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Entanglement monogamy
in indistinguishable particle
systems

Soumya Das?, Goutam Paul'* & Ritabrata Sengupta?

Recently, it has been realized that indistinguishability is a resource for quantum information
processing. A new method to represent the indistinguishable particles by Franco et al. (Sci Rep
6:20603, 2016, https://doi.org/10.1038/srep20603) and measure the concurrence is developed

by Nosrati et al. (npj Quantum Inf 6:39, 2020, https://doi.org/10.1038/s41534-020-0271-7). The
monogamy property says that quantum entanglement cannot be shared freely between more than
two particles. For three distinguishable particles, the monogamy of entanglement was first expressed
as an inequality using squared concurrence where each particle has a single degree of freedom (for
pure or mixed states). Using multiple degrees of freedom, similar inequality was shown to be held
between two distinguishable particles. However, for two indistinguishable particles, where each
particle cannot be addressed individually, the monogamy inequality was shown to be violated
maximally for a specific state. Thus a question naturally arises: what happens to the monogamy of
entanglement in the case of three or more indistinguishable particles? We prove that monogamy holds
in this scenario and the inequality becomes equality for all pure indistinguishable states. Further, we
provide three major operational meanings of our result. Finally, we present an experimental schematic
using photons to observe our result.

Quantum entanglement is a fundamental concept in quantum information that is used in many quantum proto-
cols. Quantum information is generally encoded in a particle’s degree of freedom (DoF) like spin, orbital angular
momentum (OAM) etc.!, and entanglement usually deals with particles having a single DoF>*. A few recent
works have considered multiple DoFs of a single particle to study what is called inter-DoF entanglement*"?,
albeit in the context of distinguishable particles. For indistinguishable particles'*-?, where each particle cannot
be addressed individually***’, (i.e., a label cannot be associated with each particle) the characterization of inter-
DoF entanglement requires a different analysis* .

An interesting feature of entanglement is its restriction upon the shareability among several particles, known
as the monogamy of entanglement (MoE), first expressed in Ref.* using squared concurrence (4 2)* as the entan-
glement measure. The monogamy inequality with respect to A for a three-particle state p4pc can be written as

%ATB(PAB) + %Afc(PAC) =< %A%Bc(pABC% (1)

where pap = Trc(pasc), pac = Trg(papc), and Fx|y measures the concurrence between systems X and Y of
the composite system XY, where the vertical bar represents bipartite splitting.

Equation (1) considers entanglement involving a single DoF of each of three particles and views a particle and
its associated DoF as the same entity. We call this type of MoE as particle-MoE and it can be generalized to inter-
DoF MoE? (in short, DoF-MoE) as follows. Consider three entities A, B, and C, each with n DoFs, numbered 1
to n. If the joint state of the ith, jth, and kth DoFs of A, B, and C respectively is represented by PABiCo then the
DoF-MoE with respect to the ith DoF of A is stated as follows.

%A?”gj (PAiBj) + %A?\Ck (pac) < %AﬁBjCk (PAiBjCk)> (2)

where pas; = Tre (pa;ic,)s pac, = Tt (pa;B;cp)- This generalized representation covers multiple scenarios
such as (i) three particles (this case coincides with particle-MoE in Eq. (1)), (ii) two particles (when B and one
of A/C becomes the same particle), as well as (iii) one particle (when A, B, and C denote the same particle) as
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shown in Ref.?”’”. One may think that different DoFs are equivalent to different particles, but this is not true in
general (see Supplemental Information 1 for more details).

There is a fundamental difference between the physicality of the entanglement of distinguishable particles and
that of indistinguishable ones. For example, two distinguishable particles with orthogonal eigenstates in one of
the DoFs are separable as they can be written in the tensor product. However, the same for two indistinguishable
particles become entangled Methods in Ref.*!, which is also experimentally verified in Ref.*! (see Supplemental
Information 2 for more details). So, if three or more particles become indistinguishable in the same/different
localized regions in their same/different eigenstates of same/different DoFs in an arbitrary manner, whether MoE
holds or not is not immediately obvious and needs non-trivial analysis. This is the motivation behind this article.

For distinguishable particles, MoE is known to hold, irrespective of whether the DoFs involved come from
two particles'>'>* or more®*»*%. For two indistinguishable particles, it has been shown that monogamy does not
necessarily hold and can be violated maximally”. So a natural question arises, whether MoE always holds for
three or more indistinguishable particles or not?

In this article, we show that monogamy of entanglement holds for three or more indistinguishable particles
each having single or multiple DoFs using squared concurrence as the entanglement measure. The validity of
monogamy under different scenarios is depicted in Table 1. Specifically, we show that for pure indistinguishable
states, the monogamy inequality becomes equality, whereas inequality remains for mixed states. We present other
three major operational meanings for our result, Firstly, a strict monogamy inequality for pure states implies that
the particles are distinguishable. Secondly, a strict monogamy inequality for indistinguishable particles implies
that the particles are in a mixed state. Finally, If monogamy equality does not hold for any unknown quantum
state, then the state cannot be both pure and made of indistinguishable particles. To verify our proposal experi-
mentally, we present an optical schematic using photons to demonstrate our result.

Results
Representation of the general state of p indistinguishable particles each having n DoFs
Here, we revisit the formulation of Refs.*"***” in a more general setting, with explicit consideration of the Pauli
exclusion principle®.
We describe the general state of p indistinguishable particles each having n degrees of freedom. The P spatial

labels are represented by o' that ranges over SP = {s!,s%,...,sP). We write the set {1,2,...,n} as N,,.. Here a]’:

ranges over D := {D]1 Djys . .. ,Djkj }, represents the eigenvalue of the j-th DoF of the particle in the a'-th local-

ized region where j € N,,. Thus the general state of p indistinguishable particles each having n DoFs is defined
as

12,2
ajay...ak.ata3...az,...,

|\1/(P”) Zn“/co‘l‘f o dad. ap|(x a1a2 .al aza%a% afl,...,(xpazfa‘g...aﬁ). 3)

Here u represents the summation of parity of the cyclic permutations of all the n DoFs. Thus u can be repre-
sented asu = u; + up + - - - + uy = ) _; uj where u; is the parity of the j-th DoF. The value of 1 is 41 for bosons
and —1 for fermions. If we have the following condition that

i i i_ i
(a =« )/\(aj_aj>,

foranyi # i’ where o, o’ € SPand j € N,,, then we get = 0 for fermions due to Pauli exclusion principle®*.
Following the above notations, the general density matrix of p indistinguishable particles each having # DoFs
is defined as

)
pPm = Z n‘”*”)k[‘:(: f:i*\ Yala)...a),0%ala3 ... d%,. .., apa‘;ag‘“aﬁ)(ﬁlh}béA“b:l,ﬁzb%bgu.bﬁ AAAAA ,prfbg“.bf,\, 4
a ﬂl Y bY ( )
where
P }3(” ﬂ BBl
an) a%a; ul,a]az .az,.. ,a‘;az ab b(n) b b2 b}, bzbz b2,.. ,bpblJ e

and o/, 5i ranges over SP, al bl ranges over ]D)j, i € Npand j € N,,. Here u is as defined in Eq. (3) and & comes due
to the density matrix. If we have the following condition that

Distinguishable Indistinguishable
2 particles Holds'"'? Can violate maximally®’
> 3 particles Holds***? Holds (This Article)

Table 1. Summary of the results related to monogamy of entanglement for distinguishable and
indistinguishable particles.
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for anyi # i wherei,i’ € Npand j € Ny, then we getn = 0 for fermions due to Pauli exclusion principle®.

Monogamy of entanglement for indistinguishable particles

In this section, we present our main result. As the state-space structure of distinguishable and indistinguishable
particles are completely different, the proof for MoE for distinguishable particles® is not applicable to indis-
tinguishable ones. So, we calculate the MoE for all the possible ways in which indistinguishability can occur.

For the sake of brevity and ease of understanding, here in “Proof of MoE for three indistinguishable parti-
cles each having a single DoF” section, we prove MoE for three indistinguishable particles each having a single
DoF with two eigenvalues. For example, take the spin DoF with eigenstates {|1), | )} in three localized regions
S? = {s1,s%,5).

Next, we repeat the above calculations of MoE by increasing the number of DoFs from one to two in “Proof
of MoE for three indistinguishable particles each having two DoFs” section. For example, take the DoFs as spin
and OAM with eigenstates {|1), |{)} and {|+1]), |—I)} respectively. Analysis of this situation results in five major
cases where one of the eigenstates of the DoFs contributes for entanglement, and the other non-contributing
DoFs take arbitrary values. Then we consider the other cases where contributing DoFs for entanglement can be
in an arbitrary superposition of their eigenstates.

