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Entanglement monogamy 
in indistinguishable particle 
systems
Soumya Das 1, Goutam Paul 1* & Ritabrata Sengupta 2

Recently, it has been realized that indistinguishability is a resource for quantum information 
processing. A new method to represent the indistinguishable particles by Franco et al. (Sci Rep 
6:20603, 2016, https:// doi. org/ 10. 1038/ srep2 0603) and measure the concurrence is developed 
by Nosrati et al. (npj Quantum Inf 6:39, 2020, https:// doi. org/ 10. 1038/ s41534- 020- 0271-7). The 
monogamy property says that quantum entanglement cannot be shared freely between more than 
two particles. For three distinguishable particles, the monogamy of entanglement was first expressed 
as an inequality using squared concurrence where each particle has a single degree of freedom (for 
pure or mixed states). Using multiple degrees of freedom, similar inequality was shown to be held 
between two distinguishable particles. However, for two indistinguishable particles, where each 
particle cannot be addressed individually, the monogamy inequality was shown to be violated 
maximally for a specific state. Thus a question naturally arises: what happens to the monogamy of 
entanglement in the case of three or more indistinguishable particles? We prove that monogamy holds 
in this scenario and the inequality becomes equality for all pure indistinguishable states. Further, we 
provide three major operational meanings of our result. Finally, we present an experimental schematic 
using photons to observe our result.

Quantum entanglement is a fundamental concept in quantum information that is used in many quantum proto-
cols. Quantum information is generally encoded in a particle’s degree of freedom (DoF) like spin, orbital angular 
momentum (OAM) etc.1, and entanglement usually deals with particles having a single  DoF2,3. A few recent 
works have considered multiple DoFs of a single particle to study what is called inter-DoF  entanglement4–13, 
albeit in the context of distinguishable particles. For indistinguishable  particles14–28, where each particle cannot 
be addressed  individually29,30, (i.e., a label cannot be associated with each particle) the characterization of inter-
DoF entanglement requires a different  analysis31–38.

An interesting feature of entanglement is its restriction upon the shareability among several particles, known 
as the monogamy of entanglement (MoE), first expressed in Ref.39 using squared concurrence ( C 2)40 as the entan-
glement measure. The monogamy inequality with respect to A for a three-particle state ρABC can be written as

where ρAB = TrC(ρABC) , ρAC = TrB(ρABC) , and CX|Y measures the concurrence between systems X and Y of 
the composite system XY, where the vertical bar represents bipartite splitting.

Equation (1) considers entanglement involving a single DoF of each of three particles and views a particle and 
its associated DoF as the same entity. We call this type of MoE as particle-MoE and it can be generalized to inter-
DoF  MoE37 (in short, DoF-MoE) as follows. Consider three entities A, B, and C, each with n DoFs, numbered 1 
to n. If the joint state of the ith, jth, and kth DoFs of A, B, and C respectively is represented by ρAiBjCk

 , then the 
DoF-MoE with respect to the ith DoF of A is stated as follows.

where ρAiBj = TrCk
(ρAiBjCk

) , ρAiCk
= TrBj (ρAiBjCk

) . This generalized representation covers multiple scenarios 
such as (i) three particles (this case coincides with particle-MoE in Eq. (1)), (ii) two particles (when B and one 
of A/C becomes the same particle), as well as (iii) one particle (when A, B, and C denote the same particle) as 
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shown in Ref.37. One may think that different DoFs are equivalent to different particles, but this is not true in 
general (see Supplemental Information 1 for more details).

There is a fundamental difference between the physicality of the entanglement of distinguishable particles and 
that of indistinguishable ones. For example, two distinguishable particles with orthogonal eigenstates in one of 
the DoFs are separable as they can be written in the tensor product. However, the same for two indistinguishable 
particles become entangled Methods in Ref.31, which is also experimentally verified in Ref.41 (see Supplemental 
Information 2 for more details). So, if three or more particles become indistinguishable in the same/different 
localized regions in their same/different eigenstates of same/different DoFs in an arbitrary manner, whether MoE 
holds or not is not immediately obvious and needs non-trivial analysis. This is the motivation behind this article.

For distinguishable particles, MoE is known to hold, irrespective of whether the DoFs involved come from 
two  particles11,12,37 or  more39,42. For two indistinguishable particles, it has been shown that monogamy does not 
necessarily hold and can be violated  maximally37. So a natural question arises, whether MoE always holds for 
three or more indistinguishable particles or not?

In this article, we show that monogamy of entanglement holds for three or more indistinguishable particles 
each having single or multiple DoFs using squared concurrence as the entanglement measure. The validity of 
monogamy under different scenarios is depicted in Table 1. Specifically, we show that for pure indistinguishable 
states, the monogamy inequality becomes equality, whereas inequality remains for mixed states. We present other 
three major operational meanings for our result, Firstly, a strict monogamy inequality for pure states implies that 
the particles are distinguishable. Secondly, a strict monogamy inequality for indistinguishable particles implies 
that the particles are in a mixed state. Finally, If monogamy equality does not hold for any unknown quantum 
state, then the state cannot be both pure and made of indistinguishable particles. To verify our proposal experi-
mentally, we present an optical schematic using photons to demonstrate our result.

Results
Representation of the general state of p indistinguishable particles each having n DoFs
Here, we revisit the formulation of Refs.31,32,37 in a more general setting, with explicit consideration of the Pauli 
exclusion  principle43.

We describe the general state of p indistinguishable particles each having n degrees of freedom. The P spatial 
labels are represented by αi that ranges over SP := {s1, s2, . . . , sP} . We write the set {1, 2, . . . , n} as Nn . Here aij 
ranges over Dj := {Dj1 ,Dj2 , . . . ,Djkj

} , represents the eigenvalue of the j-th DoF of the particle in the αi-th local-
ized region where j ∈ Nn . Thus the general state of p indistinguishable particles each having n DoFs is defined 
as

Here u represents the summation of parity of the cyclic permutations of all the n DoFs. Thus u can be repre-
sented as u = u1 + u2 + · · · + un =

∑
i uj where uj is the parity of the j-th DoF. The value of η is +1 for bosons 

and −1 for fermions. If we have the following condition that

for any i  = i′ where αi ,αi′ ∈ S
P and j ∈ Nn , then we get η = 0 for fermions due to Pauli exclusion  principle43.

Following the above notations, the general density matrix of p indistinguishable particles each having n DoFs 
is defined as

where

and αi ,β i ranges over Sp , aij , b
i
j ranges over Dj , i ∈ NP and j ∈ Nn . Here u is as defined in Eq. (3) and ū comes due 
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Table 1.  Summary of the results related to monogamy of entanglement for distinguishable and 
indistinguishable particles.

Distinguishable Indistinguishable

2 particles Holds11,12 Can violate  maximally37

≥ 3 particles Holds39,42 Holds (This Article)
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for any i  = i′ where i, i′ ∈ NP and j ∈ Nn , then we get η = 0 for fermions due to Pauli exclusion  principle43.

Monogamy of entanglement for indistinguishable particles
In this section, we present our main result. As the state-space structure of distinguishable and indistinguishable 
particles are completely different, the proof for MoE for distinguishable  particles39 is not applicable to indis-
tinguishable ones. So, we calculate the MoE for all the possible ways in which indistinguishability can occur.

For the sake of brevity and ease of understanding, here in “Proof of MoE for three indistinguishable parti-
cles each having a single DoF” section, we prove MoE for three indistinguishable particles each having a single 
DoF with two eigenvalues. For example, take the spin DoF with eigenstates {|↑�, |↓�} in three localized regions 
S
3 = {s1, s2, s3}.

Next, we repeat the above calculations of MoE by increasing the number of DoFs from one to two in “Proof 
of MoE for three indistinguishable particles each having two DoFs” section. For example, take the DoFs as spin 
and OAM with eigenstates {|↑�, |↓�} and {|+l�, |−l�} respectively. Analysis of this situation results in five major 
cases where one of the eigenstates of the DoFs contributes for entanglement, and the other non-contributing 
DoFs take arbitrary values. Then we consider the other cases where contributing DoFs for entanglement can be 
in an arbitrary superposition of their eigenstates.

Finally, we perform the calculation of MoE for the most general situation by taking an arbitrary number of 
particles and each having an arbitrary number of DoFs in “Proof of MoE for p ≥ 3 indistinguishable particles 
each having n DoFs” section. We take p (≥ 3) indistinguishable particles each having n DoFs. This situation 
yields thirteen non-trivial cases.

In all the above situations, monogamy holds for pure states with an equality relation. We encourage the reader 
to go through the first situation in “Proof of MoE for three indistinguishable particles each having a single DoF” 
section, then the second in “Proof of MoE for three indistinguishable particles each having two DoFs” section, 
and finally the general situation in in “Proof of MoE for p ≥ 3 indistinguishable particles each having n DoFs” 
section.

On the other hand, for mixed states, we use the convexity of concurrence to prove the monogamy inequality 
in “Proof of MoE indistinguishable particles for mixed states” section. Expressing any mixed state as an ensemble 
of the pure states, we apply the concurrence on each such pure state and do a minimization to get the required 
inequality for any arbitrary mixed states.

Thus the following result holds for all pure and mixed indistinguishable particles.

Result 1 Three or more indistinguishable particles, each having an arbitrary number of degrees of freedom, 
obey the monogamy of entanglement using squared concurrence.

Although MoE holds for both distinguishable and indistinguishable particles, the derivation of our result 
reveals a fundamental difference between them as stated below.

Corollary 1.1 If monogamy is calculated using three (or more) indistinguishable particles, then for all pure states 
we can write Eq. (2) as

where α,β , γ are spatial locations and i, j, k denote the DoF indices ∈ Nn following the notations in Eq. (3). Corol-
lary 5 can be extended to more than three particles as shown in Result 1. The physical significance of this result is 
that for all pure states, if MoE is calculated using squared concurrence for three or more indistinguishable particles, 
then the residual entanglement in the whole state is zero.

The broad picture given by our result is summarized in Table 2. It can be seen that monogamy equality holds 
only for pure indistinguishable particles. For the other cases, monogamy inequality holds.

