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Development of a deep learning 
based image processing tool 
for enhanced organoid analysis
Taeyun Park 1,8, Taeyul K. Kim 2,8, Yoon Dae Han 3, Kyung‑A Kim 2, Hwiyoung Kim 4,5,6* & 
Han Sang Kim 2,6,7*

Contrary to 2D cells, 3D organoid structures are composed of diverse cell types and exhibit 
morphologies of various sizes. Although researchers frequently monitor morphological changes, 
analyzing every structure with the naked eye is difficult. Given that deep learning (DL) has been 
used for 2D cell image segmentation, a trained DL model may assist researchers in organoid image 
recognition and analysis. In this study, we developed OrgaExtractor, an easy‑to‑use DL model based 
on multi‑scale U‑Net, to perform accurate segmentation of organoids of various sizes. OrgaExtractor 
achieved an average dice similarity coefficient of 0.853 from a post‑processed output, which was 
finalized with noise removal. Correlation between CellTiter‑Glo assay results and daily measured 
organoid images shows that OrgaExtractor can reflect the actual organoid culture conditions. The 
OrgaExtractor data can be used to determine the best time point for organoid subculture on the bench 
and to maintain organoids in the long term.

Organoids are 3D structures composed of numerous cells from pluripotent stem cells or adult stem cells of 
 organs1. Because diverse cell types are derived from stem cells, organoids mimic human native organs better than 
traditional 2D culture  systems2. Organoids have become a precise preclinical model for researching personalized 
drugs and organ-specific  diseases3,4. Optimization of the organoid culture conditions requires periodic monitor-
ing and precise interpretation by  researchers2. Morphological features such as area, perimeter, or eccentricity are 
variables for the evaluation of the growth of  organoids5. Cultured organoids have various features, and under-
standing their morphological heterogeneity is required to effectively handle organoids. As multiple features are 
comprehensively used to understand morphology, interpreting images of organoids and obtaining structural 
information present significant challenges.

In the biomedical field, image processing based on artificial intelligence (AI) can enable effective image data 
 analysis6. Recently, AI-based image analysis models outperformed human labor in terms of the time consumed 
and  accuracy7. Deep learning (DL) is a subset of the field of machine learning (and therefore AI), which imi-
tates knowledge acquisition by  humans8. DL models convert convoluted digital images into clear and meaning-
ful  subjects9. The application of DL-based image analysis includes analyzing cell  images10 and predicting cell 
 measurements11, affording scientists an effective interpretation system.

Recently, DL models have been developed for analyzing organoid images, which include  MOrgAna12 that 
quantifies and visualizes morphological information in image datasets, and  deepOrganoid13 that assesses the 
changes in organoid viability during drug screening. Despite these advancements, more accurate organoid rec-
ognition and visualization of general information from a single organoid is still required. Therefore, researchers 
require an auxiliary tool to comprehend organoid images and assess their culture conditions.

To address these unmet needs, we developed OrgaExtractor a DL-based organoid image analysis algorithm. 
OrgaExtractor was designed to overcome the current inefficiency in analyzing organoid images. We developed 
an accurate organoid segmentation algorithm using a few collected organoid images. OrgaExtractor is based on 
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a multi-scale U-Net, successfully performing challenging segmentation of small-size  organoids14. With simple 
image processing methods, we can obtain a fine binary mask to analyze various information about organoids 
shown in the image.

OrgaExtractor is user-friendly and requires minimal image adjustment for researchers unfamiliar with pro-
gramming. It exhibits > 85% accuracy in recognizing colon organoids from images, thus showing similarity to 
manual recognition. The measurements extracted by OrgaExtractor accurately reflect the actual organoid culture 
conditions, as determined by the metrics used. Researchers can select the metrics that best suit their analysis, 
and the analyzed data can be easily visualized. Using visualized data, researchers can continuously monitor the 
growth of organoids under specified culture conditions in real time. Using brightfield images without fluorescence 
staining, estimating the cell numbers of organoids through a non-invasive approach is feasible. Owing to these 
features, OrgaExtractor can be a valuable tool for researchers who intend to analyze organoid images right on 
the lab bench. Researchers with minimal or no programming experience can edit the reposited code to extract 
the required metrics, according to user manuals written on our GitHub repository.