Finally, we perform the calculation of MoE for the most general situation by taking an arbitrary number of
particles and each having an arbitrary number of DoFs in “Proof of MoE for p > 3 indistinguishable particles
each having n DoFs” section. We take p (> 3) indistinguishable particles each having #n DoFs. This situation
yields thirteen non-trivial cases.

In all the above situations, monogamy holds for pure states with an equality relation. We encourage the reader
to go through the first situation in “Proof of MoE for three indistinguishable particles each having a single DoF”
section, then the second in “Proof of MoE for three indistinguishable particles each having two DoFs” section,
and finally the general situation in in “Proof of MoE for p > 3 indistinguishable particles each having n DoFs”
section.

On the other hand, for mixed states, we use the convexity of concurrence to prove the monogamy inequality
in “Proof of MoE indistinguishable particles for mixed states” section. Expressing any mixed state as an ensemble
of the pure states, we apply the concurrence on each such pure state and do a minimization to get the required
inequality for any arbitrary mixed states.

Thus the following result holds for all pure and mixed indistinguishable particles.

Result 1 Three or more indistinguishable particles, each having an arbitrary number of degrees of freedom,
obey the monogamy of entanglement using squared concurrence.

Although MoE holds for both distinguishable and indistinguishable particles, the derivation of our result
reveals a fundamental difference between them as stated below.

Corollary 1.1 If monogamy is calculated using three (or more) indistinguishable particles, then for all pure states
we can write Eq. (2) as

2 ) 2 2
(gai‘ﬁj (p"‘iﬁj) + (gﬂib/k (Paiy) = (g‘)‘imj}’k (po‘iﬂjyk)’ (5

where o, B, y are spatial locations and i, j, k denote the DoF indices € N, following the notations in Eq. (3). Corol-
lary 5 can be extended to more than three particles as shown in Result 1. The physical significance of this result is
that for all pure states, if MoE is calculated using squared concurrence for three or more indistinguishable particles,
then the residual entanglement in the whole state is zero.

The broad picture given by our result is summarized in Table 2. It can be seen that monogamy equality holds
only for pure indistinguishable particles. For the other cases, monogamy inequality holds.

Thus we give a clear distinction of some property that is possible using distinguishable particles and prove
that is impossible using indistinguishable particles. In Ref.*’, it was proved that a strict monogamy inequality is
possible using pure distinguishable particles. Our result proves that a strict inequality is not possible using pure
indistinguishable particles.

Distinguishable Indistinguishable
Pure Inequality (<) Holds Equality (=) Holds
Mixed Inequality (<) Holds Inequality (<) Holds

Table 2. Operational meaning of our result. Here we see that MoE equality holds for only pure
indistinguishable particles using three or more particles and taking concurrence as an entanglement measure.
For the rest of the cases, the MoE inequality holds.
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Case 1:
The Ztate('is plf""‘? Monogamy equality
| OniERbE always holds
indistinguishable
particles
Case 2: Monogamy T};?af;:tgfl s
Unknown equality distinguishable
pure state holds? particles
Case 3:
Unknown state Monogamy The state
made of equality is mixed
indistinguishable holds?
particles X
Multiple
conclusions
The state cannot possible
Case 4: Monogamy be both pure and
Unknown equality made of
state holds? indistinguishable
particles

Figure 1. Operational meaning of Corollary 5 having four implications. (1) Any pure and indistinguishable
quantum state obeys monogamy equality. (2) If monogamy equality does not hold for any pure quantum state,
then the state is made of distinguishable particles. (3) If monogamy equality does not hold for a quantum state
made of indistinguishable particles, then the state is a mixed state. (4) If monogamy equality does not hold for
any unknown quantum state, then the state cannot be both pure and made of indistinguishable particles.

Operational meaning of our result

Suppose we have an unknown density matrix p consisting of three or more particles. Now the question is how
Corollary 5 is operationally useful to characterize this density matrix p based on the purity and distinguish-
ability? We will perform the monogamy equality test, i.e., whether Corollary 5 is satisfied or not as described
below to find the answer.

Case 1 Suppose we have a state that is both pure and indistinguishable. Then according to Corollary 5, that
state will follow monogamy equality.

Case 2 Suppose we have an unknown pure state |1/) where |/) (| = p and no information is given about
its distinguishability. Now if we perform the monogamy equality test and we get that p holds a strictly less than
relation (<), i.e., Corollary 5 is not satisfied, then p is a distinguishable state.

Case 3 Suppose we have an unknown indistinguishable density matrix p where no information is given about
its purity. Now if we perform the monogamy equality test and we get that p holds a strictly less than relation (<),
i.e., Corollary 5 is not satisfied, then p is not a mixed state.

Case 4 Suppose we have an unknown density matrix p where no information is given about its purity and
distinguishability. Now if we perform the monogamy equality test and we get that p holds a strictly less than
relation (<), i.e., Corollary 5 is not satisfied, then p cannot both pure and made of indistinguishable particles.

The significance of our result is that it establishes a connection between the three properties, say monogamy,
purity, and distinguishability of a specific type of density matrix. A flowchart of all these cases is shown in Fig. 1.

One may argue that purity can be checked easily using the SWAP test and randomized measurements**. So,
why do we need to perform the tests mentioned in Fig. 1? The answer is that the SWAP tests are possible for
distinguishable particles only, as it requires controlled NOT gates. However, for indistinguishable cases, as each
particle cannot be addressed individually, we cannot perform the SWAP test. It must be noted that in certain
Bose-Einstein condensation scenarios, parity checking was performed as in Ref.*>. Whether such tests can be
performed in all indistinguishable cases is not worked out as per our knowledge. For randomized measurements,
ideally, an infinite number of copies are needed. But for the test mentioned in this paper, ideally, one single copy
is needed. It must also be noted that there is no known method to check whether the particles are distinguishable
or not, for any arbitrary unknown state.

An experimental scheme to observe monogamy equality for pure states using three
indistinguishable photons
In Result 1, we have theoretically proved that three or more indistinguishable particles always obey a monogamy
equality relation. Here, we present an experimental schematic using three indistinguishable photons to illustrate
our result. One can also create more circuits to illustrate our result experimentally.

For simplicity, we present this scheme using only the polarization DoF of the photon with eigenstates
{|H),|V)}. This can be extended to p number of indistinguishable photons having n number of DoFs. Assume
Alice and Bob have two photons in |H) eigenstate and Charlie has a photon in | V') eigenstate. The three photons go
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Figure 2. We present an experimental schematic using three indistinguishable photons to illustrate the equality
monogamy relation. This state is analogous to the W-type state of distinguishable particles. Here, three parties
Alice, Bob, and Charlie send three photons with |H),|H), and | V) eigenstate respectively in polarization DoF to
three beam tritters (BT) denoted by BT 4, BT, and BT ¢ respectively. From each beam tritter, the photons are
received in the detectors denoted by D4, D, and D¢ which belong to Alice, Bob, and Charlie respectively. The
detection procedure of the photons is the same as for distinguishable ones (see Supplemental Information 3).
The only difference is that we do not know which photons are being detected.

to the respective beam tritters (BT) denoted by BT 4, BT, and BT ¢ respectively whose three output ports go to all
of the three detectors D4, Dg, and D¢, as shown in Fig. 2. This is essentially a particle exchange method'**! to pro-
duce indistinguishable particles. Here, we will consider only those cases where each of the detectors detects only
one photon. Note that, the measurements for indistinguishable particles are the same as for distinguishable ones

Here, the beam tritter is a generalization of the beam splitter for higher dimensions. The theoretical modeling
of the beam tritters can be found in Ref.**” with applications***. Experimental realization of the beam tritters
can be found in Ref.***!. The transition matrix for each of the beam tritters can be written as*

where w = exp(izT”).

Let three localized regions s1, s2 and s3 belongs to Alice, Bob and Charlie where the detectors Da, Dp, and
Dc are present. The initial state of the particles can be written as| ¥ V), = |H), ® |[H)p ® | V). After particle
exchange, the final state can be written using the notations of Eq. (26) as

1
WD), = ﬁ(|slH,szH,s3V) +nls'H,s*V,s’H) + |s'V,s*H,s°H)). (6)
Now we can calculate the monogamy following the calculations in the “Proof of MoE for three indistinguish-
able particles each having a single DoF” section. After calculation we get (gslzlsz + ‘6512|S3 = (gs12|sls3 =3

One may think that whether it will be possible to create states that follow a strict monogamy inequality rela-
tion using indistinguishable particles. The answer is no. In Supplemental Information 4, we show the condition
for a general three-qubit state using distinguishable particles that follow a strict monogamy inequality relation
and why those states cannot be generated using indistinguishable particles.