Thus we give a clear distinction of some property that is possible using distinguishable particles and prove 
that is impossible using indistinguishable particles. In Ref.39, it was proved that a strict monogamy inequality is 
possible using pure distinguishable particles. Our result proves that a strict inequality is not possible using pure 
indistinguishable particles.
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Table 2.  Operational meaning of our result. Here we see that MoE equality holds for only pure 
indistinguishable particles using three or more particles and taking concurrence as an entanglement measure. 
For the rest of the cases, the MoE inequality holds.

Distinguishable Indistinguishable

Pure Inequality ( ≤ ) Holds Equality ( = ) Holds

Mixed Inequality ( ≤ ) Holds Inequality ( ≤ ) Holds
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Operational meaning of our result
Suppose we have an unknown density matrix ρ consisting of three or more particles. Now the question is how 
Corollary 5 is operationally useful to characterize this density matrix ρ based on the purity and distinguish-
ability? We will perform the monogamy equality test, i.e., whether Corollary 5 is satisfied or not as described 
below to find the answer.

Case 1 Suppose we have a state that is both pure and indistinguishable. Then according to Corollary 5, that 
state will follow monogamy equality.

Case 2 Suppose we have an unknown pure state |ψ� where |ψ��ψ | = ρ and no information is given about 
its distinguishability. Now if we perform the monogamy equality test and we get that ρ holds a strictly less than 
relation (<), i.e., Corollary 5 is not satisfied, then ρ is a distinguishable state.

Case 3 Suppose we have an unknown indistinguishable density matrix ρ where no information is given about 
its purity. Now if we perform the monogamy equality test and we get that ρ holds a strictly less than relation (<), 
i.e., Corollary 5 is not satisfied, then ρ is not a mixed state.

Case 4 Suppose we have an unknown density matrix ρ where no information is given about its purity and 
distinguishability. Now if we perform the monogamy equality test and we get that ρ holds a strictly less than 
relation (<), i.e., Corollary 5 is not satisfied, then ρ cannot both pure and made of indistinguishable particles.

The significance of our result is that it establishes a connection between the three properties, say monogamy, 
purity, and distinguishability of a specific type of density matrix. A flowchart of all these cases is shown in Fig. 1.

One may argue that purity can be checked easily using the SWAP test and randomized  measurements44. So, 
why do we need to perform the tests mentioned in Fig. 1? The answer is that the SWAP tests are possible for 
distinguishable particles only, as it requires controlled NOT gates. However, for indistinguishable cases, as each 
particle cannot be addressed individually, we cannot perform the SWAP test. It must be noted that in certain 
Bose–Einstein condensation scenarios, parity checking was performed as in Ref.45. Whether such tests can be 
performed in all indistinguishable cases is not worked out as per our knowledge. For randomized measurements, 
ideally, an infinite number of copies are needed. But for the test mentioned in this paper, ideally, one single copy 
is needed. It must also be noted that there is no known method to check whether the particles are distinguishable 
or not, for any arbitrary unknown state.

An experimental scheme to observe monogamy equality for pure states using three 
indistinguishable photons
In Result 1, we have theoretically proved that three or more indistinguishable particles always obey a monogamy 
equality relation. Here, we present an experimental schematic using three indistinguishable photons to illustrate 
our result. One can also create more circuits to illustrate our result experimentally.

For simplicity, we present this scheme using only the polarization DoF of the photon with eigenstates 
{|H�, |V�} . This can be extended to p number of indistinguishable photons having n number of DoFs. Assume 
Alice and Bob have two photons in |H� eigenstate and Charlie has a photon in |V� eigenstate. The three photons go 

Figure 1.  Operational meaning of Corollary 5 having four implications. (1) Any pure and indistinguishable 
quantum state obeys monogamy equality. (2) If monogamy equality does not hold for any pure quantum state, 
then the state is made of distinguishable particles. (3) If monogamy equality does not hold for a quantum state 
made of indistinguishable particles, then the state is a mixed state. (4) If monogamy equality does not hold for 
any unknown quantum state, then the state cannot be both pure and made of indistinguishable particles.
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to the respective beam tritters (BT) denoted by BTA , BTB , and BTC respectively whose three output ports go to all 
of the three detectors DA , DB , and DC , as shown in Fig. 2. This is essentially a particle exchange  method13,31 to pro-
duce indistinguishable particles. Here, we will consider only those cases where each of the detectors detects only 
one photon. Note that, the measurements for indistinguishable particles are the same as for distinguishable ones

Here, the beam tritter is a generalization of the beam splitter for higher dimensions. The theoretical modeling 
of the beam tritters can be found in Ref.46,47 with  applications48,49. Experimental realization of the beam tritters 
can be found in Ref.50,51. The transition matrix for each of the beam tritters can be written  as46

where ω = exp( i2π3 ).
Let three localized regions s1 , s2 , and s3 belongs to Alice, Bob and Charlie where the detectors DA , DB , and 

DC are present. The initial state of the particles can be written as |�(3,1)�i = |H�A ⊗ |H�B ⊗ |V�C . After particle 
exchange, the final state can be written using the notations of Eq. (26) as

Now we can calculate the monogamy following the calculations in the “Proof of MoE for three indistinguish-
able particles each having a single DoF” section. After calculation we get C 2

s1|s2 + C
2

s1|s3 = C
2

s1|s2s3 =
8
9.

One may think that whether it will be possible to create states that follow a strict monogamy inequality rela-
tion using indistinguishable particles. The answer is no. In Supplemental Information 4, we show the condition 
for a general three-qubit state using distinguishable particles that follow a strict monogamy inequality relation 
and why those states cannot be generated using indistinguishable particles.

Note that, the state we have created in Eq. (6) is analogous to the W-type state of distinguishable  particles52. 
However, none of the existing literature has shown how to create this type of state using indistinguishable par-
ticles. This is the first contribution of this setup. Secondly, this W-type of state gives a strict monogamy equality 
relation for distinguishable particles. We have shown for indistinguishable particles, the results exactly the same 
as shown in the first row of Table 2.

Discussion
Quantum mechanics features the existence of particles that are indistinguishable, which has drawn significant 
attention within the scientific community. These indistinguishable particles are being explored as a  resource28 
for various quantum information processing tasks, including  teleportation32,53 and entanglement  swapping54, 
which are traditionally carried out using distinguishable particles.
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Figure 2.  We present an experimental schematic using three indistinguishable photons to illustrate the equality 
monogamy relation. This state is analogous to the W-type state of distinguishable particles. Here, three parties 
Alice, Bob, and Charlie send three photons with |H� , |H� , and |V� eigenstate respectively in polarization DoF to 
three beam tritters (BT) denoted by BTA , BTB , and BTC respectively. From each beam tritter, the photons are 
received in the detectors denoted by DA , DB , and DC which belong to Alice, Bob, and Charlie respectively. The 
detection procedure of the photons is the same as for distinguishable ones (see Supplemental Information 3). 
The only difference is that we do not know which photons are being detected.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21972  | https://doi.org/10.1038/s41598-023-46515-z

www.nature.com/scientificreports/

A recent series of published findings have highlighted the unique properties and applications that are specific 
to indistinguishable or distinguishable particles, referred to as “separation results” between these two categories. 
Das et al.38 demonstrated that only distinguishable particles can achieve unit fidelity quantum teleportation, while 
only indistinguishable particles can produce hyper-hybrid entangled states. In cases where a quantum protocol 
can be executed using both types of particles, one may offer advantages over the other. For instance, entangle-
ment swapping requires a minimum of two indistinguishable  particles38, whereas three distinguishable particles 
are  needed55,56. Another separation result by Paul et al.37. reveals that using two indistinguishable particles, each 
with multiple degrees of freedom, can maximally violate monogamy of entanglement, which is not feasible with 
distinguishable  particles11.

Building upon the aforementioned separation results, this article presents a distinct property of indistin-
guishable particles that sets them apart from distinguishable ones. Specifically, the inequality of the MoE using 
squared concurrence for three or more distinguishable particles, as depicted in Ref.39, becomes an equality for 
pure indistinguishable states. However, this equality may only hold for mixed indistinguishable states. It is worth 
noting that this equality differs from the one proposed in Ref.57. This finding proves particularly useful in cal-
culating entanglement in scenarios where particles are indistinguishable, such as in quantum  dots58,59, ultracold 
atomic  gases60, Bose–Einstein  condensates61,62, quantum  meteorology63,64, among others.

The significance of our result is that it establishes a connection between the three properties, say monogamy, 
purity, and distinguishability of some specific quantum states. For example, if an unknown pure state obeys 
strict monogamy inequality implies that the state is made of distinguishable particles. Also, if an unknown 
state made of indistinguishable particles obeys a strict monogamy inequality implies that the particles are in a 
mixed state. The full characterization of all the states based on monogamy, purity, and distinguishability is an 
interesting future work.

Methods
Revisiting the representation and definition of entanglement for indistinguishable 
particles, DoF trace-out rule and calculation of concurrence for indistinguishable 
particles
Here, we revisit the representation and definition of entanglement for indistinguishable  particles31,32, the existing 
results of DoF trace-out for indistinguishable  particles37,65 and the calculation of the concurrence between any 
two DoFs of two indistinguishable  particles66 with the representation described in “Representation of the general 
state of p indistinguishable particles each having n DoFs” section.

The representation and definition of entanglement for indistinguishable particles
The central challenge in the field of quantum information theory lies in the inadequacy of conventional entangle-
ment measures when applied to identical particle  states14–23,25,27,67. Traditionally, metrics such as the von Neumann 
entropy of the reduced state are unable to distinguish between entanglement and the mere independence of 
separated particles. This issue creates conflicting outcomes for bosons and  fermions68–78. It’s worth noting that 
this challenge is not exclusive to the particle-based (first quantization)  description14–19,21,23 but also applies to 
the mode-based (second quantization)  approach20,22,22,67, where name labels are not explicitly mentioned but 
are implicitly assumed.

This problem has driven the development of alternative methods for identifying entanglement among identi-
cal  particles16,18,21,24,79–83. These methods depart from the conventional ones used for nonidentical particles, either 
by redefining the concept of entanglement or by seeking tensor product structures supported by observables. 
The goal is to distinguish the physically relevant entanglement from the unphysical components. The need for 
such novel approaches to address quantum correlations for identical and nonidentical particles is somewhat 
surprising. However, these approaches remain somewhat cumbersome from a technical standpoint and are less 
suitable for quantifying entanglement under general conditions of scalability or in realistic scenarios where 
identical particles are in close proximity, leading to spatial overlap.

