it is difficult to explain the decision-making process. This limitation 
may cause a hindrance to clinicians to understand and trust the recommendations made by these algorithms.

RQ-3 These patients were also divided based on their age, and five models were also utilized to distinguish 
FRI from non-FRI patients. Besides, it was also confirmed that the age of individual patients can significantly 
affect the effectiveness of TSDPSO-SVM in identifying infections. This implied that fracture risks associated 
with different age groups may vary, and hence age-specific factors should also be considered. Through multiple 
experiments, it was observed that although TSDPSO-SVM may exhibit slight fluctuations in accuracy, the recall, 
accuracy, and F1 score can remain consistently high across various age groups. For instance, TSDPSO-SVM 
consistently achieved a recognition accuracy above 95% and an accuracy exceeding 93% for different age groups. 
These findings demonstrated the robustness of TSDPSO-SVM in accurately distinguishing between FRI and 
Non-FRI patients across diverse age groups.

RQ-4 TSDPSO-SVM was validated to be stable across various sample sizes, age compositions, and data dis-
tribution patterns. This contributed to its high applicability in scenarios involving the detection of FRI. In the 

Table 3.  Calculation results of training and test accuracy of each age group.

Age group Model Group

Training set

Acc of training set (%)

Test set

Acc test set (%)FRI Non-FRI FRI Non-FRI

Teenagers group

RF
FRI 644 59

92.58
162 18

91.88
Non-FRI 47 678 11 166

BP
FRI 631 68

91.04
157 17

90.76
Non-FRI 60 669 16 167

SVM
FRI 634 66

91.39
159 20

90.48
Non-FRI 57 671 14 164

XGBoost
FRI 646 49

93.42
163 16

92.72
Non-FRI 45 688 10 168

TSDPSO-SVM
FRI 659 24

96.08
169 12

95.52
Non-FRI 32 713 4 172

Middle-aged group

RF
FRI 1334 103

93.70
333 26

93.62
Non-FRI 79 1371 20 342

BP
FRI 1331 110

93.35
329 29

92.65
Non-FRI 82 1364 24 339

SVM
FRI 1328 123

92.80
328 24

93.20
Non-FRI 85 1351 25 344

XGBoost
FRI 1358 98

94.70
329 21

93.76
Non-FRI 55 1376 24 347

TSDPSO-SVM
FRI 1389 53

97.33
332 12

95.42
Non-FRI 24 1421 21 356

Elderly group

RF
FRI 1644 77

95.82
411 22

95.52
Non-FRI 61 1521 15 378

BP
FRI 1619 94

94.55
400 25

93.83
Non-FRI 86 1504 26 375

SVM
FRI 1611 97

94.22
401 29

93.46
Non-FRI 94 1501 25 371

XGBoost
FRI 1631 57

96.03
406 14

95.88
Non-FRI 74 1541 20 386

TSDPSO-SVM
FRI 1698 30

98.88
418 9

97.94
Non-FRI 7 1568 8 391
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field of clinical medicine, this algorithm can aid doctors in accurately assessing the risk of infections in patients, 
leading to favorable treatment strategies. Furthermore, the versatility of this algorithm implies its potential 
application in such fields as biomedical research and predictive modeling.

In this study, the multiple eigenvector fusion technology was used to evaluate and compare the performance 
of five models in the differentiation between FRI and Non-FRI. It was validated that TSDPSO-SVM had the 
maximum overall prediction ability and could effectively distinguish between FRI and Non-FRI. In addition, 22 
characteristics, such as nonunion of bone, fracture, Staphylococcus aureus, Pseudomonas aeruginosa, persistent 
exudation, and age, were ranked based on their medical importance in the differentiation between FRI and Non-
FRI. These efforts may also conduce to the early diagnosis of FRI and can also provide reference for clinicians, 
especially those with insufficient experience. Further, it was found that the cumulative interpretable variation of 
the top 9 features exceeded 80%, which may exert a greater impact on the predictability of the model. Despite 
certain accomplishments in this study, there are still some limitations and assumptions that need to be addressed.

1. Limitations of data collection Data collection of FRI is a complex and labor-intensive task. In this study, it can 
be assumed that accurate and comprehensive datasets related to FRI have been collected. However, in the 
real world, due to many limitations, such as limited time, resources, and manpower, there may be a failure 
to obtain datasets with sufficient scales and diversities.