Note that, the state we have created in Eq. (6) is analogous to the W-type state of distinguishable particles®.
However, none of the existing literature has shown how to create this type of state using indistinguishable par-
ticles. This is the first contribution of this setup. Secondly, this W-type of state gives a strict monogamy equality
relation for distinguishable particles. We have shown for indistinguishable particles, the results exactly the same
as shown in the first row of Table 2.

Discussion

Quantum mechanics features the existence of particles that are indistinguishable, which has drawn significant
attention within the scientific community. These indistinguishable particles are being explored as a resource?®
for various quantum information processing tasks, including teleportation®** and entanglement swapping™,
which are traditionally carried out using distinguishable particles.
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A recent series of published findings have highlighted the unique properties and applications that are specific
to indistinguishable or distinguishable particles, referred to as “separation results” between these two categories.
Das et al.*® demonstrated that only distinguishable particles can achieve unit fidelity quantum teleportation, while
only indistinguishable particles can produce hyper-hybrid entangled states. In cases where a quantum protocol
can be executed using both types of particles, one may offer advantages over the other. For instance, entangle-
ment swapping requires a minimum of two indistinguishable particles®, whereas three distinguishable particles
are needed®*®. Another separation result by Paul et al.””. reveals that using two indistinguishable particles, each
with multiple degrees of freedom, can maximally violate monogamy of entanglement, which is not feasible with
distinguishable particles'!.

Building upon the aforementioned separation results, this article presents a distinct property of indistin-
guishable particles that sets them apart from distinguishable ones. Specifically, the inequality of the MoE using
squared concurrence for three or more distinguishable particles, as depicted in Ref.*, becomes an equality for
pure indistinguishable states. However, this equality may only hold for mixed indistinguishable states. It is worth
noting that this equality differs from the one proposed in Ref.”’”. This finding proves particularly useful in cal-
culating entanglement in scenarios where particles are indistinguishable, such as in quantum dots***?, ultracold
atomic gases®’, Bose-Einstein condensates®®?, quantum meteorology®**, among others.

The significance of our result is that it establishes a connection between the three properties, say monogamy;,
purity, and distinguishability of some specific quantum states. For example, if an unknown pure state obeys
strict monogamy inequality implies that the state is made of distinguishable particles. Also, if an unknown
state made of indistinguishable particles obeys a strict monogamy inequality implies that the particles are in a
mixed state. The full characterization of all the states based on monogamy, purity, and distinguishability is an
interesting future work.

Methods

Revisiting the representation and definition of entanglement for indistinguishable
particles, DoF trace-out rule and calculation of concurrence for indistinguishable
particles

Here, we revisit the representation and definition of entanglement for indistinguishable particles’"*, the existing
results of DoF trace-out for indistinguishable particles®” and the calculation of the concurrence between any
two DoFs of two indistinguishable particles®® with the representation described in “Representation of the general
state of p indistinguishable particles each having n DoFs” section.

31,32

The representation and definition of entanglement for indistinguishable particles

The central challenge in the field of quantum information theory lies in the inadequacy of conventional entangle-
ment measures when applied to identical particle states'*2*>?7¢7_Traditionally, metrics such as the von Neumann
entropy of the reduced state are unable to distinguish between entanglement and the mere independence of
separated particles. This issue creates conflicting outcomes for bosons and fermions®-7. It's worth noting that
this challenge is not exclusive to the particle-based (first quantization) description'*'*2% but also applies to
the mode-based (second quantization) approach?®?>?>¢’, where name labels are not explicitly mentioned but
are implicitly assumed.

This problem has driven the development of alternative methods for identifying entanglement among identi-
cal particles'®18212479-83 These methods depart from the conventional ones used for nonidentical particles, either
by redefining the concept of entanglement or by seeking tensor product structures supported by observables.
The goal is to distinguish the physically relevant entanglement from the unphysical components. The need for
such novel approaches to address quantum correlations for identical and nonidentical particles is somewhat
surprising. However, these approaches remain somewhat cuambersome from a technical standpoint and are less
suitable for quantifying entanglement under general conditions of scalability or in realistic scenarios where
identical particles are in close proximity, leading to spatial overlap.

In quantum mechanics, identical particles are assigned name-labels to make them distinguishable. To ensure
that this fictitious system behaves like a real bosonic or fermionic system, only symmetrized or antisymmetrized
states with respect to the labels are permitted®*®. While this approach generally works well in practice, complica-
tions arise when dealing with entanglement, which critically depends on the form of the state vector. This com-
plexity arises from the simultaneous contributions of real and fictitious (label-born) factors to the entangled state.

In our work, we have taken a recent approach®*>** that aims to provide a more straightforward description of
quantum correlations in identical particle systems, grounded in simple physical principles that can unequivocally
address the fundamental question: when and to what extent does the indistinguishability of quantum particles
become physically relevant in determining their entanglement? They represent an approach to identical particles
that, like second quantization, dispenses with name labels while adopting a particle-based (first quantization)
formalism based on states. This approach treats a many-particle state as a single entity characterized by a com-
plete set of commuting observables. It quantifies the physical entanglement of both bosons and fermions using
the same principles employed for distinguishable particles, such as the von Neumann entropy of the partial
trace. This approach enables the study of identical particle entanglement under arbitrary conditions of wave
function overlap at the same level of complexity required for nonidentical particles. Furthermore, by imposing
the condition of spatially separated (i.e., non-overlapping) particles, our approach recovers known results for
distinguishable particles.

If the state vector of two indistinguishable particles is labeled by ¢ and v, then the two-particle state is rep-
resented by a single entity|¢, ¥). The two-particle probability amplitudes are represented by

Scientific Reports |

(2023) 13:21972 | https://doi.org/10.1038/s41598-023-46515-z nature portfolio



www.nature.com/scientificreports/

(0. 81, ) := (D) (C 1Y) + nlel¥) (L), (7)

where ¢, ¢ are one-particle states of another global two-particle state vector and n = 1 for bosons and n = —1
for fermions. The right-hand side of Eq. (7) is symmetric if the one-particle state position is swapped with
another, i.e,, |¢, ¥) = n|Y, ). From Eq. (7), the probability of finding two particles in the same state |¢) is
(0, 9|P, ¥) = (1 + n){p|P){@|¥) which is zero for fermions due to Pauli exclusion principle** and maximum
for bosons. As Eq. (7) follows symmetry and linearity properties, the symmetric inner product of states with
spaces of different dimensionality is defined as

Wkl - o @2) = (Vi | @1, 02) = (Vkle) @) + n{dkle2)le1), (8)

where |®) = |¢1, ¢,) is the un-normalized state of two indistinguishable particles and |) is a single-particle
state. Equation (8) can be interpreted as a projective measurement where the two-particle un-normalized state
|®) is projected into a single particle state |%). Thus, the resulting normalized pure-state of a single particle after
the projective measurement can be written as

)

where |®) := ﬁlé) withN =145 | (¢1]|¢2) |*and l'[,(cl) = |¥k) (Y| is the one-particle projection operator.

The one-particle identity operator can be defined as IV := ", l'[;cl). So, using the linearity property of projec-
tion operators, one can write similar to Eq. (8):

i) (k| - o1, @2) = (Uklon) Yk, 02) + n{¥klea) o1, Yi). (10)
Note that

1D0) = 2|9), (11)

where the probability of resulting the state|y) is px = (l'[,(cl) )/2- The partial trace in this method can be writ-
ten as

1 1
P = STV @p@] = = 3 7 (Yl @) ln) = ijpk|¢k><¢k|, (12)

k

where the factor 1/2 comes from Eq. (11).

Another useful concept is that of localized partial trace®, which means that local measurements are being
performed on a region of space M where the particle has a non-zero probability of being found. So, performing
the localized partial trace on a region M, we get

1
osy = mTrE&H@WDL (13)

where Ny is a normalization constant such that Tr(" /’1(\/}) = 1. The entanglement entropy can be calculated as

Ev(1®)) == S(py)) = = _ AilnZ, (14)
i
where S(p) = —Tr(plnp) is the von Neumann entropy and 4; are the eigenvalues of p](\,}). We will call the state

an entangled state if we get a non-zero value of Eq. (14).