In quantum mechanics, identical particles are assigned name-labels to make them distinguishable. To ensure 
that this fictitious system behaves like a real bosonic or fermionic system, only symmetrized or antisymmetrized 
states with respect to the labels are  permitted84,85. While this approach generally works well in practice, complica-
tions arise when dealing with entanglement, which critically depends on the form of the state vector. This com-
plexity arises from the simultaneous contributions of real and fictitious (label-born) factors to the entangled state.

In our work, we have taken a recent  approach31,32,54 that aims to provide a more straightforward description of 
quantum correlations in identical particle systems, grounded in simple physical principles that can unequivocally 
address the fundamental question: when and to what extent does the indistinguishability of quantum particles 
become physically relevant in determining their entanglement? They represent an approach to identical particles 
that, like second quantization, dispenses with name labels while adopting a particle-based (first quantization) 
formalism based on states. This approach treats a many-particle state as a single entity characterized by a com-
plete set of commuting observables. It quantifies the physical entanglement of both bosons and fermions using 
the same principles employed for distinguishable particles, such as the von Neumann entropy of the partial 
trace. This approach enables the study of identical particle entanglement under arbitrary conditions of wave 
function overlap at the same level of complexity required for nonidentical particles. Furthermore, by imposing 
the condition of spatially separated (i.e., non-overlapping) particles, our approach recovers known results for 
distinguishable particles.

If the state vector of two indistinguishable particles is labeled by φ and ψ , then the two-particle state is rep-
resented by a single entity |φ,ψ� . The two-particle probability amplitudes are represented by



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21972  | https://doi.org/10.1038/s41598-023-46515-z

www.nature.com/scientificreports/

where ϕ, ζ are one-particle states of another global two-particle state vector and η = 1 for bosons and η = −1 
for fermions. The right-hand side of Eq. (7) is symmetric if the one-particle state position is swapped with 
another, i.e., |φ,ψ� = η|ψ ,φ� . From Eq. (7), the probability of finding two particles in the same state |ϕ� is 
�ϕ,ϕ|φ,ψ� = (1+ η)�ϕ|φ��ϕ|ψ� which is zero for fermions due to Pauli exclusion  principle43 and maximum 
for bosons. As Eq. (7) follows symmetry and linearity properties, the symmetric inner product of states with 
spaces of different dimensionality is defined as

where |�̃� = |ϕ1,ϕ2� is the un-normalized state of two indistinguishable particles and |ψk� is a single-particle 
state. Equation (8) can be interpreted as a projective measurement where the two-particle un-normalized state 
|�̃� is projected into a single particle state |ψk� . Thus, the resulting normalized pure-state of a single particle after 
the projective measurement can be written as

where |�� := 1√
N
|�̃� with N = 1+ η | �ϕ1|ϕ2� |2 and �(1)

k = |ψk��ψk| is the one-particle projection operator. 
The one-particle identity operator can be defined as I(1) :=

∑
k �

(1)
k  . So, using the linearity property of projec-

tion operators, one can write similar to Eq. (8):

Note that

where the probability of resulting the state |ψk� is pk = ��(1)
k �

�
/2 . The partial trace in this method can be writ-

ten as

where the factor 1/2 comes from Eq. (11).
Another useful concept is that of localized partial trace31, which means that local measurements are being 

performed on a region of space M where the particle has a non-zero probability of being found. So, performing 
the localized partial trace on a region M, we get

where NM is a normalization constant such that Tr(1)ρ(1)
M = 1 . The entanglement entropy can be calculated as

where S(ρ) = −Tr(ρlnρ) is the von Neumann entropy and �i are the eigenvalues of ρ(1)
M  . We will call the state 

an entangled state if we get a non-zero value of Eq. (14).

DoF trace-out for indistinguishable particles
In Ref.37,65, the authors have presented the DoF trace-out rule for two indistinguishable particles, each having 
two DoFs. Here, we generalize the DoF trace-out rule for two indistinguishable particles each having n DoFs 

(7)�ϕ, ζ |φ,ψ� := �ϕ|φ��ζ |ψ� + η�ϕ|ψ��ζ |φ�,

(8)�ψk| · |ϕ1,ϕ2� ≡ �ψk | ϕ1,ϕ2� = �ψk|ϕ1�|ϕ2� + η�ψk|ϕ2�|ϕ1�,

(9)|φk� =
�ψk|��√
��(1)

k �
�

,

(10)|ψk��ψk| · |ϕ1,ϕ2� = �ψk|ϕ1�|ψk ,ϕ2� + η�ψk|ϕ2�|ϕ1,ψk�.

(11)I
(1)|�� = 2|��,

(12)ρ(1) =
1

2
Tr(1)|����| =

1

2

∑

k

�ψk|����|ψk� =
∑

k

pk|φk��φk|,

(13)ρ
(1)
M =

1

NM
Tr

(1)
M |����|,

(14)EM(|��) := S(ρ
(1)
M ) = −

∑

i

�iln�i ,
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from the general density matrix defined in Eq. (4) by substituting p = 2 . Suppose we want to trace-out the j-th 
DoF of location sx ∈ S

P . Then the reduced density matrix is calculated as

where

If we substitute n = 2 in Eq. (15), then it reduces to the trace-out rule  of37.

How to calculate the concurrence between any two DoFs of two indistinguishable particles?
The calculation of the concurrence between any two DoFs from two spatial regions involves the following steps.

Step 1: applying the projector
In the general state given in Eq. (4), it is possible that each localized region has more than one particle. To cal-
culate the concurrence, we have to ensure that each of the localized regions s1, s2, . . . , sp has only one particle. 
For that, we have to apply a projector as follows.

Projecting ρ(p,n) onto the operational subspace spanned by the basis

by the projector

results in

It’s important to note that one might initially assume that applying a projection would limit the occupancy 
of the relevant modes to exactly one, seemingly defeating the purpose of using indistinguishable particles, as 
it would allow for proper labeling of particles by spatial modes. However, this assumption is not accurate. The 
projection operation encompasses all possible scenarios where each localized region contains one particle, as 
illustrated in Eq. (17). Consequently, even after the projection operation, it remains impossible to uniquely label 
the particles with the projected modes.

(15)

ρsx
j̄
≡Trsxj

(
ρ(2,n)

)
≡

∑

mj∈Dj

�sxmj | ρ(2,n) | sxmj�

:=
∑

mj

{ ∑

α1,α2, a1j , a
1
j̄
, a21, a

2
2, . . . , a

2
n

β1,β2, b1j , b
1
j̄
, b21, b

2
2, . . . , b

2
n

κp�sxmj | α1a1j ��β1b1j | sxmj�|α1a1
j̄
,α2a21a

2
2 . . . a

2
n��β1b1

j̄
,β2b21b

2
2 . . . b

2
n|

+ η
∑

α1,α2, a11, a
1
2, . . . , b

1
na

2
j , a

2
j̄
,

β1,β2, b1j , b
1
j̄
, b21, b

2
2

,...,b2n

�sxmj | α2a2j ��β1b1j | sxmj�|α1a11a
1
2 . . . a

1
nα

2a2
j̄
��β1b1

j̄
,β2b21b

2
2 . . . b

2
n|

+ η
∑
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1
j̄
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2
2, . . . , a

2
n
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1
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1
nb

2
j , b

2
j̄
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j̄
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2
2 . . . a

2
n��β1b11b

1
2 . . . b

1
n,β

2b2
j̄
|

+
∑
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1
2, . . . , a

1
n, a

2
j , a

2
j̄
,

β1,β2, b11, b
1
2, . . . , b

1
nb

2
j , b

2
j̄

�sxmj | α2a2j ��β2b2j | sxmj�|α1a11a
1
2 . . . a

1
n,α

2a2
j̄
��β1b11b

1
2 . . . b

1
nβ

2b2
j̄
|
}
,
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α1α2,β1,β2

a1j ,a
1
j̄
,a21,a

2
2,...,a

2
n ,b

1
j ,b

1
j̄
,b21,b

2
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2
n
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1
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2
j ,a

2
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2
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2
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,
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1
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1
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1
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1
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2
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.

(16)

B
s1s2...sp

= {|s1D1
11
. . .D1

n1
, s2D2

11
. . .D2

n1
, . . . spD

p
11
. . .D

p
n1 �,

|s1D1
12
. . .D1

n1
, s2D2

11
. . .D2

n1
, . . . spD

p
11
. . .D

p
n1 �,
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|s1D1
1k1

. . .D1
nkn

, s2D2
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, . . . spD
p
1k1

D
p
2k2

. . .D
p
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(17)

Ps1s2...sp =
∑

xij∈Dj ,i∈Np ,j∈Nn

|s1x11x12 . . . x1n, s2x21x22 . . . x2n, . . . , spx
p
1x

p
2 . . . x

p
n��s1x11x12 . . . x1n, s2x21x22 . . . x2n, . . . , spx

p
1x

p
2 . . . x

p
n|,

(18)ρ
(p,n)

s1s2...sp
=

Ps1s2...spρ
(p,n)

Ps1s2...sp

Tr
(
Ps1s2...spρ

(p,n)
) .
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Therefore, it’s crucial to understand that the calculation of monogamy is not a mere consequence of the projec-
tion operation; rather, it serves the purpose of eliminating scenarios where no entanglement exists. The rationale 
behind employing the projection operation is to facilitate the calculation of entanglement between the number 
of localized regions, which corresponds to the number of particles involved. If any region contains more than 
one particle, it would lead to situations where other regions have no particles. Thus, calculating entanglement 
while including these regions would lack meaningful interpretation.

In summary, projections are employed for the sake of computational simplicity, and entanglement does not 
arise as a byproduct of this operation. It can be verified that, even without the projection operation, the entangle-
ment calculation would yield the same results.

Step 2: tracing out non-contributing localized regions
To calculate the concurrence between two spatial regions, we have to trace out other (p− 2) regions using the 
method described in Eq. (15). The trace out rule for tracing out say sh ∈ S

p region can be described as

where mh
j  span Dj for j ∈ Nn.

