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A novel code generator 
for graphical user interfaces
Bo Cai 1,2*, Jian Luo 1,2 & Zhen Feng 1,2

Graphical user interfaces (GUIs) are widely used in human–computer interaction, providing a 
convenient interface for operation. Automating the conversion of GUI design images into source 
code can significantly reduce the coding workload for front-end developers. Detecting elements 
in GUI images is a key challenge in achieving automatic GUI code generation and is crucial for 
tasks such as GUI automation and testing. However, current state-of-the-art methods do not fully 
consider the unique characteristics of GUI images and elements, and they lack the required high 
localization accuracy, resulting in low detection accuracy for GUI element boxes. In this paper, we 
propose GUICG, an automatic GUI code generator that combines deep neural networks with image 
processing techniques to efficiently detect GUI elements from GUI images and generate front-end 
code. We empirically investigate various deep learning approaches and image processing methods 
for GUI component detection. Based on a comprehensive understanding of their performance and 
characteristics, we design GUICG by fusing image processing with a deep learning-based target 
detection model, achieving state-of-the-art performance. GUICG outperforms existing methods in 
accuracy and F1 score for component detection tasks, while producing human-readable code with a 
logical structure. Furthermore, we conduct an ablation study to quantitatively assess the impact of 
each key element in GUICG.

Graphical user interface (GUI) is a very convenient way of human–computer  interaction1, software relies on 
simple user interface (UI) and intuitive user experience to attract users. The user interface of the software requires 
the designer to design the GUI and then convert it to the front-end code through the front-end engineer. This 
process often consumes a lot of time and  energy2. In addition, the implementation codes of the graphical user 
interface of the software on different operating systems are different, which leads to the need for code conver-
sion by front-end engineers. Automated code generation can significantly reduce the workload of front-end 
developers, allowing them to focus on other critical aspects of software development. Therefore, automatically 
converting UI design into executable code will greatly improve the developer’s work efficiency.

The method proposed by Chen et al. combines traditional image processing methods for non-text area 
detection with deep learning models for area classification and GUI text  detection3. For GUI text detection, 
they use the pre-trained scene text detector EAST. For non-text GUI component detection, a two-stage design 
is adopted, that is, region detection and region classification are performed sequentially. For region detection, 
they developed an image processing method with a top-down coarse strategy and a set of GUI-specific image 
processing algorithms. For region classification, a pretrained ResNet50 image classifier fine-tuned for GUI com-
ponent images is used. Although Chen et al. tested a variety of methods, the methods they used were all methods 
from a long time ago .

At present, the basic process of GUI code generation based on computer vision is to use computer vision 
technology to process GUI images, and then convert them into front-end codes. According to the different 
computer vision technologies adopted, such methods can be divided into GUI code generation methods based 
on deep learning object detection methods and non-deep learning GUI code generation methods based on 
traditional image  processing4. Image processing-based techniques rely on aggregation heuristics generated from 
image features and expert knowledge, while deep learning object detection-based techniques use CNNs to obtain 
image features and their aggregation rules from large amounts of GUI image data. GUI graphics processing tasks 
are different from computer vision tasks in natural scenes, and graphics have distinct characteristics. Therefore, 
we explored various models of deep neural networks and investigated whether their structures and methods are 
useful for our research, optimized in conjunction with image processing algorithms.

In this paper, we propose a new method for GUI code generation based on component detection, called 
GUICG. In the GUI component detection phase, we introduce several improvements to enhance the performance 
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of the image processing algorithm and the deep learning target detection algorithm for GUI component features. 
Additionally, we develop a fusion design that combines image processing and target detection, addressing the 
high localization accuracy required for GUI component detection. Moreover, we consider the problem of text 
on GUI components and restore it using text detection and recognition techniques.

To accomplish our task, we divide it into two steps. The first step involves detecting and classifying GUI com-
ponents into various types (e.g., buttons, images) and representing them as specific GUI objects using a fusion 
of target detection models and deep learning-based image processing. In the second step, we generate the corre-
sponding code using a code generator. We improve both the deep learning target detection and image processing 
methods to meet the requirements of GUI component detection, taking into account the unique features of GUI 
components, such as shape, texture, boundaries, and layout. For GUI text detection, we utilize the FOTS  model5, 
an established end-to-end scene text detection and recognition model, to detect and recognize text components.

Our proposed fusion-based approach for GUI component detection achieves a significant improvement in 
performance compared to current state-of-the-art methods. In an evaluation of over 10,000 GUI images, we 
surpass existing computer vision-based and image processing-based algorithms, achieving an F1 score of 54.32% 
for all GUI components, which is 2% higher than the current state-of-the-art approaches.

The contributions of this paper are as follows:

• We conduct an empirical study to evaluate target detection methods and image processing methods for GUI 
component detection, providing insights into their effectiveness and limitations, which serve as the founda-
tion for our proposed method.

• We propose GUICG, an integrated generative model that combines deep neural networks and image process-
ing techniques to overcome the challenges in translating GUI images to code.

• We extensively evaluate GUICG using mainstream datasets and compare it with current state-of-the-art 
methods in the field. Additionally, we conduct ablation experiments to assess the impact and improvements 
of each change in the network. The experimental results demonstrate that GUICG outperforms existing 
methods across multiple evaluation metrics, effectively combining the advantages of image processing and 
target detection methods.

Overall, our proposed GUICG method significantly improves the performance of GUI component detection in 
GUI code generation, providing more accurate code generation and a reasonable code structure.

Related work
Automatically generating code from GUI designs using deep learning techniques is a relatively new area of 
research. This process involves the problem of machine understanding the images of the design and extracting 
logical information from them, so this task can be seen as a computer vision problem. Therefore, we present the 
related work in this section in three parts: GUI object detection, GUI text recognition and GUI code generation, 
respectively.

GUI component detection
The first step in the GUI image generation code task is GUI component detection, which is actually similar to the 
object detection problem of computer vision, which is used to detect elements in the  GUI6–8 use traditional image 
processing methods to detect GUI  components9–12, detect GUI components based on deep learning methods. 
Component detection based on traditional target detection methods requires manual feature extraction. Can-
didate boxes are obtained through sliding windows, and then traditional classifiers are used to determine target 
areas. The entire training process is divided into multiple steps. For deep learning-based methods, end-to-end 
object detection can be performed without defining features, usually based on convolutional neural networks 
(CNN). The target detection method based on deep learning can be divided into two types: One-stage13–15 and 
Two-stage10,16,17, and there is also a  RefineDet18 algorithm that inherits the advantages of these two types of 
methods.

GUI text recognition
The graphic recognition network recognizes the segmented text area image block into text content.  CRNN19 is 
currently a more popular graphic recognition network, which can recognize relatively long and variable text 
sequences. The feature extraction layer includes CNN and BLSTM, which can carry out end-to-end joint training. 
It uses BLSTM and connectionist temporal classification (CTC) network to learn the context relationship between 
character images, thereby effectively improving the accuracy of image recognition.  RARE20 network is relatively 
effective in recognizing distorted image text. In the model inference process, the input image passes through 
the spatial transformation network to obtain the corrected image; then, the corrected image enters the sequence 
recognition network, and finally the text prediction result is obtained.  ESIR21 end-to-end scene text recognition 
consists of two parts, one is an iterative text correction network, and the other is a sequence recognition network.