DoF trace-out for indistinguishable particles
In Ref*”%, the authors have presented the DoF trace-out rule for two indistinguishable particles, each having
two DoFs. Here, we generalize the DoF trace-out rule for two indistinguishable particles each having n DoFs
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from the general density matrix defined in Eq. (4) by substituting p = 2. Suppose we want to trace-out the j-th
DoF of location s* € SP. Then the reduced density matrix is calculated as

pe =Trg (0@7) = D7 (*my | o2 | s*my)

m;eD;
::Z{ > ip(s“mi | a'af) (B} | s*mj)la! a— o?adl ... a%) (B bl B2bb% ... b2
Mmoo~ wla?a },al a%,a%, a2
Bl % b}, b, B, 63,
2 2,171 111 1 272 2
+1n Z (s mj | a a;) (B b; | s*m;j)|a aja; . .ala? a; 2y (B! b ,B2b203 .. b2
al,a?,al,al b1a2 a?
> 1: ]2, 21:~-1 ) 2 j,,m,h%
NN N NN
1 1y,02}2 1.1 222 1171 1 22
+7 > (s"mj | ') (B2} | *my)lar'aj, o’atas ... an) (B b1by ... by, BOY|
o't af,af,at,a5,. 0y
B A% bl b bR B2
22,5272 111 1 2 2y 01p171 15272
+ > (smj | &’a)) (B2} | s*my)leajay ... ay,a%a?) (B'b1b} ... byB %|},
al,az,a},a%,.. a,lq,ajz,uz
1 g2 31 p1 132 12
B, B b ,bz,...,bnb],bj
(15)
where
2 1 g2 2 2
BB a'e? plp
K_KIIZZ 1112 32 K_Kll 2 2311 12
P a},7,a1,03,....a%,b} by b 03 b2 q a},a}....ba7 a3 b] b b 2b3,..b0%°
1,2 2 1,2 gl p2
ala?,pl.8 a‘at,php
Ky =K Ks =K
ujl ajl,a% a2,...a2,bL.b},.. ,b},,bf,bz’ § at.al,... a}l,ajz,ujz,b{,bé, ,b},,bjz,bz

If we substitute n = 2 in Eq. (15), then it reduces to the trace-out rule of*”.

How to calculate the concurrence between any two DoFs of two indistinguishable particles?
The calculation of the concurrence between any two DoFs from two spatial regions involves the following steps.

Step 1: applying the projector
In the general state given in Eq. (4), it is possible that each localized region has more than one particle. To cal-
culate the concurrence, we have to ensure that each of the localized regions s1,s2,...,sP has only one particle.

For that, we have to apply a projector as follows.
Projecting p»™ onto the operational subspace spanned by the basis
R sls2...sP
={s'D},...D} ,s*D}, ...D2,...sD} ... Dh)

11 1 2 2
s'D},...DL ,s*D} ...D2,...s" DY ...Dh)

(16)
1l 12
Is'Dy, ...Dy, »°Df, ... "D} D5 . Dh ),
by the projector
Pag g = Z Istaind . oxh s2aiad a2 Pl st L Pdad L a s
xjeDjieNy,jeN,
17)
results in
P '@slsz...sl’p(p’n)gslsz...sl’ (18)

sls2..sP Tr(gslszmspp(p,n))

It's important to note that one might initially assume that applying a projection would limit the occupancy
of the relevant modes to exactly one, seemingly defeating the purpose of using indistinguishable particles, as
it would allow for proper labeling of particles by spatial modes. However, this assumption is not accurate. The
projection operation encompasses all possible scenarios where each localized region contains one particle, as
illustrated in Eq. (17). Consequently, even after the projection operation, it remains impossible to uniquely label
the particles with the projected modes.
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Therefore, it’s crucial to understand that the calculation of monogamy is not a mere consequence of the projec-
tion operation; rather, it serves the purpose of eliminating scenarios where no entanglement exists. The rationale
behind employing the projection operation is to facilitate the calculation of entanglement between the number
of localized regions, which corresponds to the number of particles involved. If any region contains more than
one particle, it would lead to situations where other regions have no particles. Thus, calculating entanglement
while including these regions would lack meaningful interpretation.

In summary, projections are employed for the sake of computational simplicity, and entanglement does not
arise as a byproduct of this operation. It can be verified that, even without the projection operation, the entangle-
ment calculation would yield the same results.

Step 2: tracing out non-contributing localized regions
To calculate the concurrence between two spatial regions, we have to trace out other (p — 2) regions using the
method described in Eq. (15). The trace out rule for tracing out say s" € SP region can be described as

(p—1,n) 3 h,_h _h h 8 h h h h
p(}él’f{zh}) = Trg <p(pn)> = Z ("miml . oml | p P | Sl m)), (19)

m’l',mg,...,mﬁ

where m]h span D for j € Nj,.

hl,shl,..

Thus if we trace out k number of particles from the localized regions s ., s", then the reduced density

matrix is represented as
(p—h.n) _ (pn)
P<y7(sm o ‘_"’Shk)> =Troy g i (p

hih h by 3 hih W
Z (Ml el | p @ Pl ek ),

shi e Sf’,mj?‘ eD;

(20)

Suppose we want to calculate the concurrence between the particle in the location s” and the particle in the

location s” where 5", s" € SP, we apply the DoF trace-out rule as defined in Eq. (15). Thus the reduced density
matrix is

(2,n) ,
psr;[l = Tr(S_{Sr’Sz}) (p(P n)) . (21)

Step 3: tracing out non-contributing DoFs

To calculate the concurrence between the v-th DoF of the particle in the location s” and the w-th DoF of the
particle in the location st where1 < v, w < n, we have to trace-out all the other non-contributing DoFs from
these two locations using the DoF trace-out rule as defined in Eq. (15). So, the reduced density matrix of the
v-th and the w-th DoF of the locations s” and s’ respectively is given by

(2,1) (2,n) 4 g (2,n) 4 g
psi,sfv = Tr(sg’sﬁ) ('Os’,;: ) = Z <w:nv’ wrsnw | ps’,:‘l | wrsnv’wrsnw%

(22)
m;)m}fe]D)j
r t
where|yry,.) = [s"mim; ...mp,_ymi, ). my) and Yy, ) = Is'mimb ... mfw_l)mﬁwH) coomb).
Step 4: calculation of the eigenvalues
To calculate the concurrence of ps(,2 ,511), i.e, @5t , we have to calculate the following
SRS viTw
~ r t r t
Psst, =0y ®0oypy g0y @0y, (23)
where a;r = |s")(s"| ® oy, and similarly a}ft ="' ® o0y, and o is Pauli matrix and the asterisk denotes
complex conjugation.
Now we have to calculate the eigenvalues of the non-hermitian matrix
%s;,sfv = Ps1 st 1555,5“,“- (24)

Finally, the concurrence is calculated as the
s, =max{0,v/2 = vis = V2 = Vi |, (25)
where /;’s are the eigenvalues of Z; «« in decreasing order.

Proof of MoE for three indistinguishable particles each having a single DoF

Here, we calculate monogamy for three particles each having a single DoF, for example, spin DoF having eigen-
states {|1), [{ )} in three localized regions S%. Trivially, we can show that if each particle is in the same eigenstate
of the same DoF, for example, | 1) eigenstate in spin DoF, then the concurrence between any two particles between
any two locations is zero.
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Let us assume another situation where two particles are in the same eigenstate and the other particle is in
the orthogonal eigenstate of the same DoF. Without loss of generality, consider two particles are in |1) eigenstate
and the other is in || ) eigenstate in spin DoF. Thus the general state can be written as

(wGDy = Z n“KZII:‘Z u‘); latal, o?a?, oa®)
aleS3,ieN;
—K?T‘ia lo! 10?4, ¢)+77K?¢a¢a lo ta? |’ 1) 4k ?TQTD[ lo' | a),a® 1 a3, 0’ 1 a3).
(26)
. i i i’ . . : 1
Herea' € {|1),|{)},fori € {1,2,3}suchthata’ # a' foralli # i’ andif|1) = |¢) +5 thenZa -3
The value of p = 0if (& = &) A (ai = a",)for alli # 7'
The density matrix of Eq. (26) can be written as
G _ (utir), ot a?a® BLBEBx 2 1 2 3
o = Z nuuKu1a2a3Kb1b2b3 la'a', o’a aa)(ﬁb ﬂb /Sbl 27)

o, Bl € S*&i € N3
Here a',b' € {|1),]{)}, for i € {1,2,3} such that a' # @' and b * b for all i #1i. Also if we take
1) =-314)=+3 then Ya=3b=-1. The value of p=0 if
{((xi = a/) Vv (ﬁi = ,3/) }} A {(ai = ai/) \Y <hi = bi/) } for alli # i’. The normalization condition in this case
is
alatad A
Z Kal a2, aO; Kbl 2N =1 (28)
al,BieS3albie{t,]}
where o' = ﬁi, al = biforalli e {1,2,3}.

Now we calculate the concurrence by the steps described in “How to calculate the concurrence between any
two DoFs of two indistinguishable particles?” section.