Thus if we trace out k number of particles from the localized regions sh1 , sh1 , . . . , shk , then the reduced density 
matrix is represented as

Suppose we want to calculate the concurrence between the particle in the location sr and the particle in the 
location st where sr , st ∈ S

p , we apply the DoF trace-out rule as defined in Eq. (15). Thus the reduced density 
matrix is

Step 3: tracing out non-contributing DoFs
To calculate the concurrence between the v-th DoF of the particle in the location sr and the w-th DoF of the 
particle in the location st where 1 ≤ v,w ≤ n , we have to trace-out all the other non-contributing DoFs from 
these two locations using the DoF trace-out rule as defined in Eq. (15). So, the reduced density matrix of the 
v-th and the w-th DoF of the locations sr and st respectively is given by

where |ψ sr
mv̄
� = |srmr

1m
r
2 . . .m

r
(v−1)m

r
(v+1) . . .m

r
n�  and |ψ st

mw̄
� = |stmt

1m
t
2 . . .m

t
(w−1)m

t
(w+1) . . .m

t
n�.

Step 4: calculation of the eigenvalues
To calculate the concurrence of ρ(2,1)

srv ,s
t
w
 , i.e., Csrv |stw , we have to calculate the following

where σ sr
y = |sr��sr | ⊗ σy , and similarly σ st

y = |st��st | ⊗ σy , and σy is Pauli matrix and the asterisk denotes 
complex conjugation.

Now we have to calculate the eigenvalues of the non-hermitian matrix

Finally, the concurrence is calculated as the

where �i ’s are the eigenvalues of Rsrv ,s
t
w
 in decreasing order.

Proof of MoE for three indistinguishable particles each having a single DoF
Here, we calculate monogamy for three particles each having a single DoF, for example, spin DoF having eigen-
states {|↑�, |↓�} in three localized regions S3 . Trivially, we can show that if each particle is in the same eigenstate 
of the same DoF, for example, |↑� eigenstate in spin DoF, then the concurrence between any two particles between 
any two locations is zero.

(19)ρ
(p−1,n)

(Sp−{sh}) = Trsh
(
ρ(p,n)

)
=

∑

mh
1 ,m

h
2 ,...,m

h
n

�shmh
1m

h
2 . . .m

h
n | ρ(p,n) | shmh

1m
h
2 . . .m

h
n�,

(20)

ρ
(p−h,n)(
Sp−{sh1 ,sh1 ,...,shk }

) = Trsh1 ,sh2 ,...,shk

(
ρ(p,n)

)

=
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p ,mhi
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�sh1mh1
1 mh1

2 . . .mh1
n , . . . , shk m
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1 m
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2 . . .mhk
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1 mh1

2 . . .mh1
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1 m
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2 . . .mhk

n �.

(21)ρ
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(
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)
.

(22)
ρ
(2,1)
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t
w
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)
=
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t
j∈Dj

�ψ sr

mv̄
,ψ st

mw̄
| ρ(2,n)

sr ,st | ψ sr

mv̄
,ψ st

mw̄
�,

(23)ρ̃srv ,stw = σ sr

y ⊗ σ st

y ρ∗
srv ,s

t
w
σ sr

y ⊗ σ st

y ,

(24)Rsrv ,s
t
w
= ρsrv ,stw ρ̃srv ,stw .

(25)Csrv |stw = max
{
0,
√

�4 −
√

�3 −
√

�2 −
√

�1

}
,
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Let us assume another situation where two particles are in the same eigenstate and the other particle is in 
the orthogonal eigenstate of the same DoF. Without loss of generality, consider two particles are in |↑� eigenstate 
and the other is in |↓� eigenstate in spin DoF. Thus the general state can be written as

Here ai ∈ {|↑�, |↓�} , for i ∈ {1, 2, 3} such that ai  = ai
′ for all i  = i′ and if |↑� = − 1

2 , |↓� = + 1
2 then 

∑
ai = − 1

2 . 

The value of η = 0 if 
(
αi = α′) ∧

(
ai = ai

′
)
 for all i  = i′.

The density matrix of Eq. (26) can be written as

Here ai , bi ∈ {|↑�, |↓�} , for i ∈ {1, 2, 3} such that ai  = ai
′ and bi  = bi

′ for all i  = i′ . Also if we take 
|↑� = − 1

2 , |↓� = + 1
2  t h e n  

∑
ai =

∑
bi = − 1

2  .  T h e  v a l u e  o f  η = 0  i f 
{(

αi = α′) ∨
(
β i = β ′)}} ∧

{(
ai = ai

′
)
∨
(
bi = bi

′
)}

 for all i  = i′ . The normalization condition in this case 
is

where αi = β i , ai = bi for all i ∈ {1, 2, 3}.
Now we calculate the concurrence by the steps described in “How to calculate the concurrence between any 

two DoFs of two indistinguishable particles?” section.

Step 1: applying the projector
Here, we have to apply the projector P (3,1)

s1s2s3
 in ρ(3,1) so that in each of the location s1 , s2 , and s3 have exactly one 

particle which is defined as

Thus after applying the projector, we get the density matrix as

where the values of

and the complex conjugates of zj for j ∈ {1, 2, 3} can be calculated accordingly. Also ρ(3,1)
hk = |ψ�(3,1)h �ψ |(3,1)k  where

and the complex conjugates of |ψ�(3,1)j  for j ∈ {1, 2, 3} can be calculated accordingly.
For the simplicity of the further calculations, we can expand Eq. (30) as

(26)

|�(3,1)� =
∑

αi∈S3,i∈N3

ηuκ
α1,α2,α3

a1,a2,a3
|α1a1,α2a2,α3a3�

= κ
α1,α2,α3

↑,↑,↓ |α1 ↑,α2 ↑,α3 ↓� + ηκ
α1,α2,α3

↑,↓,↑ |α1 ↑,α2 ↓,α3 ↑� + κ
α1,α2,α3

↓,↑,↑ |α1 ↓ a12,α
2 ↑ a22,α

3 ↑ a32�.

(27)
ρ(3,1) =

∑

αi ,β i ∈ S
3&i ∈ N3

η(u+ū)κ
α1,α2,α3

a1,a2,a3
κ
β1,β2,β3∗
b1,b2,b3

|α1a1,α2a2,α3a3��β1b1,β2b2,β3b3|.

(28)
∑

αi ,β i∈S3,ai ,bi∈{↑,↓}
κ
α1,α2,α3

a1,a2,a3
κ
β1,β2,β3∗
b1,b2,b3

= 1,

(29)
P

(3,1)
s1s2s3

=
∑

xi ∈ {↑,↓}
|s1x1, s2x2, s3x3��s1x1, s2x2, s3x3|.

(30)ρ
(3,1)
s1s2s3

=
P

(3,1)
s1s2s3

ρ(3,1)
P

(3,1)
s1s2s3

Tr
(
P

(3,1)
s1s2s3

ρ(3,1)
) =

∑
h,k∈{1,2,3} η

(k−1)zhz
∗
kρ

(3,1)
hk∑

h∈{1,2,3} zhz
∗
h

,

(31)z1 = κ
s1,s2,s3

↑,↑,↓ , z2 = κ
s1,s2,s3

↑,↓,↑ , z3 = κ
s1,s2,s3

↓,↑,↑ ,

(32)|ψ�(3,1)1 = |s1 ↑, s2 ↑, s3 ↓�, |ψ�(3,1)2 = |s1 ↑, s2 ↓, s3 ↑�, |ψ�(3,1)3 = |s1 ↓, s2 ↑, s3 ↑�,
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It can be seen easily that the denominator of Eq. (30), i.e., 
∑

h∈{1,2,3} zhz
∗
h = 1 according to Eq. (28).

Step 2: tracing out the region s3
Now we have to trace out the particle at the region s3 . So, we get the reduced density matrix as

The values of ρ(2,1)
hk = |ψ�(2,1)h �ψ |(2,1)k  where

and the complex conjugates of |ψ�(2,1)j  for j ∈ {1, 2, 3} can be calculated accordingly.
Now expanding Eq. (34), we get

Step 3: calculation of the squared concurrence of ρ(2,1)

s1s2
 denoted by C 2

s1|s2

To calculate concurrence for ρ(2,1)
s1s2

 , we have to calculate the following

where σ s1
y = |s1��s1| ⊗ σy , σ s2

y = |s2��s2| ⊗ σy . Here σy is the Pauli matrix and the asterisk denotes complex 
conjugation. The expression for σ s1

y ⊗ σ s2
y  is

Thus the value of ρ̃(2,1)
s1s2

 is

Finally, we have to calculate the eigenvalues of

So, the value of square of the concurrence C 2
s1|s2 can be calculated using Eq. (25) as

Step 4: calculation of the squared concurrence of ρ(2,1)

s1s3
 denoted by C 2

s1|s3

Similarly, to calculate the squared concurrence C 2
s1|s3 , the first step is to trace out the particle at the region s2 from 

ρ
(3,1)
s1s2s3

 . So, we get the reduced density matrix as

(33)

ρ
(3,1)

s1s2s3
= z1z

∗
1 ρ

(3,1)
11

+ ηz1z
∗
2 ρ
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+ z1z
∗
3 ρ

(3,1)
13

+ z2z
∗
1 ρ

(3,1)
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+ ηz2z
∗
2 ρ

(3,1)
22

+ z2z
∗
3 ρ

(3,1)
23

+ z3z
∗
1 ρ

(3,1)
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+ ηz3z
∗
2 ρ

(3,1)
32

+ z3z
∗
3 ρ

(3,1)
33

= z1z
∗
1 |s

1 ↑, s2 ↑, s3 ↓��s1 ↑, s2 ↑, s3 ↓| + ηz1z
∗
2 |s

1 ↑, s2 ↑, s3 ↓��s1 ↑, s2 ↓, s3 ↑| + z1z
∗
3 |s

1 ↑, s2 ↑, s3 ↓��s1 ↓, s2 ↑, s3 ↑|

+ z2z
∗
1 |s

1 ↑, s2 ↓, s3 ↑��s1 ↑, s2 ↑, s3 ↓| + ηz2z
∗
2 |s

1 ↑, s2 ↓, s3 ↑��s1 ↑, s2 ↓, s3 ↑| + z2z
∗
3 |s

1 ↑, s2 ↓, s3 ↑��s1 ↓, s2 ↑, s3 ↑|

+ z3z
∗
1 |s
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∗
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∗
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1 ↓, s2 ↑, s3 ↑��s1 ↓, s2 ↑, s3 ↑|

= κ
s
1,s2,s3
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s
1,s2,s3∗
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s
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s
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+ κ
s
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s
1,s2,s3∗
↓,↑,↑ |s1 ↑, s2 ↑, s3 ↓��s1 ↓, s2 ↑, s3 ↑|
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s
1,s2,s3
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s
1,s2,s3∗
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s
1,s2,s3

↑,↓,↑ κ
s
1,s2,s3∗
↑,↓,↑ |s1 ↑, s2 ↓, s3 ↑��s1 ↑, s2 ↓, s3 ↑|

+ κ
s
1,s2,s3
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s
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s
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s
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s
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(34)ρ
(2,1)
s1s2

= Trs3
(
ρ
(3,1)
s1s2s3

)
=
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m3 ∈ {↑,↓}
�s3m3 | ρ(3,1)
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h,k∈{1,2,3} η
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∗
kρ

(2,1)
hk∑

h∈{1,2,3} zhz
∗
h

.