GUI code generation
pix2code22 uses screenshots of the application user interface and the corresponding DSL as training data at the 
same time. The code generation process is complicated and the workload is heavy. The model uses the LSTM 
network of the pix2code model, which needs to be retrained for each different platform, and this repeated train-
ing increases the total time of code generation. Existing methods (e.g., Pix2code) can handle simple datasets 
well but have difficulty handling complex datasets that require hundreds of code tokens.Based on this problem, 
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a front-end code generation method based on multiple heads of attention is proposed, which uses a special 
technique known as multiple heads of attention to analyze the feature vectors of the GUI screenshots, generate 
the code tokens, and link the analyzing and generating  processes23.

Sketch2Code24 is a model for generating code from design sketches. It consists of a convolutional neural 
network built on top of the  RetinaNet15 object detection architecture, which is a fast and time-efficient single-
stage detection method. However, because it uses sketch images, differences in shooting effects (such as light 
changes) will have a greater impact on the inference efficiency of the model. The REDRAW 6 data collection and 
training process can be performed iteratively and fully automatically over time, helping to reduce the burden on 
developers. It divides the task into three parts, but the detection and classification can be combined into one, so 
as to improve the efficiency of the model operation. However, REDRAW is currently limited to detecting and 
combining a few specific sets of style details from GUI  images25 integrates CNN, RNN encoder and RNN decoder 
in a unified framework. The RNN encoder encodes the spatial layout information of these image features into a 
summary vector, and then the RNN decoder uses the summary vector to generate a GUI framework for token 
sequence representation.

Recently some new researches have improved the experimental methodology and evaluation metrics, pro-
pose a new modeling architecture to improve the framework of pix2code, which also automatically generates 
platform-specific code as an input for a given GUI screenshot, and in order to overcome the limitations of BLEU 
in domain-specific language (DSL) token evaluation, we introduce an improved BLEU score (MBLEU)26. Our 
work in developing a novel code generator for Graphical User Interfaces is guided by the need to address con-
temporary challenges in software engineering. These challenges include the proliferation of unknown malware 
in the digital  landscape27 and security vulnerabilities arising from artificial intelligence  algorithms28. We draw 
inspiration from the insights offered by  Qiu29. Their work emphasizes the importance of knowledge extraction 
in the smart city landscape. They introduce innovative methods, such as Semantic Graph-Based Concept Extrac-
tion (SGCCE), which harnesses semantic information for enhanced concept extraction. This resonates with our 
own objective of creating an intelligent GUI code generator, rooted in the effective utilization of information.

The above methods are designed without considering the unique features of GUI images and GUI elements 
separately, and without considering the problem of high localization accuracy that is necessary for GUI code 
generation tasks. We fully consider these issues and propose a novel GUI code generation model. Integrating 
image processing and deep learning object detection in the detection stage of GUI elements brings significant 
improvements in accuracy, recall and localization precision by fusing the advantages of both methods.

Analysis of component detection model in code generation of GUI
In this section, we will study the effectiveness of general object detection and image processing methods applied 
to GUI component detection. Firstly, the unique characteristics of GUI images, GUI components and unique 
requirements of GUI component detection tasks are summarized, and then the problem of general object detec-
tion in the face of these unique characteristics of GUI is proposed. Further, this section will design an exploratory 
experiment to explore the effectiveness and limitations of several typical GUI component detection methods, 
and provide effective design ideas in the Methodology section.

GUI component detection problem analysis
The components in the GUI image are different from the object detection in the natural scene. The distance 
between the components on the GUI image is very close, and their arrangement is very  dense4. A GUI image will 
have many differences, components are mixed. Analyzing some GUI images in the data set, it can be seen from 
the data that GUI components have the following characteristics: There is a large similarity between components, 
such as TextView and EditView, both of which are text boxes, which are highly similar in GUI images; the same 
Class components have different forms, such as: the components in the Button class have different forms, and the 
forms of the same component are quite different; at the same time, the GUI component detection task requires 
high component bounding box accuracy. Based on the characteristics of GUI images and components, we need 
to explore what methods are effective for GUI component detection.

Image processing-based GUI component detection methods usually rely on edge or silhouette  aggregation6,7. 
The Canny edge and contour maps used in its method are the visual features of objects in natural scenes, which 
aim to capture the fine-grained texture details of objects. However, since GUI images may contain images of 
natural scenes, applying these fine-grained features to GUI components can easily lead to wrong detection 
results. Deep learning-based  methods3,9,12,30,31 can effectively learn the characteristics of GUI components for 
correct detection?

Faced with the intra-class differences, component density, and component similarity of components in GUI 
images, can this bounding box regression method meet the high accuracy requirements of GUI component 
detection?

This article defines GUI text components as components such as TextView that only contain text, and its 
function is to display text. Although components such as Button have text but have a click function, they do not 
belong to this category. Most methods to detect text components use OCR tools (such as  Tesseract32). OCR tool 
or scene text model which is more effective in detecting GUI text?

To sum up, the three research questions of GUI component detection task analysis in this section are as 
follows:

• Which method is more suitable for feature detection of GUI components?
• How well do different types of methods perform in predicting bounding boxes of GUI components?
• How should the detection of GUI text components and the recognition of text in components be handled?
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Exploratory experimental analysis of GUI component detection
In order to answer the above questions, this paper first conducts analytical experiments to explore the perfor-
mance of various technologies in the GUI component detection task. The experiments will use image process-
ing and deep learning methods for GUI component detection respectively. This study is conducted on the 
Rico  dataset33. This research involves a systematic comparison of two computer vision methods, representative 
methods based on image processing include  REMAUI7,  UIED8 and  UI2CODE34; three different types of mature 
deep learning objectives Detection methods include two anchor box-based methods Faster  RCNN16 (two-stage 
model) and  YOLOv49 (single-stage model) and a single-stage anchor-free model  FCOS12. For GUI text detection, 
the performance of the OCR tool  Tesseract32, the scene text detector  EAST35, and the end-to-end text detection 
and recognition model  FOTS5 are compared, and the separate detection of text and non-text GUI components 
is compared The performance difference with unified detection.

Dateset
This paper uses the Rico  dataset33 as the dataset for the exploratory experiments in this section. The information 
of the dataset is shown in Table 1. The experiment can deal with 15 commonly used components in the Android 
application interface. We randomly divide it into three parts, of which the proportions are 80%, 10%, 10% for 
training, validation and testing. It is worth noting that all GUIs of the same application will only appear in the 
same split to avoid the problem of “seen samples” in training, validation and testing, and a 5-fold crossover is 
performed in all experiments verify.

Model training settings
This experiment trains each model for 400 iterations with a batch size of 16 or 32 depending on the method, and 
uses the  Adam36 optimizer. Faster RCNN uses ResNet-10135 as the backbone. YOLOv4 uses CSPDarknet-539 as 
the backbone.  FCOS35 uses ResNeXt-64x4d-101-FPN as the backbone network. For UI2CODE, REMAUI and 
UIED, this article uses their best settings. In all experiments in this section, non-maximum suppression (Non-
Maximum Suppression, NMS) was performed to remove highly repetitive predictions. The data listed in this 
experiment table are the data of the best performance of each model on the validation dataset.