Step 1: applying the projector

Here, we have to apply the projector 2 1(323 in p>D 5o that in each of the location s

particle which is defined as

162 and s® have exactly one

3.1 1.1 2 3.3 2 3.3
Paos = Z Is'xl, 222, 2 x3) (s'x L, s2x2, 35 (29)
x et}
Thus after applying the projector, we get the density matrix as
G 3,1 G 1) k—1 (3.1)
S0 _ Zids VP00 _ Lnkenzan 1Bz o (30)
123 — - >
e Tr (ﬂsffggp(ll)) 2 hel1,2,3) ZhZ,
where the values of
123 123 123
a=fl w=sff w=sif a

and the complex conjugates of z; for j € {1,2, 3} can be calculated accordingly. Also /o(3 D |1l/>(3 1)(1//|§(3’1)where
WP =18 s s D, Y =15t LS ), S =1t L s ), (32)

and the complex conjugates of [) ;3’1) for j € {1,2, 3} can be calculated accordingly.
For the simplicity of the further calculations, we can expand Eq. (30) as
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(3,1) % (3,1) (3,1)

3,1
/’123—Z11/’11 +nz123pyy 3

3,
+z1z3p3 ¥, 3D

3,1
+ zzzl o1 S

3,1
+ r]zzz;pzz 3D

3,
+275053 T

3,1
+ 23z1 P31 G

31
+ nzg;zikp?,z G

+Z3z§‘p33

=221t L2 A2 DG S st 12 48 D s LS A zzdlst 42 0 Dt s? sS4
+22f1st 1,52 1,87 st 052 0,83 Lzl lst 1,52 s st 1s? 1SR a2l 1 1S st 4s st )
+z3zflst L2 S D A S L nsalst L S el s L Mzt L S et L s

=K§1,§2¢"3xi$2j3 EERS SR u+nx§1§2f3 ;ljzf It 8% 4 st 8?48 )

PSS L 203 el L2 (33)
P TN L2 LB 12 18 L S e 1 L Nl 1 s
+K51,f,2¢*53xj1j2¢53 1s? s D! L 4 1)

N L2 B R ST T L s 1l e 1B )

+Kf){2¢’53kfj2 e L 3 e L 8 L

It can be seen easily that the denominator of Eq. (30), i.e., > jc(1,23) 2n2; = 1according to Eq. (28).

Step 2: tracing out the region $3
Now we have to trace out the particle at the region s>. So, we get the reduced density matrix as

*h=1), % (2D
2,1 3,1 3,1 Dhke(123) 1 ZhZy Py
05(152) =Trg (:05(15223> = Z <53m3 | ,05(15223 | 531413) = <l } . (34)
3 Zhe{l,2,3} znz},
m” € {1,]}
The values of,o(2 D |1,0)(2 D (Wl,(cz‘l) where

)PV =1t 1,2 1), Y =1t 42 1), 1 =18t L), 1Y = 1st s,

(35)
(2,1) (2,2) (2,2) (2,1)
P2 =P =0 =03 =0,
and the complex conjugates of W)( D for j € {1,2, 3} can be calculated accordingly.
Now expanding Eq. (34), we get
2,1 2,1 2,1 2,1 2, 2,1
o = 2zt pTY + 12z et + el + nngiely” + mzies”. (36)
2,1)
Step 3: calculation of the squared concurrence ofp 1,2 denoted by (65 i)
To calculate concurrence for /osls2 , we have to calculate the following
2,1 2% s 2
/05(152) = ‘7 ® U ps(lsz)*(fs ®0,, (37)
where U = |s(s'| ® 0y, 0, = |s )(32| ® o0y. Here oy is the Pauli matrix and the asterisk denotes complex
conjugatlon. The expression for ay ® O‘y
1 2,1 2,1 2,1 2,1
o5 @y =pi + oG — otV — i3V (38)
Thus the value ofp . 2 is
2,1 , 2, 2, 2,1 2,1 2,1 2,1
B = 1P + nmzipit + Bz F el + 1ol — ot - 3. (39)
Finally, we have to calculate the eigenvalues of
2,1) (2,1 2,1 21 21
2 =080 = L+ lazleS” + 1P @ +n1z2)ess " + 1+ 02l es” + 1+ n)lzzsPes”
(40)
So, the value of square of the concurrence ¢ 12‘ , can be calculated using Eq. (25) as
@ 2 e = =2|zz)* + z%zg‘z + zfzzg —2|nzziz5z3 — 2223|2 (41)

Step 4: calculation of the squared concurrence of,o | 3) denoted by % 2 sis3

Similarly, to calculate the squared concurrence % 2 o> the first step is to trace out the particle at the region s? from

3,1)

Pyl SO, We get the reduced density matrix as
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(k—1) x (2,2)
2,1 3,1 3,1 D hke(1,23) 1 ZhZ Pp
Ps(lsa) Try (ps(lszz3> = E (s*m? | 105(15223 | s*m?) = <i2d) : (42)
2 2he(1,23) %%,
m” e {1, ]}
The values of,o(2 D W)(Z 1 (1//|(2 'Y where

)PV =1t 1,82 1), Y =18t s L) 1P =1st s ),

(43)
€3} (2,2) (2.2) (2,1)
P12 =Py =5 = py =0,
and the complex conjugates of W)JQ’D for j € {1,2, 3} can be calculated accordingly.
Now following similar calculations as above we get square of the concurrence between s! and s> is
%2 sl = =2|z123)* + zfzgkz +zf z3 —2|nz1z3ziz3 — zfzglz. (44)
Step 5: calculation of the monogamy relation
Thus the monogamy relation from Eqs. (41) and (44) can be written as
Gl + b e =41~ lzP)lnl < 1. (45)
If we further trace-out the particle at s from Eq. (34), we get
L1 2,1
PV = 3T (Em? | p0Y | $2mP) = (121 P HlzP)Is' 1)t A+ Lz Plst s L (46)
mZEDZ
Thus, as Eq. (26) is a pure state so, we have € 2 s = 4de'[(,0(1 1)) =4(1 — |z3)|z3)> < L
So, we get monogamy equality as
2
%2 sl + %51‘53 = (531‘529- (47)

Proof of MoE for three indistinguishable particles each having two DoFs

Here, we calculate monogamy for three particles each having two DoFs, for example, spin and orbital angular
momentum (OAM) DoFs having eigenstates {|1), |{)} and {|+1]), | =)} respectively in three localized regions
S®. We describe the first five cases where one of the eigenstates of the DoFs contributes to entanglement, and the
other non-contributing DoFs take arbitrary values. Then we consider the other cases where contributing DoFs
for entanglement can be in an arbitrary superposition of their eigenstates.

Case 1 Each particle is in the same eigenstate of the same DoF, for example, |1) eigenstate in spin DoF. Trivial
calculations show that the concurrence between any two particles between any two locations is zero.

Case 2 Two particles are in the same eigenstate and the other particle is in the orthogonal eigenstate of the
same DoE Without loss of generality, consider two particles are in| 1) eigenstate and the other is in || ) eigenstate
in spin DoF. We take two DoFs in this case as the calculations are same for three DoFs.

Here, we calculate the monogamy of entanglement using three indistinguishable particles each having two
DoFs, which are localized in three spatial regions sb, 2, and s3 which we denote as S3. We consider two particles
with |1) eigenstate and one particle with || ) eigenstate in their spin DoF as we calculate entanglement with only
spin DoF. The other DoF of each particle can take any arbitrary eigenvalues. Thus the general state can be written as

w32y = Z 77“/(2‘1“?‘1‘?:2a3a3|a1a%a%,a2a2a§,a3a3ag)
aieS3,ieN3 i
= D0 e sl tabe? taba La Y a0 et aba? | abe’ 1 ad)
ah e, ah e, m
+ Z ﬂuzKTaaT: Tu3|a Vala? 1 aka® 1 ad).
aZG]D)Z ”

(48)
Here a| € {|1),]})}, @) € D, fori € {1,2,3} such thata} # a’i/ for alli # i and if |1) = —%, [}) = +%then
> al = —1. The value of yp = 0if (¢! = &’) A (a] =a )forallz # i’ where j € N,.
The density matrix of Eq. (48) can be written as

= 2.3 2
P(3’2) = Z 77(”+H)K:};§,a?a%ﬂ%a% 51bf}bfb2*b3b3|a1alaé,a2a2a§,a3a3a3 ﬁlb}bé,ﬂzb%hz,ﬁf’b{’b;,
o, Bl e S*&i € N3
(49)
Herea}, b} € {|1), )}, a}, b, € szorf € {1,2,l3>}suchthata1’1 # a) and b} # b} foralli # i'. Also if we take
M =-L1)=+% then Ya=3b=-1. The value of p»n=0 if
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{((xi = a/) \% ( )}} A {(u = a]’ ) \% <h]’ = b]’f/) } for all i # i where j € N,. Here the normalization
condition is
Lo BY.B%.B* —
Z Ka{aé,aza% a%uiKblh%,bfbﬁ,bfbg =L (50)

ol S al bi (1. )ab bheDy

where o = 8, a = b’forallz €{1,2,3}and j € {1,2}.
Now we calculate the concurrence by the steps described in “How to calculate the concurrence between any
two DoFs of two indistinguishable particles?” section.