(35)
|ψ�(2,1)1 = |s1 ↑, s2 ↑�, |ψ�(2,1)2 = |s1 ↑, s2 ↓,�, |ψ�(2,1)3 = |s1 ↓, s2 ↑�, |ψ�(2,1)4 = |s1 ↑, s2 ↑�,

ρ
(2,1)
12 = ρ

(2,2)
13 = ρ

(2,2)
21 = ρ

(2,1)
31 = 0,

(36)ρ
(2,1)
s1s2

= z1z
∗
1ρ

(2,1)
11 + ηz2z
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2ρ

(2,1)
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∗
3ρ
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2ρ

(2,1)
32 + z3z
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3ρ

(2,1)
33 .

(37)ρ̃
(2,1)
s1s2

= σ s1

y ⊗ σ s2

y ρ
(2,1)∗
s1s2

σ s1

y ⊗ σ s2

y ,

(38)σ s1

y ⊗ σ s2

y = ρ
(2,1)
23 + ρ

(2,1)
32 − ρ

(2,1)
41 − ρ

(2,1)
14 .

(39)ρ̃
(2,1)
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= |z3|2ρ(2,1)
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23 + z∗2 z3ρ
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44 − ρ

(2,1)
41 − ρ

(2,1)
14 .

(40)
R = ρ

(2,1)
s1s2

ρ̃
(2,1)
s1s2

= (1+ η)|z2z3|2ρ(2,1)
22 + |z3|3(z2 + ηz∗2 )ρ

(2,1)
23 + (1+ η)|z2|3z∗3ρ

(2,1)
32 + (1+ η)|z2z3|2ρ(2,1)

33 .

(41)C
2

s1|s2 = 2|z2z3|2 + z22z
∗2
3 + z∗22 z23 − 2|ηz2z∗3 z∗2 z3 − z22z

2
3 |2.
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The values of ρ(2,1)
hk = |ψ�(2,1)h �ψ |(2,1)k  where

and the complex conjugates of |ψ�(2,1)j  for j ∈ {1, 2, 3} can be calculated accordingly.
Now following similar calculations as above we get square of the concurrence between s1 and s3 is

Step 5: calculation of the monogamy relation
Thus the monogamy relation from Eqs. (41) and (44) can be written as

If we further trace-out the particle at s2 from Eq. (34), we get

Thus, as Eq. (26) is a pure state so, we have C 2
s1|s2s3 = 4det(ρ

(1,1)
s1

) = 4(1− |z3|2)|z3|2 ≤ 1.
So, we get monogamy equality as

Proof of MoE for three indistinguishable particles each having two DoFs
Here, we calculate monogamy for three particles each having two DoFs, for example, spin and orbital angular 
momentum (OAM) DoFs having eigenstates {|↑�, |↓�} and {|+l�, |−l�} respectively in three localized regions 
S
3 . We describe the first five cases where one of the eigenstates of the DoFs contributes to entanglement, and the 

other non-contributing DoFs take arbitrary values. Then we consider the other cases where contributing DoFs 
for entanglement can be in an arbitrary superposition of their eigenstates.

Case 1 Each particle is in the same eigenstate of the same DoF, for example, |↑� eigenstate in spin DoF. Trivial 
calculations show that the concurrence between any two particles between any two locations is zero.

Case 2 Two particles are in the same eigenstate and the other particle is in the orthogonal eigenstate of the 
same DoF. Without loss of generality, consider two particles are in |↑� eigenstate and the other is in |↓� eigenstate 
in spin DoF. We take two DoFs in this case as the calculations are same for three DoFs.

Here, we calculate the monogamy of entanglement using three indistinguishable particles each having two 
DoFs, which are localized in three spatial regions s1 , s2 , and s3 which we denote as S3 . We consider two particles 
with |↑� eigenstate and one particle with |↓� eigenstate in their spin DoF as we calculate entanglement with only 
spin DoF. The other DoF of each particle can take any arbitrary eigenvalues. Thus the general state can be written as

Here ai1 ∈ {|↑�, |↓�} , ai2 ∈ D2 for i ∈ {1, 2, 3} such that ai1  = ai
′
1 for all i  = i′ and if |↑� = − 1

2 , |↓� = + 1
2 then 

∑
ai1 = − 1

2 . The value of η = 0 if 
(
αi = α′) ∧

(
aij = ai

′
j

)
 for all i  = i′ where j ∈ N2.

The density matrix of Eq. (48) can be written as

Here ai1, b
i
1 ∈ {|↑�, |↓�} , ai2, bi2 ∈ D2 for i ∈ {1, 2, 3} such that ai1  = ai

′
1 and bi1  = bi

′
1 for all i  = i′ . Also if we take 

|↑� = − 1
2 , |↓� = + 1

2  t h e n  
∑

ai1 =
∑

bi1 = − 1
2  .  T h e  v a l u e  o f  η = 0  i f 

(42)ρ
(2,1)
s1s3

= Trs2
(
ρ
(3,1)
s1s2s3

)
=

∑

m2 ∈ {↑,↓}
�s2m2 | ρ(3,1)

s1s2s3
| s2m2� =

∑
h,k∈{1,2,3} η

(k−1)zhz
∗
kρ

(2,2)
hk∑

h∈{1,2,3} zhz
∗
h

.

(43)
|ψ�(2,1)1 = |s1 ↑, s3 ↑�, |ψ�(2,1)2 = |s1 ↑, s3 ↓,�, |ψ�(2,1)3 = |s1 ↓, s3 ↑�,

ρ
(2,1)
12 = ρ

(2,2)
21 = ρ

(2,2)
23 = ρ

(2,1)
32 = 0,

(44)C
2

s1|s3 = 2|z1z3|2 + z21z
∗2
3 + z∗21 z23 − 2|ηz1z∗3 z∗1 z3 − z21z

2
3 |2.

(45)C
2

s1|s2 + C
2

s1|s3 = 4(1− |z3|2)|z3|2 ≤ 1.

(46)ρ
(1,1)
s1

=
∑

m2∈D2

�s2m2 | ρ(2,1)
s1s2

| s2m2� =
(
| z1 |2 +|z2|2

)
|s1 ↑��s1 ↑| + |z1|3|s1 ↓��s1 ↓|.

(47)C
2

s1|s2 + C
2

s1|s3 = C
2

s1|s2s3 .

(48)

|�(3,2)� =
∑

αi∈S3,i∈N3

ηuκ
α1,α2,α3

a11a
1
2,a

2
1a

2
2,a

3
1a

3
2
|α1a11a

1
2,α

2a21a
2
2,α

3a31a
3
2�

=
∑

ai2∈D2

ηu2κ
α1,α2,α3

↑a12,↑a22,↓a32
|α1 ↑ a12,α

2 ↑ a22,α
3 ↓ a32� +

∑

ai2∈D2

η(1+u2)κ
α1,α2,α3

↑a12,↓a22,↑a32
|α1 ↑ a12,α

2 ↓ a22,α
3 ↑ a32�

+
∑

ai2∈D2

ηu2κ
α1,α2,α3

↓a12,↑a22,↑a32
|α1 ↓ a12,α

2 ↑ a22,α
3 ↑ a32�.

(49)

ρ(3,2) =
∑

αi ,β i ∈ S
3&i ∈ N3

η(u+ū)κ
α1,α2,α3

a11a
1
2,a

2
1a

2
2,a

3
1a

3
2
κ
β1,β2,β3∗
b11b

1
2,b

2
1b

2
2,b

3
1b

3
2
|α1a11a

1
2,α

2a21a
2
2,α

3a31a
3
2��β1b11b

1
2,β

2b21b
2
2,β

3b31b
3
2|.
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{(
αi = α′) ∨

(
β i = β ′)}} ∧

{(
aij = ai

′
j

)
∨
(
bij = bi

′
j

)}
 for all i  = i′ where j ∈ N2 . Here the normalization 

condition is

where αi = β i , aij = bij for all i ∈ {1, 2, 3} and j ∈ {1, 2}.
Now we calculate the concurrence by the steps described in “How to calculate the concurrence between any 

two DoFs of two indistinguishable particles?” section.

Step 1: applying the projector
First, we have to apply the projector Ps1s2s3 so that in each of the location s1 , s2 , and s3 have exactly one particle 
which is defined as

Thus after applying the projector, we get the density matrix as

where ai2 = bi2 = xi2 . The values of

and the complex conjugates of zj for j ∈ {1, 2, 3} can be calculated accordingly.
Also ρ(3,2)

hk = |ψ�(3,2)h �ψ |(3,2)k  where

and the complex conjugates of |ψ�(3,2)j  for j ∈ {1, 2, 3} can be calculated accordingly.

Step 2: tracing out the region s3
Now we have to trace out the particle at the region s3 . So, we get the reduced density matrix as

where ai2 = bi2 = xi2 , and m3
2 = x32 . The values of ρ(2,2)

hk = |ψ�(2,2)h �ψ |(2,2)k  where

and the complex conjugates of |ψ�(2,2)j  for j ∈ {1, 2, 3} can be calculated accordingly.

Step 3: tracing out the second DoF
Finally tracing out the second DoF of each particle we have

where ai2 = bi2 = xi2 = mi
2 . The values of ρ(2,1)

hk = |ψ�(2,1)h �ψ |(2,1)k  where

(50)
∑

αi ,β i∈S3,ai1,bi1∈{↑,↓},ai2,bi2∈D2

κ
α1,α2,α3

a11a
1
2,a

2
1a

2
2,a

3
1a

3
2
κ
β1,β2,β3∗
b11b

1
2,b

2
1b

2
2,b

3
1b

3
2
= 1,

(51)
Ps1s2s3 =

∑

x
i
1 ∈ {↑,↓}, xi2 ∈ D2

|s1x11x12 , s2x21x22 , s3x31x32��s1x11x12 , s2x21x22 , s3x31x32 |.