Evaluation
This paper uses Precision, Recall and F1-score to evaluate the performance of all methods. For the GUI compo-
nent detection task in this section, the following definitions are made. A detected bounding box is considered 
positive if its highest IoU with all ground-truth bounding boxes in the input GUI image is higher than a prede-
termined IoU threshold. The true positive case (True Positive, TP) is that the detected bounding box matches 
the real bounding box; the false positive case (FP) is that the detected box does not match any real bounding 
box; the false negative case (FN) for ground-truth bounding boxes that do not match any detected boxes. The 
precision (Prec) calculation formula is as follows:

The formula for calculating the recall rate (Rec) is as follows:

The formula for calculating the F1 score is as follows:

The calculation method of IoU is to divide the intersection area of the two predicted bounding boxes A and B by 
the union area of the two bounding boxes, where I represents the intersection area of the two bounding boxes, 
the formula is as follows:

(1)Prec =
TP

TP + FP

(2)Rec =
TP

TP + FN

(3)F1 =
2× Prec × Rec

Prec + Rec

Table 1.  The statistics of Rico dataset.

Items Quantity

Application categories 27

Android mobile applications 9300

GUI images 66,261

GUI elements 986,731

Non-text elements 478,404

Text elements 508,327
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Analysis of GUI component detection experiment results
This section will show the performance of six methods (REMAUI, UI2CODE, UIED, Faster RCNN, YOLOv4, 
FCOS) applied to GUI component detection and analyze them to explore the performance of various types of 
methods on GUI detection tasks features. Firstly, this paper wants to explore the impact of different IoU thresh-
olds on model performance, keeping all settings except the IoU threshold unchanged, the performance of the 
six methods under different IoU thresholds is shown in Fig. 1. In this section, every 0.05 of 0.5–0.9 is selected as 
the experimental IoU threshold setting. When the IoU threshold increases from 0.5 to 0.9, the F1 scores of all 
deep learning models decrease significantly, and Faster-RCNN, YOLOv4 and FCOS decrease by 32.4%, 28.1% 
and 29.6%. The deep learning model is able to detect more components, but its bounding box is not precise 
enough, i.e., the deep learning method has a high recall rate, but the bounding box localization is not accurate 
enough. In contrast, the F1 scores of REMAUI and UI2CODE did not decrease significantly with the increase 
of the IoU threshold like the deep learning models, but their F1 scores were much lower than those of the deep 
learning models. This shows that component regions detected by these image processing-based methods are 
partly noisy, but when they do localize real components, the detected bounding boxes are quite accurate. Due to 
its advanced design, UIED even performs better than some deep learning methods in terms of accuracy, and its 
F1 score declines smoothly and is much higher than other image processing-based methods.

When the IoU between the bounding box detected by the GUI component and the real GUI component box 
is less than 0.9, the bounding box is likely to miss a part of the component, and due to the close arrangement 
of the GUI components, it is likely to include some adjacent components, so have a serious impact on the next 
task. Therefore, this paper uses IoU > 0.9 as an acceptable bounding box prediction threshold. Table 2 shows the 
overall performance of the six methods for detecting GUI components with a threshold of IoU > 0.9. Among 
them, UI2CODE performed the worst, with all indicators below 17 %.

Meanwhile, this section conducts experiments to explore the processing speed of these representative meth-
ods. As shown in Table 3, the deep learning target detection method is significantly faster than the image 
processing-based method, because the image processing method contains many operations directly on the image, 
which is much slower than the deep learning method. However, the two-stage method uses separate processing 
for candidate region proposal and prediction, which leads to a large amount of time for the two-stage method. 
Therefore, the single-stage method in the target detection method is significantly faster than the two-stage 

(4)IoU =
I

A+ B− I

Figure 1.  Performance of precision, recall and F1 score of six representative methods(REMAUI, UI2CODE, 
UIED, Faster RCNN, YOLOv4, FCOS) used in performance analysis of component detection model under 
different IoU thresholds.

Table 2.  GUI component detection performance of typical methods.

Method Precision Recall F1-score

REMAUI 17.53 23.81 20.19

UI2CODE 14.22 16.86 15.43

UIED 51.34 50.90 51.12

Faster RCNN 43.72 46.96 45.28

YOLOv4 49.57 52.81 51.14

FCOS 46.45 49.02 47.70
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method. Because the UIED method is based on image processing and combines text detection methods, its 
speed is slow, and REMAUI is the slowest.

Performance analysis of text component detection and recognition
In this section, experiments are designed to verify this issue, and this section explores whether only one model 
can be used for reliable text component and non-text component detection at the same time. Therefore, the 
experiment in this section trained YOLOv4, Faster RCNN and FCOS models on the non-text component train-
ing set and the mixed training set of non-text and text components to explore the possibility of a single model 
to simultaneously detect text and non-text components.

The performance results of different training schemes are shown in Table 4. When both text and non-text GUI 
components are detected, YOLOv4 is still the best in detecting non-text components. However, it is comparable to 
when only non-text components are trained. Compared with that, the performance of the three models to detect 
non-text components has a certain decline. This shows that mixing text and non-text components for training will 
interfere with the model’s ability to learn the characteristics of non-text components. FCOS has the best overall 
performance in this experiment, because FCOS is an anchor-free model that can flexibly handle text components 
that are very different from non-text components, so its performance in detecting text and non-text components 
is similar. However, there are gaps between words and lines in the text component, and FCOS often regards a 
word or a sentence as a whole component, which will affect the performance of FCOS in the text component.

According to the above experiments, it is not feasible to detect both text and non-text GUI components in 
one model, so it is necessary to study a method suitable for GUI text component detection. Current works such 
as REMAUI and UI2CODE simply use OCR tools such as Tesseract, while UIED employs the scene text detector 
EAST. In the experiment, the pre-trained model is directly used without any fine-tuning for GUI text. As shown 
in Table 5, FOTS achieves 45.52 % precision, 79.66 % recall and 57.93 % F1 score, which is significantly higher 
than Tesseract (29.4 % precision, 51.83 % recall and 37.31 % F1 score) and EAST (40.25 % precision, 72.03 % 
recall and 51.64 % F1 score). Both UI2CODE and REMAUI do some post-processing on Tesseract’s OCR results 
to filter out false positive results, but this still doesn’t significantly change the performance of GUI text detec-
tion. Since EAST and FOTS are specially designed for scene text recognition, their performance is significantly 
better than that of GUI text detection using a generic object detection model (see Table 5). EAST and FOTS can 
detect almost all text in GUI, including text on GUI components. At the same time, according to the previous 
definition in this paper, those texts on GUI components are considered as part of the component, rather than 
independent text components, which will affect the accuracy of EAST and FOTS in this experiment. Although 
these texts are incorrect results in this experiment, in the task of finally parsing into codes, the restoration of the 
entire GUI code must be guaranteed, so this paper uses the text results in these non-text components as one of 
its components Text property, to restore it in the final code.

Table 3.  The speed of different models processing the same GUI image.

Method Model Time (s)

Image processing

REMAUI 5.3

UI2CODE 1.2

UIED 4.8

Deep learning

Faster RCNN 0.38

YOLOv4 0.12

FCOS 0.28

Table 4.  The performance results of different training schemes.