Results
Development of OrgaExtractor as a deep learning‑based organoid image processing tool
First, we collected fresh human colon tissues adjacent to the cancer region containing normal colon crypts. Colon 
crypts were dissociated from tissues and seeded in a gelatinous protein mixture that mimicked the extracellular 
matrix in human tissue. After a few passages, proliferative adult stem cells in colon crypts were established into 
patient-derived normal colon organoids (Supplementary Table S1). Although organoids were grown in a 3D 
culture environment, 2D-projected microscopic images were captured as organoid images in this study (Fig. 1a). 
Thirty organoid images were collected for developing OrgaExtractor, and their binary masks were subsequently 
annotated. Among organoids in various positions, out-of-focus organoids, whose shape could not be recognized 
owing to phase differences, were excluded from the binary annotation. However, organoids that overlapped with 
other organoids were separated from each other and included in the binary annotation (Fig. 1b). The images 
were divided into three groups: 15 for training, 5 for validation, and 10 for testing (Supplementary Table S2).

After setting up the input dataset for development, we established an end-to-end pipeline that analyzes the 
input image using a DL  model14. To address the need for hardware-independent environments and balance the 
trade-off between high computational cost and performance, a multiscale strategy was adopted (Supplementary 
Fig. S1)14. The proposed model produces a binary segmentation output in which black represents the background, 
and white indicates the organoids.

The basic segmentation is evaluated based on a dice similarity coefficient (DSC) that measures the overlap 
between the prediction and ground truth (Supplementary Fig. S2). Our model averaged 0.867 for raw outputs 
of the test set and 0.853 for the post-processed images (Supplementary Fig. S3). The unrefined image could 
contain true positive pixels that form noisy components, negatively affecting the analysis accuracy. We removed 
the noisy components for accurate analysis, compromising on DSC. Therefore, we post-processed the raw output 
using simple image-processing methods, such as morphological transform and contouring. The contour image 
was considered the final output of OrgaExtractor and was used to analyze organoids numbered in ascending 
order (Fig. 1c). For a generalizable evaluation, we performed cross-validation with COL-018-N and COL-007-N 
datasets (Supplementary Fig. S3).

OrgaExtractor provides several measurements, such as the projected area, perimeter, axis length, eccentricity, 
circularity, roundness, and solidity of each organoid, from the contour image. Although these measurements 
may be useful for understanding the morphological features of a single organoid, they are insufficient for repre-
senting the entire culture condition to which the organoid belongs. Therefore, we added up the measurements, 
such as the projected area, or averaged out the eccentricity of a single organoid as the parameters of the organoid 
image to analyze the culture conditions (Fig. 1d). The correlation between analysis parameters and the estimated 
actual cell numbers was extracted. Based on the most correlated parameter, frequent image analysis enables the 
estimation of actual cell numbers in a non-invasive manner in real time and provides opportunity to culture 
organoid samples continuously (Fig. 1e).

Performance of OrgaExtractor in recognition of organoids comparable to manual recognition
The original organoid image was processed using OrgaExtractor, and white organoid contours with black back-
grounds were extracted. Each organoid was numbered and marked inside the contours (Fig. 2a). Among the 
metrics used for the development and evaluation of OrgaExtractor (Supplementary Table S3), the projected 
area, perimeter, major axis length, and eccentricity were visualized through diagrams. The extracted measure-
ments were saved as a text file in OrgaExtractor, enabling us to handle and manipulate the data efficiently. We 
calculated the ratio of a micrometer (μm) to a pixel in the original image because the organoid image was saved 
with a scale bar. The metric projected area (pixels) was converted into the actual projected area (μm2) based on 
the ratio explained (Fig. 2b).