2. Limitations of feature selection In this study, a multi-dimensional feature fusion method was adopted to 
combine information from different feature dimensions for the identification of FRI. However, in practical 
applications, there may be a failure to obtain all potentially valuable features. Additionally, there may also 
be deviations or errors in feature selection, which could result in a decrease in the model’s performance.

3. General limitations of experimental results This study primarily focuses on the specific issue of FRI, and 
hence the model’s performance can only be evaluated in this particular context. However, the application 
and performance of this model in other medical fields still require further evaluation and validation.

4. Limitations on interpretability As a black box model, TSDPSO-SVM has certain limitations in terms of inter-
preting corresponding recognition results. In practical applications, being able to explain the model’s results 
may be important for clinicians and patients. Therefore, further research and exploration are necessary to 
improve the model’s interpretability.

In summary, the combination of the TSDPSO-SVM model and the multidimensional feature fusion method 
proposed in this study has certain limitations in the identification of FRI. Nonetheless, it still holds significant 
value in improving the accuracy and efficiency of the identification of FRI. Future research can focus on these 
limitations to enhance the performance and reliability of models related to the identification of FRI.
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reservation.

Received: 11 March 2023; Accepted: 2 November 2023

References
 1. Iliadis, A. D. et al. Current concepts in the prevention, diagnosis and treatment of fracture-related infection (FRI). Eur. J. Orthop. 

Surg. Traumatol. 31(5), 957–966. https:// doi. org/ 10. 1007/ s00590- 021- 02956-8 (2021).
 2. Govaert, G. A. M. et al. Diagnosing Fracture-related infection: Current concepts and recommendations. J. Orthop. Trauma 34(1), 

8–17. https:// doi. org/ 10. 1097/ BOT. 00000 00000 001614 (2020).
 3. Moriarty, T. F. et al. Fracture-related infection. Nat. Rev. Dis. Prim. 8(1), 67. https:// doi. org/ 10. 1038/ s41572- 022- 00396-0 (2022).
 4. Valderrama-Molina, C. O. & Pesántez, R. Fracture-related infection—The role of the surgeon and surgery in prevention and treat-

ment. J. Orthop. Surg. (Hong Kong) 30(3), 10225536221118520. https:// doi. org/ 10. 1177/ 10225 53622 11185 20 (2022).
 5. Walter, N., Orbenes, N., Rupp, M. & Alt, V. The state of research in fracture-related infection-a bibliometric analysis. Medicina 

(Kaunas) 58(9), 1170. https:// doi. org/ 10. 3390/ medic ina58 091170 (2022).
 6. Hadizie, D., Kor, Y. S., Ghani, S. A. & Mohamed-Saat, M. A. The incidence of fracture-related infection in open tibia fracture with 

different time interval of initial debridement. Malays. Orthop. J. 16(3), 24–29. https:// doi. org/ 10. 5704/ MOJ. 2211. 005 (2022).
 7. Li, C., Foster, A. L., Han, N. H. B., Trampuz, A. & Schuetz, M. A bibliometric analysis of clinical research on fracture-related infec-

tion. Biomed. Res. Int. 2022, 8171831. https:// doi. org/ 10. 1155/ 2022/ 81718 31 (2022).
 8. Stucken, C., Olszewski, D. C., Creevy, W. R., Murakami, A. M. & Tornetta, P. Preoperative diagnosis of infection in patients with 

nonunions. J. Bone Jt. Surg. Am. 95(15), 1409–1412. https:// doi. org/ 10. 2106/ JBJS.L. 01034 (2013).
 9. Jenny, J. Y., Gaudias, J., Bourguignat, A., Férard, G. & Kempf, I. La protéine C-reactive protein and transthyretin in early diagnosis 

of infection after open fractures of the lower limbs (a preliminary study). Rev. Chir. Orthop. Repar. Appar. Mot. 85(4), 321–327 
(1999).

 10. Bourguignat, A., Férard, G., Jenny, J. Y., Gaudias, J. & Kempf, I. Diagnostic value of C-reactive protein and transthyretin in bone 
infections of the lower limb. Clin. Chim. Acta. 255(1), 27–38. https:// doi. org/ 10. 1016/ 0009- 8981(96) 06388-7 (1996).

 11. Berbari, E. et al. Inflammatory blood laboratory levels as markers of prosthetic joint infection: A systematic review and meta-
analysis. J. Bone Jt. Surg. Am. 92(11), 2102–2109. https:// doi. org/ 10. 2106/ JBJS.I. 01199 (2010).