Method Training scheme Precision Recall F1-score

Faster RCNN

Non-text elements 43.72 46.96 45.28

Non-text elements (mixed training) 36.53 44.37 40.07

Text elements (mixed training) 26.45 23.93 25.13

All elements (mixed training) 35.33 37.42 36.34

FCOS

Non-text elements 46.45 49.02 47.70

Non-text elements (mixed training) 32.71 45.39 38.02

Text elements (mixed training) 42.64 39.7 41.12

All elements (mixed training) 41.46 48.71 44.79

YOLOv4

Non-text elements 49.57 52.81 51.14

Non-text elements (mixed training) 38.99 48.23 43.12

Text elements (mixed training) 32.92 31.43 32.16

All elements (mixed training) 39.77 48.83 43.84
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This section draws the following conclusions for the research problem of text component detection and 
recognition performance analysis

• Text and non-text components of a GUI should be instrumented separately. In the experiments of detecting 
text components and non-text components separately and simultaneously, it is shown that the detection of 
the two components separately can achieve better overall detection performance.

• Using the deep learning scene text recognition model is better than OCR technology in the detection of GUI 
text components.

Experimental analysis conclusion
This section explores the application of the baseline model in GUI component detection tasks from two aspects: 
model performance, text detection and recognition. The application of general object detection methods to 
GUI component detection is analyzed, and three research questions are proposed. Through the analysis of the 
results of the exploratory experiments, these questions were answered, and it was concluded that the graphics 
processing method has a high component bounding box accuracy, and the deep learning object detection method 
has a high recall rate and can detect more components. Non-text components and text components should be 
detected separately, end-to-end text detection and recognition methods can efficiently detect text components 
and identify text within components as attributes of components. These conclusions provide important guiding 
significance for designing a new GUI code generation method based on component detection in the next section.

Methodology
This section presents GUICG, a GUI code generation method that leverages component detection to enhance 
overall performance. We begin by introducing the architecture of GUICG, followed by an explanation of the 
image processing technique employed for GUI component detection. Subsequently, we describe the implemen-
tation details of the deep neural network model used for component detection. Furthermore, we design and 
implement an algorithm that integrates image processing and deep neural networks. Additionally, we present 
an end-to-end approach for text detection and recognition. Lastly, we discuss the method used to generate code 
based on the results of GUI component detection.

Overall architecture
The whole task is divided into object detection and text recognition and code generation. The architecture of 
GUICG is shown in Fig. 2. Input an image (GUI), run the image processing module, deep learning module, and 
text component detection and recognition module in parallel, and use the GUI elements detection algorithm 
that fuses deep neural network and traditional image processing technology to merge the detection results, and 
then integrate the results of the text detection and recognition module. Finally, use the parser to generate cor-
responding codes based on the detection results of the previous step. We use CSPDarkNet add  SPP37. Then, the 
YOLO head uses the previously extracted features to make predictions, and the DenseNet performs text recogni-
tion on the bounding box area. In the GUI element detection algorithm based on traditional image processing 
techniques, we adopt the strategy from large blocks to small components to detect GUI object regions and then 
detect GUI elements. The GUI object detection model integrates deep neural network and traditional image 
processing technology in its architecture so that the results have a high recall rate and high detection accuracy. 
Finally, a code generator is used to generate code from the previous results.

Image processing for GUI component detection
Image processing-based methods such as  REMAUI7 and  UI2CODE34 etc. detect bounding boxes that are usually 
accurate when locating GUI components. Therefore, this section designs an image processing method for GUI 
component detection to obtain component bounding boxes with high localization accuracy. Current dominant 
image processing methods use bottom-up strategies to gather fine details of objects (e.g., edges or contours) 
into objects. But this approach is vulnerable to complex background or GUI and objects in GUI components, 
the performance is poor.

Therefore, this paper develops a novel image processing method (referred to as GUICG-IP), which uses a 
coarse-to-fine chunk-to-small component strategy to detect GUI component regions. Figure 3 shows the pro-
cessing flow of GUICG-IP.

Table 5.  Text component detection performance.

Method Precision Recall F1-score

REMAUI 29.77 48.92 37.01

UI2CODE 27.26 48.15 34.81

EAST 40.25 72.03 51.64

OCR (Tesseract) 29.14 51.83 37.31

FOTS 45.52 79.66 57.93
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First, convert GUI image into a grayscale image, then use the flood filling  algorithm38 on the grayscale image, 
and then use the shape recognition  algorithm39 to determine whether these areas are rectangles. If is a rectangle 
then this area will be considered as a block. Then, Suzuki’s contour tracking  algorithm40 is used to calculate 
the boundaries of the blocks and produce a block map. Next, our method generates a binary map of the input 
GUI image and segments out each detected block in the corresponding region of the binary map. Existing 
 methods6,7 perform binarization by Canny edge  detection41 and Sobel edge  detection42, while these methods 
aim at preserving fine texture details in natural scene images. In this way, whatever content is displayed in the 
image is detected as an ImageView element. We therefore used a simple and effective binarization  method42. 
The effect of binarization image processing is shown in Fig. 3, and the UI elements are easily recognized in the 
image. Finally, a connected component labeling  algorithm43 is used to identify the GUI element regions in each 
binary block segment.

Prediction and Text Recognition

Code Parser

Feature Extraction

Traditional Image Processing 

Figure 2.  GUICG’s overall architecture, in which component detection combines traditional image processing 
methods and deep neural network methods.

Binarization

Flood-Filling

Region 
proposal

Element 
DetectionSegments

Block

Figure 3.  Image processing approach.
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Deep neural network for GUI component detection
The general-purpose deep learning target detection models Faster RCNN, FCOS, and YOLOv4 require enough 
training data, and different model designs require training data of different sizes to achieve stable performance. 
Moreover, unlike the loose definition of correct detection in object detection in natural scenes, detecting GUI 
components is a fine-grained recognition task that requires correct detection to cover the full area of GUI 
components as accurately as possible, while keeping the area of non-GUI components and other adjacent GUI 
components as small as possible. However, due to the characteristics of GUI components such as intra-class dif-
ference, inter-class similarity, dense arrangement and close distance between components, neither the anchor 
box-based model nor the anchor-free model can achieve this goal, that is, these based on Deep learning meth-
ods that generate component bounding boxes through statistical regression cannot meet the high localization 
accuracy requirements for GUI component detection.

Therefore, based on the YOLOv4 method, this section improves these unique features of GUI components, 
proposes CSPDarknet65 combined with the  CSP44 network structure as the backbone network, and introduces 
the improved  SPP37, The component detection algorithm of GUICG-OD uses  CIoU45 as the loss function, the 
following are from various aspects of GUICG-OD The structure is described in detail.