Passaged colon organoids were seeded in a 24-well plate, and 28 colon organoid images were used for quanti-
tative evaluation (Supplementary Table S2). The number and total projected areas of the counted organoids from 
each image were measured using OrgaExtractor. These data were compared with the corresponding, manually 
measured data. The number of counted organoids agreed with the concordance correlation coefficient (CCC) of 
0.95 [95% confidence interval (CI) 0.90–0.98]. No significant difference between the manual and OrgaExtractor 
in the total number of counted organoids was observed (Fig. 2c). The total projected areas of counted organoids 
agreed with the CCC of 0.92 [95% CI 0.85–0.96]. There was no significant difference between the manually meas-
ured total projected areas and those measured by OrgaExtractor (Fig. 2d). These results indicate that OrgaEx-
tractor can replace researchers in organoid recognition and measurement. When using DSC, however, simply 
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counting the number of organoids is insufficient because DSC is based on a pixel-by-pixel comparison. Therefore, 
we used ten pairs of COL-018-N testing datasets to evaluate the performance based on organoid counting. We 
analyzed our deep learning model with detection methods to observe how many organoids the model can detect. 
Detection localizes and identifies the presence of organoids recognized by the model, providing the number of 
organoids that the model finds or misses compared to the ground truth. In the context of detection, OrgaExtrac-
tor detects organoids with a sensitivity of 0.838, a specificity of 0.769, and an accuracy of 0.813 (Fig. 2e).

Organoid measurements from OrgaExtractor correlate with actual culture conditions
To determine the parameter that can evaluate organoid culture conditions, we first attempted to determine a 
standard assay for counting actual cell numbers. Organoids under 70 μm in size were seeded in a 96-well plate 
with a density of two-folded serial dilution. Each well was first stained with Hoechst 33342 and Celltracker Red 
dye to acquire fluorescence images, followed by the addition of CellTiter-Glo (CTG) reaction solution. Actual 
cell numbers were relatively estimated using the luminescence values from CTG assay or fluorescence intensities 
from Hoechst 33342 and CellTracker Red staining assay. Among the assays, the regression predictions of the 
CTG assay are the best fit to the data (coefficient of determination (R2) = 0.988, P-value (P) < 0.001). Therefore, we 
used the CTG assay as a criterion for estimating the actual cell numbers in the following experiments (Fig. 3a,b).

Figure 1.  Development workflow of OrgaExtractor and analysis of organoid images. (a) Overview of 
normal colon organoid establishment and organoid image acquisition. See also Supplementary Table S1. (b) 
Pairs of organoid images for training OrgaExtractor: original images and their binary mask images. See also 
Supplementary Table S2. (c) Raw output from the U-Net OrgaExtractor model and the post-processed contour 
images are shown. See also Supplementary Figs. S1–S2. (d) Information regarding each organoid is extracted 
from the final contour image using OrgaExtractor based on the metrics and parameters used for image analysis. 
See also Supplementary Table S3. (e) Analysis of correlation between image parameters and actual cell numbers. 
Visualization of the extracted information to evaluate organoid culture conditions.
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Passaged colon organoids under 70 μm in size were seeded in a 96-well plate and cultured for five days. Each 
well was imaged before the organoid viability was measured using the CTG assay. A total of 90 colon organoid 
images were used to correlate the data extracted by OrgaExtractor with the actual CTG data (Supplementary 