 12. Farooq, H. et al. Utility of plasma protein biomarkers and mid-infrared spectroscopy for diagnosing fracture-related infections: 
A pilot study. J. Orthop. Trauma 36(10), e380–e387. https:// doi. org/ 10. 1097/ BOT. 00000 00000 002379 (2022).

 13. Jenny, J. Y., Gaudias, J., Bourguignat, A., Férard, G. & Kempf, I. La protéine C-réactive et la transthyrétine dans le diagnostic précoce 
de l’infection après fracture ouverte des membres inférieurs (étude préliminaire) [C-reactive protein and transthyretin in early 
diagnosis of infection after open fractures of the lower limbs (a preliminary study)]. Rev. Chir. Orthop. Repar. Appar. Mot. 85(4), 
321–327 (1999).

 14. Lemans, J. V. C. et al. The diagnostic accuracy of 18F-FDG PET/CT in diagnosing fracture-related infections. Eur. J. Nucl. Med. 
Mol. Imaging 46(4), 999–1008. https:// doi. org/ 10. 1007/ s00259- 018- 4218-6 (2019).

https://doi.org/10.1007/s00590-021-02956-8
https://doi.org/10.1097/BOT.0000000000001614
https://doi.org/10.1038/s41572-022-00396-0
https://doi.org/10.1177/10225536221118520
https://doi.org/10.3390/medicina58091170
https://doi.org/10.5704/MOJ.2211.005
https://doi.org/10.1155/2022/8171831
https://doi.org/10.2106/JBJS.L.01034
https://doi.org/10.1016/0009-8981(96)06388-7
https://doi.org/10.2106/JBJS.I.01199
https://doi.org/10.1097/BOT.0000000000002379
https://doi.org/10.1007/s00259-018-4218-6


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19632  | https://doi.org/10.1038/s41598-023-46526-w

www.nature.com/scientificreports/

 15. Morgenstern, M. et al. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Jt. J. 100-B(7), 
966–972. https:// doi. org/ 10. 1302/ 0301- 620X. 100B7. BJJ- 2018- 0052. R1 (2018).

 16. Palmer, M., Costerton, W., Sewecke, J. & Altman, D. Molecular techniques to detect biofilm bacteria in long bone nonunion: A 
case report. Clin. Orthop. Relat. Res. 469(11), 3037–3042. https:// doi. org/ 10. 1007/ s11999- 011- 1843-9 (2011).

 17. Costerton, J. W. et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol. Med. Microbiol. 
61(2), 133–140. https:// doi. org/ 10. 1111/j. 1574- 695X. 2010. 00766.x (2011).

 18. Palmer, M. P. et al. Can we trust intraoperative culture results in nonunions?. J. Orthop. Trauma 28(7), 384–390. https:// doi. org/ 
10. 1097/ BOT. 00000 00000 000043 (2014).

 19. Jordan, R. W. et al. Does intraoperative tissue sample enrichment help or hinder the identification of microorganisms in prosthetic 
joint infection?. Eur. J. Orthop. Surg. Traumatol. 25(4), 731–736. https:// doi. org/ 10. 1007/ s00590- 014- 1564-3 (2015).

 20. Issa, N. T., Stathias, V., Schürer, S. & Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. In: 
Seminars in Cancer Biology 68, 132–142. https:// doi. org/ 10. 1016/j. semca ncer. 2019. 12. 011 (2021)

 21. Tran, K. A. et al. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 13(1), 152. https:// doi. org/ 
10. 1186/ s13073- 021- 00968-x (2021).

 22. Jones, O. T. et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and 
primary care settings: A systematic review. Lancet Digit. Health. 4(6), e466–e476. https:// doi. org/ 10. 1016/ S2589- 7500(22) 00023-1 
(2022).

 23. Huang, S. et al. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. 15(1), 41–51. 
https:// doi. org/ 10. 21873/ cgp. 20063 (2018).

 24. Peng, Z. et al. Application of radiomics and machine learning in head and neck cancers. Int. J. Biol. Sci. 17(2), 475–486. https:// 
doi. org/ 10. 7150/ ijbs. 55716 (2021).

 25. Schölkopf, B. & Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 
2001).

 26. Zhang, J. et al. Application of support vector machine models for predicting disease outcomes. J. Biomed. Inform. 42(5), 760–766. 
https:// doi. org/ 10. 1016/j. jbi. 2009. 02. 002 (2009).

 27. Clerc, M. & Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE 
Trans. Evolut. Comput. 6(1), 58–73. https:// doi. org/ 10. 1109/ 4235. 985692 (2002).