CSPNet
CSPNet44 aims to solve the problem of increasing the amount of calculation caused by the repetition of gradient 
information in the network. Therefore, this paper redesigns part of the structure of the convolutional neural 
network, and adopts a cross-stage local structure on the basis of DarkNet. As shown in Fig. 5a, the cross-stage 
local structure divides the feature map output by the previous network into two parts through two 1 × 1 convolu-
tion kernels, one part is directly output without processing, and the other part is input into the original network 
perform calculations, and then concat the results of the two parts as the final output. After such processing, the 
network not only ensures that the feature map information is not lost, but also greatly reduces the amount of 
calculation.
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Figure 4.  Illustration of backbone networks. Each rectangle includes Conv, BN and Mish. CSP N, N in {1, 2, 8, 
4}, denoted as the residual block repeated N times with CSP structure. CSPDarknet65: additional residual block 
(blue block) and substituted downsampling residual block (green block).
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Figure 5.  Architecture details. (a) is darknet structure, (b) is spatial pyramid pooling block, (c) is FPN and 
PANet in our model.
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CSPDarknet65
The backbone network of GUICG-OD is CSPDarknet65, as shown in Fig. 4, which is based on the backbone 
network CSPDarknet53 structure and the backbone structure designed by Gao et al.46. CSPDarknet65 performs 
well in  GUIS2code2.

Additional root block
Performance can be improved by using a stack of 3 × 3 convolutional  filters47. We increase the 3 × 3 convolution 
with stride 1 to three 3 × 3 convolutions, so that the network can obtain more local information in the image from 
a large number of inputs at the root stage, thereby extracting useful Features, as shown in the blue block in Fig. 5b.

Average pooling block
The Average Pooling block as a downsampling layer to speed up the gradient propagation in the network, as 
shown by the green block in Fig. 4. Compared with the downsampling block in CSPDarknet53, a 2 × 2 average 
pooling layer with a stride of 2 is added. In front of the original 3 × 3 convolutional layer, we add a 3 × 3 con-
volutional layer with a stride of 1 to replace the downsampling layer. This structural improvement can avoid 
information loss during downsampling.

Spatial pyramid pooling
GUICG-OD uses a spatial pyramid pooling structure, which hardly reduces the network speed, but also signifi-
cantly increases the network’s receptive field and improves the ability to extract contextual information. In this 
paper, the spatial pyramid pooling is improved, using four maximum pooling layers with a kernel size k × k , 
where k = {1, 5, 9, 13} , with a step size of 1 to process the feature map, and then cascading the four outputs to 
output, as shown in Fig. 5b.

Feature pyramid network
We aggregates feature maps extracted by backbone networks at different levels by adding a bottom-up feature 
pyramid structure after the FPN structure to provide a wide range of features for detectors at different  levels48. 
The FPN structure contains bottom-up and top-down paths and the lateral connections between them. Since 
downsampling and upsampling affect the accuracy of object detection, top-down lateral connections between 
reconstruction layers and feature maps are required to better predict locations. However, in order to achieve 
better support for small target detection, this paper adds a bottom-up feature pyramid structure after the feature 
pyramid of the original structure, as shown in Fig. 5c. The bottom-up structure can transfer the rich positional 
information in the underlying feature map to the upper structure, and the top-down structure can transfer the 
rich semantic information in the upper feature map downward. Therefore, through this method, GUICG-OD 
The rich semantic features of GUI components and the location features of GUI components can be obtained at 
the same time, to improve the performance of GUI component detection and recognition.

Bounding box regression
We compared the Intersection over Union (IoU)49, the Generalized Intersection over Union (GIoU)50, the Dis-
tance Intersection over Union (DIoU)45, and the Complete Intersection over Union(CIoU)45. Finally, we use 
CIoU as the bounding box loss function. IoU is defined as

the CIoU loss function can be defined as

In summary, the backbone network of GUICG-OD is a CSPDarknet65 network with a cross-stage local struc-
ture and an additional root block and average pooling block. At the same time, an additional module of spatial 
pyramid pooling is added at the neck. After the feature pyramid, a bottom-up structure is added to make better 
use of the feature information extracted by the backbone network. Finally, the detection head directly uses the 
detection head of YOLOv3 and the bounding box loss function is changed to a more advanced CIoU.

Fusion algorithms for GUI component detection
Input an image, run the image processing method and deep learning method in parallel, and get the extracted 
bounding boxes of the image processing and the deep learning method respectively. Finally, we use a fusion 
algorithm to get the final boxes. As shown in Algorithm 1, in the first step, the bounding box (i.e. ipbox) obtained 
by the image processing method is filtered, and when the IOU between ipbox and the bounding box (i.e. odbox) 
obtained by the deep learning method is greater than a certain threshold (e.g. 0.8), ipbox is kept, otherwise it 
is discarded, and ipbox1 is obtained in this way; in the second step, odbox is filtered, when the IOU between 
odbox and ipbox1 is greater than a certain threshold (e.g. 0.8), discard odbox, otherwise keep it and get odbox1. 
Afterwards, fix the position of odbox1 with the rule that each edge of odbox1 is moved to the nearest line, with 
the constraint that the distance moved cannot exceed a certain threshold (e.g. 10 pixels) and that the moved 
edge cannot cross the edge of ipbox1 to obtain the modified odbox2. Finally, the ensemble of ipbox1 and odbox2 
is the final result. 
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Text recognition
We consider the text regions of elements such as labels and text and choose  FOTS5, the end-to-end text rec-
ognition method with the best text component detection performance in the exploratory experiment, as the 
network for text component detection and recognition. There are two kinds of text in the GUI image, one is 
the text component (such as TextView), and the other is the text in the component (such as the text in Button). 
FOTS can easily detect both text components as well as text belonging to GUI components. This paper consid-
ers the problem of identifying text in components. The text in these components should be considered as a part 
of the component. GUICG also recognizes it and takes these results as a text attribute of the component. In the 
final code generation task, these text attributes will be restored in the final code, which can ensure the degree of 
restoration of the entire GUI code.

Code generation
The sequence of tokens generated from the previously mentioned network can then be compiled into the 
desired target language using traditional compilation methods. The algorithm for the code generator is shown 
in algorithm 2. 

The algorithm first organizes the result of the component detection part P into a tree data structure according 
to the location information. The attributes of P include the category of the component class, the bounding box of 
the component b, and the text of the component t. The transformation algorithm then completes the component-
to-code conversion through a component matching graph Map containing category class-code pairs for each 
component. Use the depth-first search (DFS) method to traverse P, match the category of each component in 
P in Map, and then replace the position and text attributes of code of the successfully matched Map with the 
bounding box b and text t in P, and then write the result to the output file F, and so on until the entire result P 
is traversed and the code file F is output.

Experiment
Dataset and experiment setup
We use the  Rico33 dataset to verify GUICG performance in experiments, and the information of the dataset is 
shown in Table 1. Fifteen common GUI elements in the Android platform are used in this paper. We split these 
58,159 GUI images into training, validation, and test sets in a ratio of 8:1:1. Due to the accuracy requirement 
of GUI element detection, we set the IoU of the real box and the predicted box to 0.9 and 0.95 for the following 
study.

The GUICG is implemented in the PyTorch and was trained on four NVIDIA Tesla 16 GB GPUs with 
cuDNN acceleration. The operating system uses CentOS7.5, and the CPU is Intel(R) Xeon(R) E5-2640. The 

Algorithm 1.  Fusion Algorithms.
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hyperparameters are set as follows: the number of training steps is 500,500; the step decay learning rate sched-
uling strategy is adopted, the initial learning rate is 0.01, and the 400,000th step and the 450,000th step are 
multiplied by a factor of 0.1; the momentum and weight decay are set to 0.9 and 0.0005, respectively.