Figure 2.  Evaluation of data extracted by OrgaExtractor. (a) A pair of organoid images: the original image and 
its contour image processed by OrgaExtractor (Scale bar = 100 μm). (b) Metrics used in this study are visualized, 
and an excel file of the measurements extracted by OrgaExtractor is shown. See also Supplementary Table S3. (c, 
d) The number (c) and total projected area (d) of counted organoids in 28 images were measured manually and 
using OrgaExtractor, respectively. Data extracted by OrgaExtractor were compared with manual data based on 
the concordance correlation coefficient (CCC), exhibiting a 95% confidence interval (CI) (left). Data extracted 
by OrgaExtractor were compared with manual data and are represented as mean ± SD (right). n.s. not significant 
with a two-sided, independent, two-sample t-test. (e) Confusion matrix in the context of detection.
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Figure 3.  Correlation of data extracted by OrgaExtractor with actual CellTiter-Glo (CTG) assay, Hoechst 33342 staining, and 
CellTracker Red staining. (a) Organoids are seeded with a density of two-fold serial dilution, and their cell numbers are measured with 
CTG assay, Hoechst 33342 staining, and CellTracker Red staining, shown in triplication (mean ± SD). A coefficient of determination 
(R2) with a P-value (P) was used to perform a linearization of actual cell numbers. (b) Representative brightfield and fluorescence 
images of organoids, in different seeding densities are shown (Scale bar = 200 μm). (c) Organoids imaged on different days are dotted 
with different colors. The Pearson correlation coefficient (r) with a P-value (P) was used to compare the total projected areas in the 
90 images to the CTG data. (d) Other parameters were used to compare the data extracted from the images with the CTG data in 
Pearson analysis. ***P < 0.001. (e) Representative images of 5-day-old, cultured colon organoids (Scale bar = 200 μm). (f) Quantitative 
analysis of organoids are conducted in triplication. Organoid growth was measured using OrgaExtractor (orange) with four different 
parameters. The total projected areas (orange) were compared with the CTG assay results (gray), and both were plotted as a function 
of the relative cell number. Data were presented as mean ± SD. *P < 0.05, n.s. not significant, using a two-sided independent two-sample 
t-test.
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Table S2). Pearson analysis revealed a positive correlation (Pearson correlation coefficient (r) = 0.961, P < 0.001) 
between the total projected areas of the imaged organoids in each well and the CTG assay results (Fig. 3c). Other 
parameters related to size were also used to analyze the correlation between the data extracted from the OrgaEx-
tractor and the CTG data. Pearson analysis showed the most robust relationship between the total projected areas 
and CTG values among other parameters, directly related to size (Fig. 3d). As the luminescence values from 
the CTG assay scales linearly with the cell numbers, we assumed that the total projected areas of organoids in a 
single image strongly correlate with the total cell numbers in the same image.

Passaged colon organoids under 70 μm in size were seeded in a 96-well plate and cultured for five days. Three 
different wells were imaged daily (Supplementary Table S2), before organoid viability was measured using the 
CTG assay. Representative time-lapse images of the cultured organoids and their output images from OrgaExtrac-
tor are shown (Fig. 3e). Data such as total projected areas, total perimeters, total counts, and average eccentricity 
of 15 images related to Fig. 3e were plotted on each graph. Data of total projected areas from images and CTG 
assay results from other triplicated wells were both converted to data of predicted cell number, by considering the 
relative value of one on Day 1, and were plotted on a single graph. Based on the CTG assay results, we empirically 
found that the growth of cultured organoids has been slowed down on Day 5, which is referred to as the time 
point for  subculture15. Triplicated values extracted from the OrgaExtractor were compared with those of the 
CTG assay results, and no significant difference was observed on Day 5 (Fig. 3f). These findings demonstrate a 
non-invasive approach to estimating organoid growth, which could potentially be used to determine the optimal 
time point for subculturing, as illustrated by the use of OrgaExtractor.

OrgaExtractor enables researchers to understand organoids in the images
Image metrics, such as projected area and perimeter, are directly related to the size of the organoid, regardless 
of its shape. On the contrary, eccentricity is an image metric that can qualitatively evaluate the shape of each 
organoid, regardless of its size (Supplementary Table S3). Passaged colon organoids without dissociation were 
differentially filtered using cell strainers sized 40 μm, 70 μm, and 100 μm. One day after the organoids were seeded 
in a 24-well plate, 19 images were acquired (Supplementary Table S2). Representative images of organoids in 
three size ranges, along with the output images, are shown (Fig. 4a). Original images were first processed using 
OrgaExtractor, followed by the selection of actual organoids. Organoids that were neither cut at the edges nor 
smaller than 40 μm in size were selected as actual organoids. The projected area and eccentricity of individual 
organoids measured using OrgaExtractor were plotted on a scatter plot. As organoids were differentially filtered, 
the data visualized with a marginal plot showed three different distributions in the projected area. We found that 
the eccentricity of colon organoids filtered between 40 and 70 μm size was smaller than that of other organoids 
(Fig. 4b).