Step 1: applying the projector
First, we have to apply the projector 21 23 so that in each of the location s, s2, and s> have exactly one particle
which is defined as

Pags = Z Is' i), s2xixd, s 5705 ) (s ] 3, 2 s, 2 x5 | 51)
xi € (1. 4hxh €Dy
Thus after applying the projector, we get the density matrix as
7 ktup+i—1 (3.2)
,0(3’2) _ .fslszssp(S’z).yslszg o Z Zh ke{1,2,3} 77( 2T >ZhZ Prk
123 = "m0 2o > 52
sises Tr(y51$2$3p(3,2)) ; ; ; Zh€{1,2,3] thh ( )
ay, by, x5 € Dy
where a} = b} = xJ. The values of
51,52,53 51,52,53 51)52,53

z z 723 =K ,

V= a e 2 T tablara BT el rada (53)

and the complex conjugates of z; for j € {1, 2, 3} can be calculated accordingly.
Also p(3 2) IW)(3 2) (¥ |,(3’2) where
WP =15 1,8 15,8 | ),
W5 =15 a8 | g8 1 ), (54)
W5 =1 L, 15,8 1 ),

and the complex conjugates of |w)](3’2) for j € {1,2, 3} can be calculated accordingly.

Step 2: tracing out the region $
Now we have to trace out the particle at the region s>. So, we get the reduced density matrix as

2,2 3,2 3,2
10(1 2) =Trg 10(1 2)3 = (s3m1m2 | ,0(1 2)3 | 537"?””%)
s Ry §'ses
m?’ml e{tih mz S}
(2,2) (55)

k
Z ke 1T TRz, 2E o
ug b; xg D, Zhe{1,2,3} Znz),
where a), = b, = x}, and m3 = x3. The values of ,0<2 2) |1//)(2 2) (Y |,(<2’2) where

2,2 2,2 2,2
WP =1s" s 1 ) IS =15t s L g, S =18 L agst 1 ),
(2 2) 2,2) 2.2) 2,2)
=p13 =0 =p3 =0,
and the complex conjugates of |) ;2’2) for j € {1,2, 3} can be calculated accordingly.
Step 3: tracing out the second DoF
Finally tracing out the second DoF of each particle we have

H—1 2,1
n(k+uz+uz )th;: Phk

>

@n 11 22 1,1 2 2 Zh,ke{l,2,3}

Paa = > (s'mhm3 | piTn) | st my, s m3) = > > o
i o1i i he{1,2,3

mlmZeD, al, b, xi € D, St23 7

(57)
where az = h’ = x2 = m2 The values of,o(2 D |1ﬁ>(2 1)(wl(2 D where
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WP =15t A, WS =1 A ), g =18 s ),

(58)
@1 @1 @1 21
12 =135 =P =Py =0
and the complex conjugates of W)JQ’D for j € {1,2, 3} can be calculated accordingly.
Step 4: calculation of the squared concurrence of ,0( )
To calculate concurrence for ,05(1 32>, we have to calculate the following
1°1
~(2,1 2,1
Py =0 @0 nid o) @ o, (59)
where o)fl =" ® 0y, 0, }fz =2 ® o0y. Here o, is the Pauli matrix and the asterisk denotes complex
conjugation. Finally, we have to calculate the eigenvalues of # = ,05(251),55(125%)
1°1 1°1

So, the value of square of the concurrence % 2 R is

2 2 _%x2 *2_2 * % 2,22
e = 202232 + 23257 4 23222 — 2|02z — 2225 (60)

. ; 2
Step 5: calculation of the squared concurrence (651 &

Similarly, to calculate the squared concurrence ¢ 512|s3, the first step is to trace out the particle at the region s from

,0(13 53)3 as shown in Eq. (52). So, we get the reduced density matrix as

2,2 3,2
’05(153) =Tre (,0 15253) = Z <5 mlmZ | '05(15223 | Szm%mg)
mi € (1,1}, m} €Dy
: 61
oty e (D) (61)

— Z Zh,ke{1,2,3}

L > znz;,
a, b x e he{1,2,3) “h%)
where a2 = b’ = xz, and m2 = xz The values ofp(2 2 |1//)(2 2) (1//|(2 2 where

WP =18 1 s 1), WY =15t ans L), WY =1st L 1),

(62)
22 22 22 22
P12 = =5 =5 =0,
and the complex conjugates of W) 22) for j € {1,2,3} can be calculated accordingly.
Now following similar calculatlons as above we get the square of the concurrence between s' and s is
(6512|53 =2lzz3|* + 228 + 21225 — 2|mziz e — 2R (63)
Step 6: calculation of the monogamy relation
Thus the monogamy relation from Egs. (60) and (63) can be written as
Ciha+ i =40 -1zl <1 (64)
If we further trace-out the particle at s? from Eq. (57), we get
11 2,1
Py = D il 19 = (121 P HzP)S D6 A el e
m%eDg
Thus, as Eq. (48) is a pure state so, we have (65 s = 4det(,o(1 1)) =4(1 — |z3)|z3)2 < L
So, we get the monogamy equality as
2
%L e T (551‘5% = %51‘5253- (66)

Case 3 Two particles are in the same eigenstate in the same DoF (say |1) in spin) and the other particle is in a

different eigenstate of another DoF (say |+I) in OAM). If the particles in the three regions S* are measured in
spin, spin, and OAM DoFs, then calculations reveal that

/ sl = FSI\SS = %512‘5253 =0. (67)

Case 4 Two particles are in orthogonal eigenstate in the same DoF (say 1) and || ) in spin) and other particles
is in different eigenstate of another DoF (say|+I) in OAM). By similar calculations as case 3, we get (5512‘52 #0,

(652 ; =0,and % 2 oo = (6'512‘52 as follows.
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Consider two particles with spin DoF having|1)and || ) eigenstates respectively and one particle with orbital
angular momentum DoF with |4) eigenstate. The eigenvalues of spin DoF and OAM DoF are represented by
a’i e D; ={|1), |¢)}anda§ € D, = {|+1), | 1)} respectively wherei € {1, 2, 3}. The other non-contributing DoFs
in the entanglement of each particle can take any arbitrary eigenvalues. Thus the general state can be written as

3,2)\ 0 ala?a’ 1 1 2
[wG2y — E MKl a2 a?+l|a tay,a? | a3, a’al +1)
a?EDl,a;,agelD)z
1, alo?ad 1
+ E nK¢aa+l¢a3|a Taz,a al—f—loz ¢a2)
aleDy,a},a3eD;
2 o ,az,oz
+ E Nk Labtad, a3+l|a J az,a 0 az,cx al + 1)
3 1.2
ajeDy,ay,a5€D,
68
3 o ,az,(x l ( )
+ n ¢u2a1+l¢u3|a | ay,0?at +1,0° 1 a3)
ateDy,a3,a)eD;
4 ala?al
+ g nKa1+lTu2w3|a al—i—la Taz,oz ¢a2)
a%e]D)l,a%,ageDz
5 ala?e® 1 2 2 3 3
+ E UM +1lu2Ta3|a ai+La® | aya’ 1 ay),
aleDy,at,a3eD;
! ‘SZ ‘53 ‘(gszlls2 (652‘|s3 (652”5253
DoF Eigenstate 1st particle 2nd particle 3rd particle Relations Measures in the DoF
1 Same Same |2 >jl< |2 )jk |2 >jk Nil jiolji 1 0 0 0
2 Same Different |2 ). 12 ), |2 ). o> =k Podio il |zo0 =0 [zo0
Jk Jk /Y D). =D );
i Ji
Q.
3 Different | Different 1), 12),, 12); ffé ’]f)f{k €D i 17 o 0 0
Ji i
2). =|2)t
4 Different | Different |2 >jk |2 )jk’ |2 >if ‘;f >Jk’ 12 >Jk’ i i i |=o0 0 >0
lef € Dj/
. o a1
5 | Different | Different ||, 12 ) 12, fjfe gj” g il o 0 0
i
6 Same Different 12)), 1)), K519 ), + K5, | " K4k, =1 i lj lj [=0 [=0 |=0
Ay n
7 Same Different D) |2 ), <G |2 ), + K e ). ‘g>j‘\' _‘g>j’<’ jolji |j |=0 >0 [>0
Tk W Ik v - K +Kjkr = - B -
Same super- i . . .
8 Same positionp K51 ) 165,619 ) 151D ), 1, €1D ) |G D ), A, e 01D ) 4, =1 G |i (i |0 0 0
Different P ANl b if2 | g 7 Hit3 g ¢ £ b2 # 3
9 , D). +K € |=_/),, \J) +i €D ).
9 Same superposi- K];‘ b, K el >JL' Jr " Jk,,z Wk, # K / E K il i |=o >0 [>0
tion W] ereK JrKJk/ =1 where/( +K]k, =1 where Kjy +K]k, =1 K £k M # }k/
10 Different | Different 12 ), 12),, 12 )y + &, Nadt )J( K]; +Kjl,, =1 i lji i |o 0 0
11 Different | Different 12 ), 12, K12 )y + K, adt ), K]% +KJ% =1 i lj |7 |=0 0 >0
y
Different 17 i) g
2|9 , 9 K\ Y, +ky 1D ).,
12 Different | superposi- |12 ). il ) +K1k “| >Jk' ]ll g >lz iy ! >J(’ j#ET i lji i |=0 >0 >0
tion Jk where K + Kjk, 1 where Kﬁ + Kj/ =1
i J#E]#ET
Different i 1D, +xi DY N k| DY+ iy e 1D Y, k4|2 )y, + iy € |§/> 2;,,e D,
13 Different | superposi- A I R I o 5/]: e Dy oo 0 0
tion whereK +K}k, =1 where KJ%, + KJ%/ =1 where KJ., + /cj/ =1 "
h 14 1 v ’f],/ c ]D)/