For the evaluation of GUI element detection, we use precision, recall and F1 score to measure the performance 
of region detection.

Contrast experiment
Tables 6 and 7 shows the overall GUI elements detection results, When IoU>0.9, among the four baseline mod-
els, GUIS2Code performed best for non-text elements in the deep learning-based approach (0.439 in F1), while 
UIED achieves the best F1 for non-text elements (0.449) and all elements (0.524) in the image-processing-based 
approach. But our model achieves much better F1 for both non-text elements (0.463) and all elements (0.543).

When IoU>0.95, all models experience some performance degradation, however, because our method inte-
grates image processing methods, it has relatively strong element localisation accuracy and therefore still has 
relatively strong performance even with a strict threshold. Our method only degrades 0.062 in accuracy, com-
pared to 0.089 for UIED and 0.1-0.2 for all other methods. In this experiment, GUICG achieves a more significant 
advantage, achieving an F1 score of 0.489 on all elements, which exceeds the F1 score of the best of the other 
methods, UIED(0.426), by 6.3%.

Algorithm 2.  Code Generator.

Table 6.  Overall results of experiment (IoU > 0.9).

Method

Non-text elements All elements

Precision Recall F1-score Precision Recall F1-score

REMAUI7 0.151 0.205 0.173 0.296 0.449 0.357

YOLOv49 0.395 0.486 0.436 0.397 0.488 0.438

GUIS2Code2 0.397 0.490 0.439 0.426 0.534 0.474

UIED4 0.431 0.469 0.449 0.490 0.557 0.521

GUICG (ours) 0.441 0.487 0.463 0.513 0.576 0.543
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Ablation
The results of the ablation experiment are shown in the Tables 8 and 9. GUICG-IP denotes Image Processing for 
GUI element detection, GUICG-OD denotes object detection for GUI element Detection.

As shown in Table 8, compared with the baseline model YOLOv4, the improved GUICG-OD based on it 
exceeds YOLOv4 in three indicators: precision (0.435), recall (0.562) and F1 score (0.490). In the two IoU thresh-
old experiments, GUICG-IP achieved higher accuracy than GUICG-OD, which further illustrates the advantages 
of image processing methods in the accuracy of GUI component detection bounding box prediction. However, 
its recall rate is relatively lower, further illustrating that deep learning-based object detection methods are able 
to detect more components in GUI images in comparison. Finally, GUICG, which integrates the two methods, 
maintains the advantages of the two methods in both precision (0.513) and recall (0.576), and achieves better 
results than the single method in the F1 score (0.543).

Table 10 shows the region classification results for GUICG and three deep learning baselines. We can see that 
our method outputs more regions of true-positive GUI elements and achieves higher classification accuracy (0.87 
for non-text elements and 0.94 for all elements) than the other three deep models.

Table 7.  Overall results of experiment (IoU > 0.95).

Non-text elements All elements

Method Precision Recall F1-score Precision Recall F1-score

REMAUI7 0.098 0.134 0.113 0.185 0.347 0.241

YOLOv49 0.264 0.459 0.335 0.287 0.391 0.331

GUIS2Code2 0.286 0.465 0.354 0.318 0.423 0.363

UIED4 0.379 0.388 0.383 0.401 0.455 0.426

GUICG (ours) 0.401 0.477 0.435 0.451 0.535 0.489

Table 8.  Ablation experiment (IoU > 0.9).

Method Precision Recall F1-score

GUIS2Code2 0.426 0.534 0.474

GUICG-IP 0.505 0.413 0.454

GUICG-OD 0.435 0.562 0.490

GUICG 0.513 0.576 0.543

Table 9.  Ablation experiment (IoU > 0.95).

Method Precision Recall F1-score

GUIS2Code2 0.318 0.423 0.362

GUICG-IP 0.453 0.308 0.367

GUICG-OD 0.334 0.460 0.387

GUICG 0.451 0.535 0.489

Table 10.  Region classification results for TP regions.

Method

Non-text elements All elements

#bbox Accuracy #bbox Accuracy

YOLOv49 16085 0.69 32245 0.69

GUIS2Code2 17129 0.72 34759 0.73

UIED4 21977 0.85 52458 0.91

GUICG (ours) 22375 0.87 54289 0.94
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Discussion
The method GUICG in this paper has achieved good results on the Rico dataset, and the GUI generated by 
the generated code is basically the same as the original image. However, the effect of GUICG is still extremely 
limited. The F1 score in component detection is only 0.543, and it can only recognize some components in the 
GUI image. Therefore, in the future research ideas of this topic, it can be expanded from the following points:

• Current Rico datasets based on real applications only contain GUI images of Android applications, lacking 
real datasets for iOS and web interfaces. Current datasets including iOS and web interfaces such as pix2code 
are manually created images, and the generated interfaces are based on manually set rules, which are quite 
different from the interfaces in real applications. In follow-up research, screenshots of websites and their 
associated HTML code or iOS apps can be grabbed to create datasets.

• The current neural network-based method needs to rely on DSL files to describe GUI images, resulting in 
a lot of work for the creation of data sets. In the future, we can consider how to abandon the dependence of 
DSL to improve the efficiency of GUI automatic code generation methods.

Conclusion
In this paper, we propose GUICG, a GUI code generator that combines deep neural networks and image process-
ing. The proposed method is based on a novel fusion of deep neural networks and image processing techniques, 
and achieves state-of-the-art performance in detecting GUI elements from GUI images. It takes GUI images as 
input and generates interface codes suitable for various platforms. Our fusion algorithm improves the recogni-
tion rate of GUI components. Furthermore, we consider the detection and recognition of text components. By 
employing an end-to-end text recognition method, we can simultaneously recognize text in non-text components 
and utilize the text information for the generated code. Our empirical evaluation demonstrates that GUICG 
outperforms current state-of-the-art methods across multiple evaluation metrics, achieving an impressive F1 
score of 0.543. Overall, our novel GUICG model excels in both component detection and code generation.

Data availability
Correspondence and requests for data and materials should be addressed to B.C.

Received: 22 February 2023; Accepted: 1 November 2023

References
 1. Reimer, J. A history of the gui. Ars Technica 5, 1–17 (2005).
 2. Feng, Z., Fang, J., Cai, B. & Zhang, Y. Guis2code: A computer vision tool to generate code automatically from graphical user 

interface sketches. In Artificial Neural Networks and Machine Learning—ICANN 2021-30th International Conference on Artificial 
Neural Networks Vol. 12893 (eds Farkas, I. et al.) 53–65 (Springer, 2021). https:// doi. org/ 10. 1007/ 978-3- 030- 86365-4_5.

 3. Chen, C. et al. Gallery dc: Design search and knowledge discovery through auto-created gui component gallery. Proc. ACM Hum. 
Comput. Interact. 3, 1–22 (2019).

 4. Chen, J. et al. Object detection for graphical user interface: Old fashioned or deep learning or a combination? In ESEC/FSE ’20: 28th 
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (eds Devanbu, 
P. et al.) 1202–1214 (ACM, 2020). https:// doi. org/ 10. 1145/ 33680 89. 34096 91.

 5. Liu, X. et al. Fots: Fast oriented text spotting with a unified network. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 5676–5685 (San Juan, PR, USA, 2018).