(52)ρ
(3,2)
s1s2s3

=
Ps1s2s3ρ

(3,2)
Ps1s2s3

Tr
(
Ps1s2s3ρ

(3,2)
) =

∑

ai2, b
i
2, x

i
2 ∈ D2

∑
h,k∈{1,2,3} η

(k+u2+ū2−1)zhz
∗
kρ

(3,2)
hk∑

h∈{1,2,3} zhz
∗
h

,

(53)z1 = κ
s1,s2,s3

↑a12,↑a22,↓a32
, z2 = κ

s1,s2,s3

↑a12,↓a22,↑a32
, z3 = κ

s1,s2,s3

↓a12,↑a22,↑a32
,

(54)

|ψ�(3,2)1 = |s1 ↑ x12 , s
2 ↑ x22 , s

3 ↓ x32�,

|ψ�(3,2)2 = |s1 ↑ x12 , s
2 ↓ x22 , s

3 ↑ x32�,

|ψ�(3,2)3 = |s1 ↓ x12 , s
2 ↑ x22 , s

3 ↑ x32�,

(55)

ρ
(2,2)
s1s2

= Trs3
(
ρ
(3,2)
s1s2s3

)
=

∑

m3
1,m

3
1 ∈ {↑,↓},m3

2 ∈ D2

�s3m3
1m

3
2 | ρ

(3,2)
s1s2s3

| s3m3
1m

3
2�

=
∑

ai2, b
i
2, x

i
2 ∈ D2

∑
h,k∈{1,2,3} η

(k+u2+ū2−1)zhz
∗
kρ

(2,2)
hk∑

h∈{1,2,3} zhz
∗
h

,

(56)
|ψ�(2,2)1 = |s1 ↑ x12 , s

2 ↑ x22�, |ψ�(2,2)2 = |s1 ↑ x12 , s
2 ↓ x22 ,�, |ψ�(2,2)3 = |s1 ↓ x12 , s

2 ↑ x22�,

ρ
(2,2)
12 = ρ

(2,2)
13 = ρ

(2,2)
21 = ρ

(2,2)
31 = 0,

(57)

ρ
(2,1)

s11s
2
1
=

∑

m1
2,m

2
2∈D2

�s1m1
2, s

2m2
2 | ρ

(2,2)
s1s2

| s1m1
2, s

2m2
2� =

∑

ai2, b
i
2, x

i
2 ∈ D2

∑
h,k∈{1,2,3} η

(k+u2+ū2−1)zhz
∗
kρ

(2,1)
hk∑

h∈{1,2,3} zhz
∗
h

,
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and the complex conjugates of |ψ�(2,1)j  for j ∈ {1, 2, 3} can be calculated accordingly.

Step 4: calculation of the squared concurrence of ρ(2,1)

s
1
1s

2
1

To calculate concurrence for ρ(2,1)

s11s
2
1

 , we have to calculate the following

where σ s1
y = |s1��s1| ⊗ σy , σ s2

y = |s2��s2| ⊗ σy . Here σy is the Pauli matrix and the asterisk denotes complex 
conjugation. Finally, we have to calculate the eigenvalues of R = ρ

(2,1)

s11s
2
1
ρ̃
(2,1)

s11s
2
1

.

So, the value of square of the concurrence C 2
s1|s2 is

Step 5: calculation of the squared concurrence C 2
s1|s3

Similarly, to calculate the squared concurrence C 2
s1|s3 , the first step is to trace out the particle at the region s2 from 

ρ
(3,2)
s1s2s3

 as shown in Eq. (52). So, we get the reduced density matrix as

where ai2 = bi2 = xi2 , and m2
2 = x22 . The values of ρ(2,2)

hk = |ψ�(2,2)h �ψ |(2,2)k  where

and the complex conjugates of |ψ�(2,2)j  for j ∈ {1, 2, 3} can be calculated accordingly.
Now following similar calculations as above we get the square of the concurrence between s1 and s3 is

Step 6: calculation of the monogamy relation
Thus the monogamy relation from Eqs. (60) and (63) can be written as

If we further trace-out the particle at s2 from Eq. (57), we get

Thus, as Eq. (48) is a pure state so, we have C 2
s1|s2s3 = 4det(ρ

(1,1)

s11
) = 4(1− |z3|2)|z3|2 ≤ 1.

So, we get the monogamy equality as

Case 3 Two particles are in the same eigenstate in the same DoF (say |↑� in spin) and the other particle is in a 
different eigenstate of another DoF (say |+l� in OAM). If the particles in the three regions S3 are measured in 
spin, spin, and OAM DoFs, then calculations reveal that

Case 4 Two particles are in orthogonal eigenstate in the same DoF (say |↑� and |↓� in spin) and other particles 
is in different eigenstate of another DoF (say |+l� in OAM). By similar calculations as case 3, we get C 2

s1|s2 �= 0 , 
C

2
s1|s3 = 0 , and C 2

s1|s2s3 = C
2

s1|s2 as follows.

(58)
|ψ�(2,1)1 = |s1 ↑, s2 ↑�, |ψ�(2,1)2 = |s1 ↑, s2 ↓�, |ψ�(2,1)3 = |s1 ↓, s2 ↑�,

ρ
(2,1)
12 = ρ

(2,1)
13 = ρ

(2,1)
21 = ρ

(2,1)
31 = 0,

(59)ρ̃
(2,1)

s11s
2
1
= σ s1

y ⊗ σ s2

y ρ
(2,1)∗
s11s

2
1

σ s1

y ⊗ σ s2

y ,

(60)C
2

s1|s2 = 2|z2z3|2 + z22z
∗2
3 + z∗22 z23 − 2|z2z∗3 z∗2 z3 − z22z

2
3 |2.

(61)

ρ
(2,2)
s1s3

= Trs2
(
ρ
(3,2)
s1s2s3

)
=

∑

m2
1 ∈ {↑,↓},m2

2 ∈ D2

�s2m2
1m

2
2 | ρ

(3,2)
s1s2s3

| s2m2
1m

2
2�

=
∑

ai2, b
i
2, x

i
2 ∈ D2

∑
h,k∈{1,2,3} η

(k+u2+ū2−1)zhz
∗
kρ

(2,2)
hk∑

h∈{1,2,3} zhz
∗
h

,

(62)
|ψ�(2,2)1 = |s1 ↑ x12 , s

3 ↑ x32�, |ψ�(2,2)2 = |s1 ↑ x12 , s
3 ↓ x32 ,�, |ψ�(2,2)3 = |s1 ↓ x12 , s

3 ↑ x32�,

ρ
(2,2)
12 = ρ

(2,2)
21 = ρ

(2,2)
23 = ρ

(2,2)
32 = 0,

(63)C
2

s1|s3 = 2|z1z3|2 + z21z
∗2
3 + z∗21 z23 − 2|z1z∗3 z∗1 z3 − z21z

2
3 |2.

(64)C
2

s1|s2 + C
2

s1|s3 = 4(1− |z3|2)|z3|2 ≤ 1.

(65)
ρ
(1,1)

s11
=

∑

m2
1∈D2

�s2m2
1 | ρ

(2,1)

s11,s
2
1
| s2m2

1� =
(
| z1 |2 +|z2|2

)
|s1 ↑��s1 ↑| + |z1|3|s1 ↓��s1 ↓|.

(66)C
2

s1|s2 + C
2

s1|s3 = C
2

s1|s2s3 .

(67)C
2

s1|s2 = C
2

s1|s3 = C
2

s1|s2s3 = 0.
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Consider two particles with spin DoF having |↑� and |↓� eigenstates respectively and one particle with orbital 
angular momentum DoF with |+l� eigenstate. The eigenvalues of spin DoF and OAM DoF are represented by 
ai1 ∈ D1 = {|↑�, |↓�} and ai2 ∈ D2 = {|+l�, |−l�} respectively where i ∈ {1, 2, 3} . The other non-contributing DoFs 
in the entanglement of each particle can take any arbitrary eigenvalues. Thus the general state can be written as

(68)

|�(3,2)� =
∑

a31∈D1,a
1
2,a

2
2∈D2

η0κ
α1,α2,α3

↑a12,↓a22,a31+l
|α1 ↑ a12,α

2 ↓ a22,α
3a31 + l�

+
∑

a21∈D1,a
1
2,a

3
2∈D2

η1κ
α1,α2,α3

↑a12,a21+l,↓a32
|α1 ↑ a12,α

2a21 + l,α3 ↓ a32�

+
∑

a31∈D1,a
1
2,a

2
2∈D2

η2κ
α1,α2,α3

↓a12,↑a22,a31+l
|α1 ↓ a12,α

2 ↑ a22,α
3a31 + l�

+
∑

a21∈D1,a
3
2,a

1
2∈D2

η3κ
α1,α2,α3

↓a12,a21+l,↑a32
|α1 ↓ a12,α

2a21 + l,α3 ↑ a32�

+
∑

a11∈D1,a
2
2,a

3
2∈D2

η4κ
α1,α2,α3

a11+l,↑a22,↓a32
|α1a11 + l,α2 ↑ a22,α

3 ↓ a32�

+
∑

a11∈D1,a
2
2,a

3
2∈D2

η5κ
α1,α2,α3

a11+l,↓a22,↑a32
|α1a11 + l,α2 ↓ a22,α

3 ↑ a32�,

Table 3.  List of possible combinations to create indistinguishability using three indistinguishable particles 
localized in three regions s1 , s2 , and s3 , each having three DoFs denoted by j, j′ , j′′. Here the second column 
denotes whether entanglement is calculated in the same DoFs or different DoFs of all particles; the third 
column denotes whether the eigenstate of the contributing DoFs in entanglement is the same or not or 
in superposition; the fourth, fifth, and sixth columns describe the eigenstates of the three particles in 
the corresponding DoFs; the seventh column describes the relations between the eigenstates of the for 
entanglement. The eighth, ninth, and tenth columns describe the DoF numbers (e.g., j means the jth DoF) in 
which the measurements are done in the localized regions s1 , s2 , and s3 respectively; the rest of the columns 
represent of the squared concurrences are zero or ≥ 0.