 28. Eberhart, R. & Shi, Y. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress 
on Evolutionary Computation, Vol. 2, 81–86 (Seoul, South Korea). https:// doi. org/ 10. 1109/ CEC. 2001. 934374 (2001)

 29. Nikose, Y. et al. Markov model-Quantifying outlook towards success of tobacco cessation counseling. J. Fam. Med. Prim. Care 
11(8), 4263–4266. https:// doi. org/ 10. 4103/ jfmpc. jfmpc_ 2096_ 21 (2022).

 30. Menary, R. & Gillett, A. J. Markov blankets do not demarcate the boundaries of the mind. Behav. Brain Sci. 45, e201. https:// doi. 
org/ 10. 1017/ S0140 525X2 20003 71 (2022).

 31. Haarman, S. E., Kim, S. Y., Isogai, T., Dean, K. M. & Han, S. J. Particle retracking algorithm capable of quantifying large, local matrix 
deformation for traction force microscopy. PLoS One 17(6), e0268614. https:// doi. org/ 10. 1371/ journ al. pone. 02686 14 (2022).

 32. Sztanka-Toth, T. R., Jens, M., Karaiskos, N. & Rajewsky, N. Spacemake: Processing and analysis of large-scale spatial transcriptomics 
data. Gigascience 11, giac064. https:// doi. org/ 10. 1093/ gigas cience/ giac0 64 (2022).

 33. Sharma, P., Shamout, F. E., Abrol, V. & Clifton, D. A. Data pre-processing using neural processes for modeling personalized vital-
sign time-series data. IEEE J. Biomed. Health Inform. 26(4), 1528–1537. https:// doi. org/ 10. 1109/ JBHI. 2021. 31075 18 (2022).

 34. Lindstad, S. & Ludvigsen, K. R. When is the processing of data from medical implants lawful? The legal grounds for processing 
health-related personal data from ICT implantable medical devices for treatment purposes under EU data protection law. Med. 
Law Rev. https:// doi. org/ 10. 1093/ medlaw/ fwac0 38 (2022).

 35. Kong, X. et al. Disease-specific data processing: An intelligent digital platform for diabetes based on model prediction and data 
analysis utilizing big data technology. Front. Public Health 10, 1053269. https:// doi. org/ 10. 3389/ fpubh. 2022. 10532 69 (2022).

 36. Ishibashi, H. & Akaho, S. Principal component analysis for Gaussian process posteriors. Neural Comput. 34(5), 1189–1219. https:// 
doi. org/ 10. 1162/ neco_a_ 01489 (2022).

 37. Zhang, Y. et al. Analysis of risk factors of surgical site infection after orthopedic surgery in adults: A systematic review and meta-
analysis. J. Orthop. Surg. Res. 15(1), 56 (2020).

 38. Wang, Y., Liu, X., Han, Y., Han, J. & Guo, X. Risk factors for postoperative infection in orthopedic surgery: A systematic review 
and meta-analysis. J. Hosp. Infect. 101(4), 398–406 (2019).

 39. Kanakaris, N. K., Kontakis, G. & Giannoudis, P. V. The incidence and risk of surgical site infections in clean surgical procedures: 
A systematic review and meta-analysis. Surg. Infect. 12(6), 459–470 (2011).

 40. Cui, Q. & Zhang, W. Prevention of infection in orthopedic implant surgery. Orthop. Surg. 11(5), 770–777 (2019).
 41. Tang, Y., Wang, J., Wang, H., Liu, Y. & Zhou, J. Infection control and management strategy for orthopedic surgery in the COVID-

19 pandemic. J. Orthop. Surg. Res. 15(1), 343 (2020).
 42. Zimmerli, W. & Sendi, P. Orthopaedic biofilm infections. APMIS 125(4), 353–364. https:// doi. org/ 10. 1111/ apm. 12680 (2017).
 43. Tande, A. J. & Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 27(2), 302–345. https:// doi. org/ 10. 1128/ CMR. 00111- 13 

(2014).
 44. van den Kieboom, J. et al. Diagnostic accuracy of inflammatory markers for diagnosing delayed prosthetic joint infections: A 

systematic review and meta-analysis. J. Bone Jt. Surg. Am. 100(18), 1610–1619. https:// doi. org/ 10. 2106/ JBJS. 17. 01244 (2018).
 45. Osmon, D. R. et al. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases 

Society of America. Clin. Infect. Dis. 56(1), e1–e25. https:// doi. org/ 10. 1093/ cid/ cis803 (2013).
 46. McNally, M. et al. Management of infection following total knee arthroplasty: A multidisciplinary approach. Bone Jt. J. 98-B(1 

Suppl A), 11–19. https:// doi. org/ 10. 1302/ 0301- 620X. 98B1. 36590 (2016).
 47. Parvizi, J., Gehrke, T. & Chen, A. F. Proceedings of the international consensus meeting on periprosthetic joint infection. Bone Jt. 