 6. Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R. & Poshyvanyk, D. Machine learning-based prototyping of graphical user 
interfaces for mobile apps. IEEE Trans. Softw. Eng. 46, 196–221 (2018).

 7. Nguyen, T. A. & Csallner, C. Reverse engineering mobile application user interfaces with REMAUI (T). In 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2015 (eds Cohen, M. B. et al.) 248–259 (IEEE Computer Society, 
2015). https:// doi. org/ 10. 1109/ ASE. 2015. 32.

 8. Xie, M., Feng, S., Xing, Z., Chen, J. & Chen, C. UIED: A hybrid tool for GUI element detection. In ESEC/FSE ’20: 28th ACM Joint 
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (eds Devanbu, P. et al.) 
1655–1659 (ACM, 2020). https:// doi. org/ 10. 1145/ 33680 89. 34179 40.

 9. Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv e-printsarXiv: 
2004. 10934 (2020).

 10. Girshick, R. B. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 
7-13, 2015, 1440–1448 (IEEE Computer Society, Santiago, Chile, 2015). https:// doi. org/ 10. 1109/ ICCV. 2015. 169.

 11. Duan, K. et al. Centernet: Keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision, 
ICCV 2019, 6568–6577 (IEEE, Seoul, Korea (South), 2019). https:// doi. org/ 10. 1109/ ICCV. 2019. 00667.

 12. Tian, Z., Shen, C., Chen, H. & He, T. Fully convolutional one-stage object detection2019. In Conference: 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) (Seoul, Korea (South), 2019).

 13. Liu, W. et al. SSD: Single shot multibox detector. In Computer Vision - ECCV 2016–14th European Conference Vol. 9905 (eds Leibe, 
B. et al.) 21–37 (Springer, 2016). https:// doi. org/ 10. 1007/ 978-3- 319- 46448-0_2.

 14. Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprintarXiv: 2004. 
10934 (2020).

 15. Lin, T., Goyal, P., Girshick, R. B., He, K. & Dollár, P. Focal loss for dense object detection. In: IEEE International Conference on 
Computer Vision, ICCV 2017, 2999–3007 (IEEE Computer Society, Venice, Italy, 2017). https:// doi. org/ 10. 1109/ ICCV. 2017. 324.

 16. Girshick, R. B., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. 
In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, 580–587 (IEEE Computer Society, Columbus, 
OH, USA, 2014). https:// doi. org/ 10. 1109/ CVPR. 2014. 81.

 17. Ren, S., He, K., Girshick, R. B. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In 
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 91–99 
(Montreal (eds Cortes, C. et al.) (Quebec, Canada, 2015).

 18. Zhang, S., Wen, L., Bian, X., Lei, Z. & Li, S. Z. Single-shot refinement neural network for object detection. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).

https://doi.org/10.1007/978-3-030-86365-4_5
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1145/3368089.3417940
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2019.00667
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/CVPR.2014.81


15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20329  | https://doi.org/10.1038/s41598-023-46500-6

www.nature.com/scientificreports/

 19. Shi, B., Bai, X. & Yao, C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene 
text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298–2304. https:// doi. org/ 10. 1109/ TPAMI. 2016. 26463 71 (2017).

 20. Shi, B., Wang, X., Lyu, P., Yao, C. & Bai, X. Robust scene text recognition with automatic rectification. In 2016 IEEE Conference on 
Computer Vision and Pattern Recognition, CVPR 2016, 4168–4176 (IEEE Computer Society, Las Vegas, NV, USA, 2016). https:// 
doi. org/ 10. 1109/ CVPR. 2016. 452.

 21. Zhan, F. & Lu, S. ESIR: End-to-end scene text recognition via iterative image rectification. In IEEE Conference on Computer Vision 
and Pattern Recognition, CVPR 2019, 2059–2068 (Computer Vision Foundation / IEEE, Long Beach, CA, USA, 2019). https:// doi. 
org/ 10. 1109/ CVPR. 2019. 00216.

 22. Beltramelli, T. pix2code: Generating code from a graphical user interface screenshot. In Proceedings of the ACM SIGCHI Symposium 
on Engineering Interactive Computing Systems, EICS 2018, 3:1–3:6 (ACM, Paris, France, 2018). https:// doi. org/ 10. 1145/ 32201 34. 
32201 35.

 23. Zhang, Z., Ding, Y. & Huang, C. Automatic front-end code generation from image via multi-head attention. In 2023 4th Interna-
tional Conference on Computer Engineering and Application (ICCEA), 869–872, https:// doi. org/ 10. 1109/ ICCEA 58433. 2023. 10135 
462 (2023).

 24. Jain, V., Agrawal, P., Banga, S., Kapoor, R. & Gulyani, S. Sketch2code: Transformation of sketches to UI in real-time using deep 
neural network. CoRRarXiv: 1910. 08930 (2019).

 25. Chen, C., Su, T., Meng, G., Xing, Z. & Liu, Y. From UI design image to GUI skeleton: A neural machine translator to bootstrap 
mobile GUI implementation. In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018 (eds Chaudron, 
M. et al.) 665–676 (ACM, 2018). https:// doi. org/ 10. 1145/ 31801 55. 31802 40.

 26. Yao, X., Yap, M. H. & Zhang, Y. Towards a deep learning approach for automatic gui layout generation. In Proceedings of Interna-
tional Conference on Computing and Communication Networks (ICCCN 2021), vol. 394 of Lecture Notes in Networks and Systems 
(eds. Bashir, A., Fortino, G., Khanna, A. & Gupta, D.) 19–27. International Conference on Computing and Communication 
Networks (ICCCN), Manchester Metropolitan Univ, Manchester, ENGLAND, NOV 19-20, 2021 https:// doi. org/ 10. 1007/ 978- 
981- 19- 0604-6_2 (2022).

 27. Chai, Y., Du, L., Qiu, J., Yin, L. & Tian, Z. Dynamic prototype network based on sample adaptation for few-shot malware detection. 
IEEE Trans. Knowl. Data Eng. 35, 4754–4766. https:// doi. org/ 10. 1109/ TKDE. 2022. 31428 20 (2023).

 28. Qiu, J. et al. Artificial intelligence security in 5g networks: Adversarial examples for estimating a travel time task. IEEE Veh. Technol. 
Mag. 15, 95–100. https:// doi. org/ 10. 1109/ MVT. 2020. 30024 87 (2020).

 29. Qiu, J., Chai, Y., Tian, Z., Du, X. & Guizani, M. Automatic concept extraction based on semantic graphs from big data in smart 
city. IEEE Trans. Comput. Soc. Syst. 7, 225–233. https:// doi. org/ 10. 1109/ TCSS. 2019. 29461 81 (2020).

 30. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances 
in neural information processing systems 28 (2015).

 31. White, T. D., Fraser, G. & Brown, G. J. Improving random gui testing with image-based widget detection. In Proceedings of the 
28th ACM SIGSOFT International Symposium on Software Testing and Analysis, 307–317 (Beijing China, 2019).

 32. Smith, R. An overview of the tesseract OCR engine. In: 9th International Conference on Document Analysis and Recognition (ICDAR 
2007), 629–633 (IEEE Computer Society, Curitiba, Paraná, Brazil, 2007). https:// doi. org/ 10. 1109/ ICDAR. 2007. 43769 91.