Table 3. List of possible combinations to create indistinguishability using three indistinguishable particles

localized in three regions s

1

, 5%, and 5%, each having three DoFs denoted by j, j/, j”. Here the second column

denotes whether entanglement is calculated in the same DoFs or different DoFs of all particles; the third
column denotes whether the eigenstate of the contributing DoFs in entanglement is the same or not or
in superposition; the fourth, fifth, and sixth columns describe the eigenstates of the three particles in
the corresponding DoFs; the seventh column describes the relations between the eigenstates of the for
entanglement. The eighth, ninth, and tenth columns describe the DoF numbers (e.g., j means the jth DoF) in

which the measurements are done in the localized regions s

1

represent of the squared concurrences are zero or > 0.

, 2, and s° respectively; the rest of the columns
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where &' € S*fori € Nj. After projecting the state by the suitable projector so that in each location s!, s2, and s®
have exactly one particle. Finally, we calculate entanglement with s' and s? in spin DoF and between s' and s® in
spin DoF and OAM DoF respectively. Following the above steps, we have

2 2
2 3132,53 3132,53
(gsllsz - 4(KTa%,¢a%,u?+l Kla%,Tu%,a%-&-l >
g2 _
il =0, (69)
2 2
2 _ 5132,53 5152,53
(651|5253 - 4(K¢u;,¢a§)a?+l Kia;,Ta%,a?Jrl :
So, we get monogamy equality as

2 2 2
(651\52 + (651\53 = %51\5253' (70)

Case 5 All particles are in the different eigenstate of the three different DoFs (say|1), |+I), and |L) eigenstates of
spin, OAM and path DoF respectively). If the particles in the locations S are measured in spin, OAM, and path
DoF, then we have
2 _gp2 _gp2  _
(551|52 = (651‘53 = (551‘5253 =0. (71)
Other cases The above cases consider particles in any of their eigenstates. However, some more cases are
possible, where any DoF of any particle at any location might be in a superposition of the eigenstates of that
DoE In such scenarios, one can consider a rotated basis to redefine the eigenstates and the resulting calculations
would fall in one of the above cases, owing to the fact that the DoF measurements are localized. For all these
cases, we have

w2 _@p?2 _@p?2 —
gsllsz - 651\33 - 651\5253 =0. (72)

Proof of MoE for p > 3indistinguishable particles each having n DoFs
Suppose there are p > 3 number of indistinguishable particles, each having n DoFs. Recall that, the k-th eigen-
value of the jth DoF of a particle is represented by &;, € I; (the set of eigenvalues of the jth DoF). As we are
considering squared concurrence measure, so we take only two eigenstates of each DoF. For any eigenvalue 4, we
use the notion| ) for the corresponding eigenstate. In Table 3, we summarize the list of possible combinations to
create indistinguishability using three indistinguishable particles, each having three DoFs denoted by j, j, and
j”, localized in three regions s1, 52, and s3. Calculations for concurrences are done using the method described
in “How to calculate the concurrence between any two DoFs of two indistinguishable particles?” section. These
cases can be extended for p number of indistinguishable particles as shown below.

Case 1 Entanglement is calculated in the same DoF of all particles. Each particle is in the eigenstate |2 ) i of

the jth DoF (refer to 1st row of Table 3). Then after calculation, we get (5512|52 =0, ‘5512|S3 =0, and ‘5512|5253 =0.
Similar result holds for p indistinguishable particles having the eigenstate|Z ). of the jth DoF.
Case 2 Entanglement is calculated in the same DoF for all particles (refer to 2nd row of Table 3). For three

indistinguishable particles, if two of them are in the eigenstate |2 ) i and one is in the eigenstate |2 ) i where

=9 )-J]:, then (651232 >0, ‘5512‘53 > 0,and ‘65123233 > 0as shown in “Proof of MoE for three indistinguishable

12 );
partlc/les each kaving two DoFs” section. Similar result holds for p indistinguishable particles in S locations with
each particle having n DoFs where (g + r) number of particles are in the eigenstate|Z ) i andrestof(p —q —r)
number of particles are in the eigenstate|Z ). .

Case 3 Entanglement is calculated between two different DoFs. Here, if two particles are in the eigenstate
12 );, of the jth DoF and one particle is in the eigenstate |Z >jf of the j'th DoF where j # j’ (refer to 3rd row of
Table 3), then (6312‘32 =0, (gs‘2|s3 =0, and (gslzlszs3 = 0. Similar result holds for p indistinguishable particles in S”
locations with each particle having n DoFs where (g + r) number of particles are in the eigenstate | ) i of the
jth DoF and rest of (p — g — r) number of particles are in the eigenstate | >j; of the j'th DoF.

Case 4 Entanglement is calculated between two different DoFs. Here, if two particles are in the eigenstate
12 ), and|Z ) i of the jth DoF respectively and one particle is in the eigenstate|Z ) i of the j'th DoF where j # j’
and|Z ), = |2 )7 (refer to 4th row of Table 3), then % 2, > 0,% 25 = 0,and % 2, ; > 0as shown in “Proof
of MoE for three ir{(distinguishable particles each haviné |tswo DoFs” ‘ssection. Similzirlsrésult holds for p indistin-
guishable particles in S? locations with each particle having n DoFs where g and r number of particles are in the
eigenstate | ); and |2 >jk’ respectively of the jth DoF and rest of (p — q — r) number of particles are in the
eigenstate | ) of the j'th DoF.

Case 5 Entanglement is calculated between three different DoFs of three particles. If three particles are in the
eigenstate | >jk of the jth DoE |2 )1.;‘/ of the j"th DoE, and |2 )j§ of the j'th DoF where j # j' # j”, then (6‘512'52 =0,

%25 =0,and% 123233 = 0. Similar result holds for p indistinguishable particles in S? locations with each particle

1; \ . . . ) .
hzivfng n DoFs where q number of particles are in the the eigenstate | ), of jth DoF, r number of particles are

J
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in the eigenstate |2 ) i of j”th DoF and rest of (p — q — r) number of particles are in the eigenstate | ) i of the

j'th DoF (refer to 5th row of Table 3).
Case 6 Entanglement is calculated in the same DoF of all particles. If two particles are in|Z ) i and one par-

ticle is in the superpositions of its eigenstate, i.e., K]k|J ) +Kje 4l )4 where KZ + K»z = 1,then® 12| , >0,
% 2,>0and% }

ticles in SP locations with each particle having n DoFs where (g + r) particles are in |2 Die andrestof(p —q —r)

> 0. The calculations are similar to case 2. S1m1lar result holds for p indistinguishable par-

sls3 = sl|s2s3 =

particles are in the superpositions of its eigenstate, i.e., j, |7 ); + «j, e adl die (refer to 6th row of Table 3).
Case 7 Entanglement is calculated in the same DoF of all partlcles If two partlcles are in the eigenstate|Z Vie

and |2 ), and one particle is in superpositions of its eigenstate, i.e., kj, |Z ) + K, € 47 ). where Kjk + Kjk/ =1

of the ]th DoF, then (gsl| ,>0,% 2 e 2 0, and (651|5253 > 0. The calculatlons are 51m1lar to case 2. A similar

result holds for p indistinguishable particles in SP locations with each particle having n DoFs where g number
of particles are in | ) o7 number of particles are in |Z ) and rest of (p — g — r) number of particles are in
superpositions of its elgenstate ie., Kij |9 )i, +Kje i\ ). where k2 + «? L =1 (refer to 7th row of Table 3).