Three different colon organoids were seeded in a 24-well plate, and 48 images were acquired (Supplementary 
Table S2). Representative original and output images of different organoids imaged on different days were shown 
(Fig. 4c). To estimate organoid growth in a non-invasive manner, we analyzed three images per organoid sample 
using OrgaExtractor and extracted data regarding the total projected areas daily. Based on the data plotted on 
a graph, organoids were cultured until their growth slowed down. The relatively estimated cell numbers were 
significantly different between the two rapidly grown organoids and the other gradually grown organoid (Fig. 4d). 
The growths of COL-007-N, COL-035-N, and COL-039-N were also estimated with CTG assay, Hoechst 33342 
staining, and CellTracker Red staining assay, which can also confirm the actual cell numbers (Fig. 4e). As with 
the Pearson analysis in Fig. 3, image-based data from OrgaExtractor were correlated with luminescence values 
(CTG assay) or fluorescence values (Hoechst 33342 and CellTracker Red assay) (Supplementary Table S2, Sup-
plementary Fig. S4). These results show that OrgaExtractor can recognize organoids at different stages of growth, 
and researchers can compare their growth conditions with the data extracted from the images.

Discussion
Organoids have been widely used as a preclinical model for infectious diseases, cancer, and drug  discovery16. 
Since organoids are self-organizing multicellular 3D structures, their morphology and architecture closely 
resemble the organs from which they were  derived17. However, these potent features were major obstacles to 
estimating organoid growth and understanding their cultural  condition18. Recently, DL-based U-Net models 
that could detect 2D cells from an image and measure their shape were developed, reducing the workload of 
 researchers19,20. In this study, we developed a novel DL-based organoid image processing tool for researchers 
dealing with organoid morphology and analyzing their culture conditions.

Although MOrgAna and our study fundamentally perform segmentation tasks for organoid images, MOr-
gAna was trained by a single cropped-out organoid with machine learning and an optional shallow MLP 
 network12. Training the OrgaExtractor with a variety of organoids in a single image can result in the extraction 
of various morphological data. MOrgAna can be widely used in observing a single GFP-expressed organoid in 
the developmental stage, but OrgaExtractor can be used to estimate the growth of total organoids in a 3D matrix. 
DeepOrganoid was designed for performing high-throughput viability screens in drug  discovery13. Although 
it showed a correlation between the total projected areas of 2D cells and cell viability in the validation stage, 
understanding the morphology of organoids is necessary. The OrgaExtractor showed a correlation between 
morphological parameters and organoid viability.

Because U-Net is a prominent convolutional neural network for biomedical image segmentation, we adopted 
the basic architecture of our model from U-Net21. Furthermore, learning the feature maps in multi-scale with 
a residual path strategy improves the overall model performance of U-Net14. With minor modifications, we 
re-implemented these architectures by including 3 × 3 and 7 × 7 kernels in multi-scale blocks (Supplementary 
Fig. S1). Therefore, our model accurately segmented the organoid and was able to quantitatively measure each 
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Figure 4.  Organoid image analysis with visualization. (a) Representative images of differentially filtered organoids 
(Scale bar = 100 μm). (b) The projected area and eccentricity of the organoids are plotted with dots (bottom, left). 
Organoids are distributed according to the projected area, shown with a mean (top, left) and eccentricity (right). 
Data are presented as mean ± SD (right). Two-sided independent two-sample t-test, *P < 0.05, ***P < 0.001. (c) 
Representative images of two colon organoids, imaged 1 (top) and 3 (bottom) days after seeding in a 24-well plate 
(Scale bar = 200 μm). (d) Data of the total projected areas extracted from three time-lapse images were used to 
predict relative cell numbers in organoids. Relative cell number was predicted on Day 3 and 4, when COL-007-N and 
COL-039-N grew faster than the previous day, respectively. Data were presented as means with standard deviations. 
A two-sided independent two-sample t-test yielded **P < 0.01, ***P < 0.001. (e) Data of the luminescence value and 
fluorescence intensity were used to predict relative cell numbers in organoids as a validation of (d). Fluorescence 
intensity from acquired images and luminescence value from the well where the images are captured are normalized, 
by considering a relative value of one on Day 1. Data were presented as means with standard deviations. A two-sided 
independent two-sample t-test yielded *P < 0.05, ***P < 0.001, and n.s. not significant.
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structure in the organoid image (Fig. 1). Furthermore, OrgaExtractor performs segmentation tasks precisely 
within three seconds per image and provides detailed information regarding each organoid in an image. The 
ability to analyze a single organoid, even in images containing multiple organoids, allows researchers to avoid 
capturing each organoid, leading to a more efficient examination process. OrgaExtractor trained with a colon 
organoid image set can recognize same colon organoid sample from different sets of images with an average 
DSC of over 0.83 (Supplementary Fig. S3). As OrgaExtractor recognizes organoids in a single image, its organoid 
measurements are comparable to manual measurements in multiple images (Fig. 2).