J. 95-B(11), 1450–1452. https:// doi. org/ 10. 1302/ 0301- 620X. 95B11. 33135 (2013).
 48. Glaudemans, A. W. J. M. et al. The use of 18F-FDG PET/CT for diagnosis and treatment monitoring of inflammatory and infectious 

bone and joint diseases. J. Nucl. Med. 57(6), 886–898. https:// doi. org/ 10. 2967/ jnumed. 115. 167361 (2016).
 49. Palestro, C. J., Love, C., Tronco, G. G., Tomas, M. B. & Rini, J. N. Combined labeled leukocyte and technetium 99m sulfur colloid 

bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 26(3), 859–870. https:// doi. org/ 10. 1148/ rg. 263055 
(2006).

 50. Zhang, Y., Li, H., Li, Y., Li, X. & Zhang, W. Current progress and challenges in diagnosis and treatment of fracture-related infec-
tions. Regen. Biomater. 8(1), rbab009. https:// doi. org/ 10. 1093/ rb/ rbab0 09 (2021).

Acknowledgements
The authors thank Professor CY LIU for help in data analysis. The authors thank Dr. Z ZHANG for suggestions 
and corrections that improved the text.

https://doi.org/10.1302/0301-620X.100B7.BJJ-2018-0052.R1
https://doi.org/10.1007/s11999-011-1843-9
https://doi.org/10.1111/j.1574-695X.2010.00766.x
https://doi.org/10.1097/BOT.0000000000000043
https://doi.org/10.1097/BOT.0000000000000043
https://doi.org/10.1007/s00590-014-1564-3
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1016/S2589-7500(22)00023-1
https://doi.org/10.21873/cgp.20063
https://doi.org/10.7150/ijbs.55716
https://doi.org/10.7150/ijbs.55716
https://doi.org/10.1016/j.jbi.2009.02.002
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.4103/jfmpc.jfmpc_2096_21
https://doi.org/10.1017/S0140525X22000371
https://doi.org/10.1017/S0140525X22000371
https://doi.org/10.1371/journal.pone.0268614
https://doi.org/10.1093/gigascience/giac064
https://doi.org/10.1109/JBHI.2021.3107518
https://doi.org/10.1093/medlaw/fwac038
https://doi.org/10.3389/fpubh.2022.1053269
https://doi.org/10.1162/neco_a_01489
https://doi.org/10.1162/neco_a_01489
https://doi.org/10.1111/apm.12680
https://doi.org/10.1128/CMR.00111-13
https://doi.org/10.2106/JBJS.17.01244
https://doi.org/10.1093/cid/cis803
https://doi.org/10.1302/0301-620X.98B1.36590
https://doi.org/10.1302/0301-620X.95B11.33135
https://doi.org/10.2967/jnumed.115.167361
https://doi.org/10.1148/rg.263055
https://doi.org/10.1093/rb/rbab009


15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19632  | https://doi.org/10.1038/s41598-023-46526-w

www.nature.com/scientificreports/

Author contributions
X.F.H. contributed to article writing. X.F.Z. was responsible for article technical guidance and article revision. 
J.M.C. designed the study and guided the experiment. J.M.L. and M.W.Z. devoted themselves to data collection. 
All authors were responsible for experimental design and proofread the final version of manuscript.

Funding
This work was supported by the general program of the Natural Science Foundation of Jiangsu Province 
(BK20181113).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Establishment and application of TSDPSO-SVM model combined with multi-dimensional feature fusion method in the identification of fracture-related infection
	Methods
	Support vector machine
	Standard particle swarm optimization algorithm
	Particle swarm optimization algorithm with traction switching delay
	Selection strategy of delay information
	Traction operation
	Main reagents and instruments
	Data processing
	Data cleaning
	Feature normalization
	Data reduction

	Model establishment and evaluation
	Ethics approval and consent to participate

	Results
	Simulation analysis of algorithm performance
	Results of feature dimension reduction based on the PCA method
	Identification results of each model

	Discussion
	Data availability
	References
	Acknowledgements