Case 8 Entanglement is calculated in the'same DoF of aff particles. Each particle are in the superposmons of
its eigenstate, i.e., kj, |2 ) + kj, e il ). where Kjk + Kjk/ = 1. Now calculations show that ‘631‘ , =0, (65 e

and % 2 1|5253 = 0. This case is similar to case 1 if we take a rotated basis to redefine the eigenstates as {|@~ ) I |@ ) e }

=K |7 ) + ke el ) (refer to 8th row of Table 3).
Case 9 lékntanglement is calculated i the same DoF of all particles. Each particles are in different superposi-
tions of its eigenstate, i.e., three particles are in the eigenstates «;, |2 ) i TG €7 ). J » ]k|@ )y, + /c e’¢2|9 ) i

and «j/ |@ )i T Kj/}:/ |9 )j, of the jth DoF where lcji + K]i/ =1, K],ZZ + K]%h/, =1, K./ + IC./ =1, ¢1 ;é b2 # O3,
Kj, 7 K k # Kjp» ', and «j,, # Kj/k/ # /cj/;,. Now calculations show that (6512‘52 >0, ‘6512|S3 0, and ‘55 s 2 0. The

calculations are similar to case 8. Similar result holds for p indistinguishable particles in SP locations with each
particle having n DoFs where g number particles are in «j, | % Vie T K et g )j, eigenstate, r number particles

arein«; |7 ); + K 2|9 ). eigenstate and (p — q — 1) number of partlcles are in /c»’]i 12 ), + Kj/]:, e\
e1genstate (reter to Jth row of Table 3).
Case 10 Here entanglement is calculated among two different DoFs where two particles are in|Z ) j, cigenstate

)jk’

of the jth DoF and one particle is in ;|7 )./ + K5, 19 );, eigenstate in the j'th DoF. Here j,j’ € N, and
Jr

K] + K], = 1. Now calculations show % 2 e = =0,% 12| , =0,and % 2 e = = 0. This calculation is easier if we take
i [2

arotated basis as shown in case 8. Similar result holds for p indistinguishable particles in S? locations with each
particle having n DoFs where (q + r) number of particles are in |2 ), eigenstate of the jth DoF and rest of
(p — g — r) number of particles are in K1 |9 >j; + K, 7 )j’ eigenstate in the j'th DoF (refer to 10th row of
&
Table 3).
Case 11 Here entanglement is calculated among two different DoFs where two particles are in | & Die

7);
] /
eigenstate of the jth DoF and one particle is in K12 >j + K, 12 )A, eigenstate in the j'th DoF. Here jj €Ny

and KJ% + KJ% = 1. Now calculations show that 12‘ , >0, (6 e = 0 and % 2 e 2 0. If we consider a rotated
1 14

basis in j/ DoF as {|5 ) IQ ) }whereI@ ) = K/I@ ) + Kj, e ¢\ )»;/, then the calculations is similar as case

3. Similar result holds for p 1ndlst1ngulshable particles in SP locat1ons with each particle having n DoFs where q
and r number of particles are in |2 Vie and |2 ), eigenstate respectively of the jth DoF and rest of (p — q — 1)
number of particles are in k|2 ') i K e ) 7 eigenstate in j'th DoF (refer to 11th row of Table 3).
i

Case 12 Here entanglement is calculated among two different DoFs two particles are in the |2 ) j, cigenstate
and «; |2 )jk + Kj,, 47 >jk/ eigenstate in the jth DoF, one particle is in the superposition, i.e.,
K |@j§) + K, il >j;/ eigenstate in the j'th DoF. Now calculations show ‘5312‘52 >0, (6512|S3 =0, and ‘6512|5253 > 0.
Using an appropriate rotated basis of the jth and j'th DoF, the calculations are similar to the previous case. Similar

result holds for p indistinguishable particles in SP locations with each particle having n DoFs where g number
of particles are in |Z )j, eigenstate of the jth DoF, r number of particles are in the superposition, i.e.,

K |D ), + K€ ?19 9 ), eigenstate in the jth DoF, and rest of (p — q — r) number of particles are in the super-
posmon, ie., K1 Ile) + K, e\ D ) 7, eigenstate in the j'th DoF (refer to 12th row of Table 3).

Case 13 Entanglement is calculated between three different DoFs. Here, three particles are in the superposi-

. i I g 242 ' k| D N+ i €2\ D Y0

tions of its eigenstate, i.e., kj, |Z >jk + K, €D >jk’ where K i, = 1 of the jth DoF; Ky |2 )]h + Kjr e |9 >]h’

where Kﬁ, + Kﬁ, = 1 of the j”th DoF; and K, |2 )j; + 5, a7 )j/ where KJ% + K]% = 1 of the j'th DoF where

h 14 14 1 14
j #j #j". Using an appropriate rotated basis of the jth, j'th, and j”th DoF, the calculations are similar as shown
in case 5. Now calculations show ‘gslzlsz =0, (6512|S3 = 0,and (6512‘5253 = 0. Similar result holds for p indistinguish-

able particles in SP locations with each particle having n DoFs where g number of particles are in superpositions
of its eigenstate, i.e., j, |Z Vie T Kje %12 Die of the jth DoF, Here, r number of particles are in superpositions of
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its eigenstate, i.e., K |2 ) i + K1, "\ ) 7 of j”th DoF and rest of (p — q — r) number of particles are in super-
h/

positions of its eigenstate, i.e., K1 D) i + K, oid’ |2 )j/ of j'th DoF (refer to 13th row of Table 3).
&

One may think that there might be more cases. Upon careful inspection, it can be concluded that all those
cases are equivalent to any of the above-mentioned cases.

Proof of MoE indistinguishable particles for mixed states
In this section, we generalize the relation for monogamy of entanglement of indistinguishable particles for mixed
states. We have proved in Corollary 1.1 the main text that for all pure states py, gy,

2 2 2
Gailp; (Puiﬂj) + Coiin (Pasin) = G o1k (Paiﬂjyk)- (73)

But this relation is not valid for mixed states as the right-hand side is not defined for mixed states. Since all
mixed states are convex combinations some pure states, we can write pg,g;y, as a convex combination of pure
states, as

Paifivk = Z PIMW'")aiﬁij(wm'aiﬂjyk’ (74)
m

where Pr,, denotes the probability of |v/,,) For each m, we can write from Eq. (73) as

@ik
(gaiz\ﬁj <|wm>ai5j <1//m|01i13j) + (gaizh/k ('wWI)aiyk <wm|0li)/k) = (gaiz\ﬁjyk (lwm)aiﬁjyk <1/fm|01iﬁj}’k>' (75)
Multiplying both sides with Pr,, we get
P16, (1Wmdaus, Wil ) + Prondy (Wmda, Umla) = Pro®s (Wmdaas s Wmlagp, )

(76)
Summing up for all the pure constituents,

> P, (1Wmdag, Wl ) + D PrnGely, (Vmay Vinlas) = D Prmbiis s (19mbar Wl )-
m m m
(77)

Now consider the decomposition, say{ (Prfn, W’”);iﬂjyk) }, that minimizes the right hand side of Eq. (77)
and denote it by
5 min . . 5
((gwi\ﬁjyk) = min Z Prinoigim (Wm)wiﬁjyk (Ym |aiﬂjyk> : (78)
{(Prm,Wm)aiﬂjyk)} m

Now expressing pg; gy, by minimizing the above decomposition as in Eq. (78), we have*’
(gaiz\ﬁj (paiﬁj) + (ga,-zlyk (Paiine)
= (gaiz\ﬁj <Z Pr;WW;iﬁj <¢M|:;iﬁj> + (gaizh’k (Z Prjnlwm):;i)/k (w’”|;iyk>
m m
< Z Prfn‘gaiz‘ﬁj (W,,,):’,ﬁj <Wm|2iﬁj) + Z Pr;‘gaflyk (lwm);iyk Wm':tiyk) (by the convexity of € ?)
m m

= el (Wt Wl ) + (1) Ol ) }

= Z Prjﬂ(gaiz\ﬂjyk (lwm);iﬁjyk(wmlziﬂjyk> (by Eq. (75))
m
= (‘ﬁaf‘ﬂjyk) (from Eq. (78)).
(79)
Thus we have for mixed states
@ 2 8 )+ C (Pauly) < € 8, 80
ail B Poip; ailye \Peilyk ) = @il Bjvi Poijvi )« (80)
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All data generated or analysed during this study are included in this published article [and its Supplementary
Information files].
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