DoF Eigenstate 1st particle 2nd particle 3rd particle Relations

s
1

s
2

s
3

C
2

s1|s2
C

2

s1|s3
C

2

s1|s2s3

Measures in the DoF

1 Same Same |D �jk |D �jk |D �jk Nil j j j 0 0 0

2 Same Different |D �jk |D �jk |D �jk′
Djk ,Djk′ ∈ Dj , 
|D �jk′ = |D �⊥jk

j j j ≥ 0 ≥ 0 ≥ 0

3 Different Different |D �jk |D �jk |D �j′l
j  = j′ , Djk ∈ Dj , 
Dj′l

∈ Dj′
j j j′ 0 0 0

4 Different Different |D �jk |D �jk′ |D �j′l
|D �jk′ = |D �⊥jk , 
Dj′l

∈ Dj′
j j j′ ≥ 0 0 ≥ 0

5 Different Different |D �jk |D �j′′h |D �j′l
j  = j′  = j′′ , 
Dj′′h

∈ Dj′′
j j′′ j′ 0 0 0

6 Same Different |D �jk |D �jk κjk |D �jk + κjk′ e
iφ |D �jk′ κ2jk + κ2jk′

= 1 j j j ≥ 0 ≥ 0 ≥ 0

7 Same Different |D �jk |D �jk′ κjk |D �jk + κjk′ e
iφ |D �jk′

|D �jk′ = |D �⊥jk , 
κ2jk + κ2jk′

= 1
j j j ≥ 0 ≥ 0 ≥ 0

8 Same Same super-
position κjk |D �jk + κjk′ e

iφ |D �jk′ κjk |D �jk + κjk′ e
iφ |D �jk′ κjk |D �jk + κjk′ e

iφ |D �jk′ κ2jk + κ2jk′
= 1 j j j 0 0 0

9 Same
Different 
superposi-
tion

κjk |D �jk + κjk′ e
iφ1 |D �jk′ , 

where κ2jk + κ2jk′
= 1

κ ′jk |D �jk + κ ′jk′ e
iφ2 |D �jk′ , 

where κ ′2jk + κ ′
2

jk′
= 1

κ ′′jk |D �jk + κ ′′jk′ e
iφ3 |D �jk′ , 

where κ ′′2jk + κ ′′
2

jk′
= 1

φ1  = φ2  = φ3
κjk  = κ ′jk  = κ ′′jk
κjk′ �= κ ′jk′ �= κ ′′jk′

j j j ≥ 0 ≥ 0 ≥ 0

10 Different Different |D �jk |D �jk κj′l
|D �j′l + κj′

l′
eiφ |D �j′

l′
κ2
j′l
+ κ2

j′
l′
= 1 j j j′ 0 0 0

11 Different Different |D �jk |D �jk′ κj′l
|D �j′l + κj′

l′
eiφ |D �j′

l′
κ2
j′l
+ κ2

j′
l′
= 1 j j j′ ≥ 0 0 ≥ 0

12 Different
Different 
superposi-
tion

|D �jk
κjk |D �jk + κjk′ e

iφ |D �jk′ , 
where κ2jk + κ2jk′

= 1

κj′l
|D �j′l + κj′

l′
eiφ |D �j′

l′
 , 

where κ2
j′l
+ κ2

j′
l′
= 1

j  = j′ j j j′ ≥ 0 ≥ 0 ≥ 0

13 Different
Different 
superposi-
tion

κjk |D �jk + κjk′ e
iφ |D �jk′ , 

where κ2jk + κ2jk′
= 1

κj′′h
|D �j′′h + κj′′

h′
eiφ

′′ |D �j′′
h′

 , 

where κ2
j′′h
+ κ2

j′′
h′
= 1

κj′l
|D �j′l + κj′

l′
eiφ

′ |D �j′
l′
 , 

where κ2
j′l
+ κ2

j′
l′
= 1

j  = j′  = j′′

Djk′ ,∈ Dj , 
Dj′′

h′
∈ Dj′′

Dj′
l′
∈ Dj′

j j′′ j′ 0 0 0
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where αi ∈ S
3 for i ∈ N3 . After projecting the state by the suitable projector so that in each location s1 , s2 , and s3 

have exactly one particle. Finally, we calculate entanglement with s1 and s2 in spin DoF and between s1 and s3 in 
spin DoF and OAM DoF respectively. Following the above steps, we have

So, we get monogamy equality as

Case 5 All particles are in the different eigenstate of the three different DoFs (say |↑� , |+l� , and |L� eigenstates of 
spin, OAM and path DoF respectively). If the particles in the locations S3 are measured in spin, OAM, and path 
DoF, then we have

Other cases The above cases consider particles in any of their eigenstates. However, some more cases are 
possible, where any DoF of any particle at any location might be in a superposition of the eigenstates of that 
DoF. In such scenarios, one can consider a rotated basis to redefine the eigenstates and the resulting calculations 
would fall in one of the above cases, owing to the fact that the DoF measurements are localized. For all these 
cases, we have

Proof of MoE for p ≥ 3 indistinguishable particles each having n DoFs
Suppose there are p ≥ 3 number of indistinguishable particles, each having n DoFs. Recall that, the k-th eigen-
value of the jth DoF of a particle is represented by Djk ∈ Dj (the set of eigenvalues of the jth DoF). As we are 
considering squared concurrence measure, so we take only two eigenstates of each DoF. For any eigenvalue � , we 
use the notion |�� for the corresponding eigenstate. In Table 3, we summarize the list of possible combinations to 
create indistinguishability using three indistinguishable particles, each having three DoFs denoted by j, j′ , and 
j′′ , localized in three regions s1 , s2 , and s3 . Calculations for concurrences are done using the method described 
in “How to calculate the concurrence between any two DoFs of two indistinguishable particles?” section. These 
cases can be extended for p number of indistinguishable particles as shown below.

Case 1 Entanglement is calculated in the same DoF of all particles. Each particle is in the eigenstate |D �jk of 
the jth DoF (refer to 1st row of Table 3). Then after calculation, we get C 2

s1|s2 = 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 = 0 . 
Similar result holds for p indistinguishable particles having the eigenstate |D �jk of the jth DoF.

Case 2 Entanglement is calculated in the same DoF for all particles (refer to 2nd row of Table 3). For three 
indistinguishable particles, if two of them are in the eigenstate |D �jk and one is in the eigenstate |D �jk′ where 

|D �jk′ = |D �⊥jk , then C 2
s1|s2 ≥ 0 , C 2

s1|s3 ≥ 0 , and C 2
s1|s2s3 ≥ 0 as shown in “Proof of MoE for three indistinguishable 

particles each having two DoFs” section. Similar result holds for p indistinguishable particles in Sp locations with 
each particle having n DoFs where (q+ r) number of particles are in the eigenstate |D �jk and rest of (p− q− r) 
number of particles are in the eigenstate |D �jk′.Case 3 Entanglement is calculated between two different DoFs. Here, if two particles are in the eigenstate 
|D �jk of the jth DoF and one particle is in the eigenstate |D �j′l of the j′ th DoF where j  = j′ (refer to 3rd row of 
Table 3), then C 2

s1|s2 = 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 = 0 . Similar result holds for p indistinguishable particles in Sp 
locations with each particle having n DoFs where (q+ r) number of particles are in the eigenstate |D �jk of the 
jth DoF and rest of (p− q− r) number of particles are in the eigenstate |D �j′l of the j′ th DoF.

Case 4 Entanglement is calculated between two different DoFs. Here, if two particles are in the eigenstate 
|D �jk and |D �jk′ of the jth DoF respectively and one particle is in the eigenstate |D �j′l of the j′ th DoF where j  = j′ 

and |D �jk′ = |D �⊥jk (refer to 4th row of Table 3), then C 2
s1|s2 ≥ 0 , C 2

s1|s3 = 0 , and C 2
s1|s2s3 ≥ 0 as shown in “Proof 

of MoE for three indistinguishable particles each having two DoFs” section. Similar result holds for p indistin-
guishable particles in Sp locations with each particle having n DoFs where q and r number of particles are in the 
eigenstate |D �jk and |D �jk′ respectively of the jth DoF and rest of (p− q− r) number of particles are in the 
eigenstate |D �j′l of the j′ th DoF.

Case 5 Entanglement is calculated between three different DoFs of three particles. If three particles are in the 
eigenstate |D �jk of the jth DoF, |D �j′′h of the j′′ th DoF, and |D �j′l of the j′ th DoF where j  = j′  = j′′ , then C 2

s1|s2 = 0 , 

C
2

s1|s3 = 0 , and C 2
s1|s2s3 = 0 . Similar result holds for p indistinguishable particles in Sp locations with each particle 

having n DoFs where q number of particles are in the the eigenstate |D �jk of jth DoF, r number of particles are 

(69)

C
2

s1|s2 = 4
(
κ
s1s2,s3

↑a12,↓a22,a31+l

)2(
κ
s1s2,s3

↓a12,↑a22,a31+l

)2
,

C
2

s1|s3 = 0,

C
2

s1|s2s3 = 4
(
κ
s1s2,s3

↑a12,↓a22,a31+l

)2(
κ
s1s2,s3

↓a12,↑a22,a31+l

)2
.

(70)C
2

s1|s2 + C
2

s1|s3 = C
2

s1|s2s3 .

(71)C
2

s1|s2 = C
2

s1|s3 = C
2

s1|s2s3 = 0.

(72)C
2

s1|s2 = C
2

s1|s3 = C
2

s1|s2s3 = 0.
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in the eigenstate |D �j′′h of j′′ th DoF and rest of (p− q− r) number of particles are in the eigenstate |D �j′l of the 
j′ th DoF (refer to 5th row of Table 3).