 33. Deka, B. et al. Rico: A mobile app dataset for building data-driven design applications. In Proceedings of the 30th Annual ACM 
Symposium on User Interface Software and Technology, UIST 2017(eds. Gajos, K., Mankoff, J. & Harrison, C.) 845–854 (ACM, 
Quebec City, QC, Canada, 2017). https:// doi. org/ 10. 1145/ 31265 94. 31266 51.

 34. Xie, Mulong. Ui2code: Computer vision based reverse engineering of user interface design. https:// github. com/ Mulon gXie/ UI2CO 
DE (2021). Accessed: 2021-12-05.

 35. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and 
Pattern Recognition, CVPR 2016, 770–778 (IEEE Computer Society, Las Vegas, NV, USA, 2016). https:// doi. org/ 10. 1109/ CVPR. 
2016. 90.

 36. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprintarXiv: 1412. 6980 (2014).
 37. He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In Computer 

Vision - ECCV 2014 - 13th European Conference, vol. 8691 of Lecture Notes in Computer Science (eds. Fleet, D. J., Pajdla, T., Schiele, 
B. & Tuytelaars, T.) 346–361 (Springer, Zurich, Switzerland, 2014). https:// doi. org/ 10. 1007/ 978-3- 319- 10578-9_ 23.

 38. Torbert, S. Recursion 141–172 (Springer, Cham, 2016).
 39. Ramer, U. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256. 

https:// doi. org/ 10. 1016/ S0146- 664X(72) 80017-0 (1972).
 40. Suzuki, S. & Abe, K. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image 

Process. 30, 32–46. https:// doi. org/ 10. 1016/ 0734- 189X(85) 90016-7 (1985).
 41. Canny, J. F. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698. https:// doi. org/ 10. 

1109/ TPAMI. 1986. 47678 51 (1986).
 42. Gonzalez, R. C. Digital image processing / Rafael C. Gonzalez, Richard E. Woods. (Addison-Wesley, Reading, Mass., 1992).
 43. Samet, H. & Tamminen, M. Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE 

Trans. Pattern Anal. Mach. Intelli. 10, 579–586 (1988).
 44. Wang, C. et al. Cspnet: A new backbone that can enhance learning capability of CNN. In 2020 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, CVPR Workshops 2020, 1571–1580, https:// doi. org/ 10. 1109/ CVPRW 50498. 2020. 00203 (IEEE, 
Seattle, WA, USA, 2020).

 45. Zheng, Z. et al. Distance-iou loss: Faster and better learning for bounding box regression. In The Thirty-Fourth AAAI Conference 
on Artificial Intelligence, AAAI 2020, 12993–13000 (AAAI Press, New York, NY, USA, 2020).

 46. Gao, F., Yang, C., Ge, Y., Lu, S. & Shao, Q. Dense receptive field network: A backbone network for object detection. In 28th Inter-
national Conference on Artificial Neural Networks, vol. 11729 of Lecture Notes in Computer Science (eds. Tetko, I. V., Kurková, V., 
Karpov, P. & Theis, F. J.) 105–118 (Springer, 2019). https:// doi. org/ 10. 1007/ 978-3- 030- 30508-6_9.

 47. Zhu, R. et al. ScratchDet: Training Single-Shot Object Detectors from Scratch. arXiv e-printsarXiv: 1810. 08425 (2018).
 48. Liu, S., Qi, L., Qin, H., Shi, J. & Jia, J. Path aggregation network for instance segmentation. In 2018 IEEE Conference on Computer 

Vision and Pattern Recognition, CVPR 2018, 8759–8768 (IEEE Computer Society, Salt Lake City, UT, USA, 2018). https:// doi. org/ 
10. 1109/ CVPR. 2018. 00913.

 49. Yu, J., Jiang, Y., Wang, Z., Cao, Z. & Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM 
International Conference on Multimedia, MM ’16, 516-520 (Association for Computing Machinery, New York, NY, USA, 2016). 
https:// doi. org/ 10. 1145/ 29642 84. 29672 74.

 50. Rezatofighi, H. et al. Generalized intersection over union: A metric and a loss for bounding box regression. In IEEE Conference 
on Computer Vision and Pattern Recognition, CVPR 2019, 658–666 (Computer Vision Foundation / IEEE, Long Beach, CA, USA, 
2019). https:// doi. org/ 10. 1109/ CVPR. 2019. 00075.

Acknowledgements
We gratefully acknowledge funding by National Natural Science Foundation of China grant number 61971316.

https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1109/CVPR.2016.452
https://doi.org/10.1109/CVPR.2016.452
https://doi.org/10.1109/CVPR.2019.00216
https://doi.org/10.1109/CVPR.2019.00216
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1109/ICCEA58433.2023.10135462
https://doi.org/10.1109/ICCEA58433.2023.10135462
http://arxiv.org/abs/1910.08930
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1007/978-981-19-0604-6_2
https://doi.org/10.1007/978-981-19-0604-6_2
https://doi.org/10.1109/TKDE.2022.3142820
https://doi.org/10.1109/MVT.2020.3002487
https://doi.org/10.1109/TCSS.2019.2946181
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1145/3126594.3126651
https://github.com/MulongXie/UI2CODE
https://github.com/MulongXie/UI2CODE
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1007/978-3-030-30508-6_9
http://arxiv.org/abs/1810.08425
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1145/2964284.2967274
https://doi.org/10.1109/CVPR.2019.00075


16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20329  | https://doi.org/10.1038/s41598-023-46500-6

www.nature.com/scientificreports/

Author contributions
Conceptualization, B.C. and J.L.; methodology, B.C. and J.L.; software, J.L. and Z.F.; validation, B.C., J.L. and 
Z.F.; formal analysis, F.Z. and J.L.; investigation, B.C.; resources, J.L.; data curation, J.L. and Z.F.; writing-original 
draft preparation, J.L. and Z.F.; writing-review and editing, B.C.; visualization, J.L. and Z.F.; supervision, B.C.; 
project administration, B.C.; funding acquisition, B.C. All authors have read and agreed to the published version 
of the manuscript.

Competing  interests 
The authors declare no competing interests.

Additional information 
Reprints and permissions information is available at www. nature. com/ repri nts.

Additional information
Correspondence and requests for materials should be addressed to B.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://www.nature.com/reprints
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel code generator for graphical user interfaces
	Related work
	GUI component detection
	GUI text recognition
	GUI code generation

	Analysis of component detection model in code generation of GUI
	GUI component detection problem analysis
	Exploratory experimental analysis of GUI component detection
	Dateset
	Model training settings
	Evaluation

	Analysis of GUI component detection experiment results
	Performance analysis of text component detection and recognition
	Experimental analysis conclusion

	Methodology
	Overall architecture
	Image processing for GUI component detection
	Deep neural network for GUI component detection
	CSPNet
	CSPDarknet65
	Additional root block
	Average pooling block
	Spatial pyramid pooling
	Feature pyramid network
	Bounding box regression

	Fusion algorithms for GUI component detection
	Text recognition
	Code generation

	Experiment
	Dataset and experiment setup
	Contrast experiment
	Ablation

	Discussion
	Conclusion
	References
	Acknowledgements