Case 6 Entanglement is calculated in the same DoF of all particles. If two particles are in |D �jk and one par-
ticle is in the superpositions of its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ where κ2jk + κ2jk′
= 1 , then C 2

s1|s2 ≥ 0 , 
C

2
s1|s3 ≥ 0 , and C 2

s1|s2s3 ≥ 0 . The calculations are similar to case 2. Similar result holds for p indistinguishable par-
ticles in Sp locations with each particle having n DoFs where (q+ r) particles are in |D �jk and rest of (p− q− r) 
particles are in the superpositions of its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ (refer to 6th row of Table 3).
Case 7 Entanglement is calculated in the same DoF of all particles. If two particles are in the eigenstate |D �jk 

and |D �jk′ and one particle is in superpositions of its eigenstate, i.e., κjk |D �jk + κjk′ e
iφ |D �jk′ where κ2jk + κ2jk′

= 1 
of the jth DoF, then C 2

s1|s2 ≥ 0 , C 2
s1|s3 ≥ 0 , and C 2

s1|s2s3 ≥ 0 . The calculations are similar to case 2. A similar 
result holds for p indistinguishable particles in Sp locations with each particle having n DoFs where q number 
of particles are in |D �jk , r number of particles are in |D �jk′ and rest of (p− q− r) number of particles are in 
superpositions of its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ where κ2jk + κ2jk′
= 1 (refer to 7th row of Table 3).

Case 8 Entanglement is calculated in the same DoF of all particles. Each particle are in the superpositions of 
its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ where κ2jk + κ2jk′
= 1 . Now calculations show that C 2

s1|s2 = 0 , C 2
s1|s3 = 0 , 

and C 2
s1|s2s3 = 0 . This case is similar to case 1 if we take a rotated basis to redefine the eigenstates as {|D̃ �jk , |D̃ �⊥jk } 

where |D̃ �jk = κjk |D �jk + κjk′ e
iφ |D �jk′ (refer to 8th row of Table 3).

Case 9 Entanglement is calculated in the same DoF of all particles. Each particles are in different superposi-
tions of its eigenstate, i.e., three particles are in the eigenstates κjk |D �jk + κjk′ e

iφ1 |D �jk′ , κ
′
jk
|D �jk + κ ′jk′ e

iφ2 |D �jk′ , 
and κ ′′jk |D �jk + κ ′′jk′ e

iφ3 |D �jk′ of the jth DoF where κ2jk + κ2jk′
= 1 , κ2

j′′h
+ κ2

j′′
h′
= 1 , κ2

j′l
+ κ2

j′
l′
= 1 , φ1  = φ2  = φ3 , 

κjk  = κ ′jk  = κ ′′jk , and κjk′ �= κ ′jk′ �= κ ′′jk′ . Now calculations show that C 2
s1|s2 ≥ 0 , C 2

s1|s3 ≥ 0 , and C 2
s1|s2s3 ≥ 0 . The 

calculations are similar to case 8. Similar result holds for p indistinguishable particles in Sp locations with each 
particle having n DoFs where q number particles are in κjk |D �jk + κjk′ e

iφ1 |D �jk′ eigenstate, r number particles 
are in κ ′jk |D �jk + κ ′jk′ e

iφ2 |D �jk′ eigenstate and (p− q− r) number of particles are in κ ′′jk |D �jk + κ ′′jk′ e
iφ3 |D �jk′ eigenstate (refer to 9th row of Table 3).

Case 10 Here entanglement is calculated among two different DoFs where two particles are in |D �jk eigenstate 
of the jth DoF and one particle is in κj′l |D �j′l + κj′

l′
eiφ |D �j′

l′
 eigenstate in the j′ th DoF. Here j, j′ ∈ Nn and 

κ2
j′l
+ κ2

j′
l′
= 1 . Now calculations show C 2

s1|s2 = 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 = 0 . This calculation is easier if we take 
a rotated basis as shown in case 8. Similar result holds for p indistinguishable particles in Sp locations with each 
particle having n DoFs where (q+ r) number of particles are in |D �jk eigenstate of the jth DoF and rest of 
(p− q− r) number of particles are in κj′l |D �j′l + κj′

l′
eiφ |D �j′

l′
 eigenstate in the j′ th DoF (refer to 10th row of 

Table 3).
Case 11 Here entanglement is calculated among two different DoFs where two particles are in |D �jk and |D �jk′ 

eigenstate of the jth DoF and one particle is in κj′l |D �j′l + κj′
l′
eiφ |D �j′

l′
 eigenstate in the j′ th DoF. Here j, j′ ∈ Nn 

and κ2
j′l
+ κ2

j′
l′
= 1 . Now calculations show that C 2

s1|s2 ≥ 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 ≥ 0 . If we consider a rotated 

basis in j′ DoF as {|D̃ �j′l , |D̃ �⊥j′l } where |D̃ �j′l = κj′l
|D �j′l + κj′

l′
eiφ |D �j′

l′
 , then the calculations is similar as case 

3. Similar result holds for p indistinguishable particles in Sp locations with each particle having n DoFs where q 
and r number of particles are in |D �jk and |D �jk′ eigenstate respectively of the jth DoF and rest of (p− q− r) 
number of particles are in κj′l |D �j′l + κj′

l′
eiφ |D �j′

l′
 eigenstate in j′ th DoF (refer to 11th row of Table 3).

Case 12 Here entanglement is calculated among two different DoFs two particles are in the |D �jk eigenstate 
and κjk |D �jk + κjk′ e

iφ |D �jk′ eigenstate in the jth DoF, one particle is in the superposition, i.e., 
κj′l
|Dj′l

� + κj′
l′
eiφ |D �j′

l′
 eigenstate in the j′ th DoF. Now calculations show C 2

s1|s2 ≥ 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 ≥ 0 . 
Using an appropriate rotated basis of the jth and j′ th DoF, the calculations are similar to the previous case. Similar 
result holds for p indistinguishable particles in Sp locations with each particle having n DoFs where q number 
of particles are in |D �jk eigenstate of the jth DoF, r number of particles are in the superposition, i.e., 
κjk |D �jk + κjk′ e

iφ |D �jk′ eigenstate in the jth DoF, and rest of (p− q− r) number of particles are in the super-
position, i.e., κj′l |Dj′l

� + κj′
l′
eiφ |D �j′

l′
 eigenstate in the j′ th DoF (refer to 12th row of Table 3).

Case 13 Entanglement is calculated between three different DoFs. Here, three particles are in the superposi-
tions of its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ where κ2jk + κ2jk′
= 1 of the jth DoF; κj′′h |D �j′′h + κj′′

h′
eiφ

′′ |D �j′′
h′

 

where κ2
j′′h
+ κ2

j′′
h′
= 1 of the j′′ th DoF; and κj′l |D �j′l + κj′

l′
eiφ

′ |D �j′
l′
 where κ2

j′l
+ κ2

j′
l′
= 1 of the j′ th DoF where 

j  = j′  = j′′ . Using an appropriate rotated basis of the jth, j′th, and j′′ th DoF, the calculations are similar as shown 
in case 5. Now calculations show C 2

s1|s2 = 0 , C 2
s1|s3 = 0 , and C 2

s1|s2s3 = 0 . Similar result holds for p indistinguish-
able particles in Sp locations with each particle having n DoFs where q number of particles are in superpositions 
of its eigenstate, i.e., κjk |D �jk + κjk′ e

iφ |D �jk′ of the jth DoF, Here, r number of particles are in superpositions of 
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its eigenstate, i.e., κj′′h |D �j′′h + κj′′
h′
eiφ

′′ |D �j′′
h′

 of j′′ th DoF and rest of (p− q− r) number of particles are in super-

positions of its eigenstate, i.e., κj′l |D �j′l + κj′
l′
eiφ

′ |D �j′
l′
 of j′ th DoF (refer to 13th row of Table 3).

One may think that there might be more cases. Upon careful inspection, it can be concluded that all those 
cases are equivalent to any of the above-mentioned cases.

Proof of MoE indistinguishable particles for mixed states
In this section, we generalize the relation for monogamy of entanglement of indistinguishable particles for mixed 
states. We have proved in Corollary 1.1 the main text that for all pure states ραiβjγk

But this relation is not valid for mixed states as the right-hand side is not defined for mixed states. Since all 
mixed states are convex combinations some pure states, we can write ραiβjγk as a convex combination of pure 
states, as

where Prm denotes the probability of |ψm�αiβjγk . For each m, we can write from Eq. (73) as

Multiplying both sides with Prm , we get

Summing up for all the pure constituents,

Now consider the decomposition, say 
{(

Pr∗m, |ψm�∗αiβjγk
)}

 , that minimizes the right hand side of Eq. (77) 
and denote it by

Now expressing ραiβjγk by minimizing the above decomposition as in Eq. (78), we  have40

Thus we have for mixed states
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(73)C
2

αi |βj

(
ραiβj

)
+ C

2
αi |γk

(
ραi |γk

)
= C

2
αi |βjγk

(
ραiβjγk

)
.

(74)ραiβjγk =
∑

m

Prm|ψm�αiβjγk �ψm|αiβjγk ,

(75)C
2

αi |βj

(
|ψm�αiβj �ψm|αiβj

)
+ C

2
αi |γk

(
|ψm�αiγk �ψm|αiγk

)
= C

2
αi |βjγk

(
|ψm�αiβjγk �ψm|αiβjγk

)
.

(76)
PrmC

2
αi |βj

(
|ψm�αiβj �ψm|αiβj

)
+ PrmC

2
αi |γk

(
|ψm�αiγk �ψm|αiγk

)
= PrmC

2
αi |βjγk

(
|ψm�αiβjγk �ψm|αiβjγk

)
.

(77)

∑

m

PrmC
2

αi |βj

(
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+

∑

m

PrmC
2

αi |γk
(
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=
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m

PrmC
2

αi |βjγk
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.

(78)
(
C

2
αi |βjγk

)min
:= min{(

Prm ,|ψm�αiβjγk
)}

∑

m

PrmC
2

αi |βjγk

(
|ψm�αiβjγk �ψm|αiβjγk

)
.
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2
αi |γk

(
ραi |γk
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= C
2

αi |βj

(
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m
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)
+ C

2
αi |γk

(
∑

m
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≤
∑

m

Pr∗mC
2

αi |βj

(
|ψm�∗αiβj �ψm|∗αiβj

)
+

∑

m

Pr∗mC
2

αi |γk

(
|ψm�∗αiγk �ψm|∗αiγk
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(by the convexity of C 2 )

=
∑

m

Pr∗m
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C

2
αi |βj

(
|ψm�∗αiβj �ψm|∗αiβj
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+ C

2
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(
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by Eq. (75)
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C

2
αi |βjγk

)min (
from Eq. (78)
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