Considering the use of image analysis metrics in organoid  recognition22, we propose that researchers examine 
total organoids in a single image using parameters that reflect the actual culture conditions of their samples. Vari-
ous image metrics such as projected area were extracted from every single organoid contour. The total projected 
areas were then calculated by summing the projected areas of each contour (Fig. 1d). We demonstrated that total 
projected areas, as an analysis parameter, strongly correlate with the actual cell numbers and can be a parameter 
for 3D cell counting (Fig. 3c,d). Because the colon organoid in cystic morphology is  ellipsoid15, the surface area 
correlated with the projected area is proportional to cell  numbers23. Considered together, our findings suggest 
that the analysis of organoid images using OrgaExtractor could serve as a valuable tool for non-invasive cell 
number estimation (Fig. 3f). Analysis parameters shown in Fig. 3d are derived from image metrics that are 
inevitably related to the size. Although those parameters can be used for cell number estimation, it is slightly 
difficult to qualitatively evaluate the morphology of a single organoid. As the morphology of a single organoid 
can be changed by experimental conditions or  stimuli24, we attempted to find the morphological features that can 
be seen during culture. Among the metrics, we characterized the eccentricity of differentially filtered organoids 
and found that organoids of smaller sizes were less eccentric (Fig. 4b).

The increase in cell number is crucial in both 2D cell line culture and 3D organoid  culture2,16,25–29. Because 
2D cells are maintained as a single cell type, it is relatively easy to count the cell number and anticipate its 
culture  conditions26,29,30. However, because an organoid is a multicellular structure of varying sizes, estimating 
the growth with precise time points is  difficult15,16,30. OrgaExtractor was used to compare the growth between 
different colon organoid samples based on the total projected areas and to understand the characteristics of a 
single colon organoid sample. Researchers can observe the growth of organoid samples in real time using the 
morphological data extracted from OrgaExtractor. Organoids are heterogeneous in growth (Fig. 4d), and this 
heterogeneity gives researchers a reason to handle organoid samples individually. Researchers can find suitable 
culture conditions by subculturing each sample at the optimal time point rather than thoroughly following 
protocols. Determining the optimal culture conditions for individual organoid samples may prevent unwanted 
differentiation and expansion termination, followed by a long term  maintenance15.

There are certain limitations regarding the segmentation of overlapped organoids. Although OrgaExtractor 
does not recognize blurry out-of-focus organoids that should not be detected, it shows substandard performance 
on overlapped organoids that are in contact with other organoids. Overlapped organoids have a contact junc-
tion that does not appear in a single organoid, making it difficult for OrgaExtractor to segment. The ability to 
distinguish overlapped organoids as two or more separated organoids is required in future work.

In conclusion, to analyze the morphology and diverse sizes of organoids in images, we developed OrgaEx-
tractor, a DL-based organoid image-processing tool. The data extracted by OrgaExtractor (the parameter used 
is the total projected areas) correlated with the actual cell numbers in organoids. Researchers unfamiliar with 
programming can readily use OrgaExtractor to handle images and extract their preferred data. We anticipate 
that OrgaExtractor will be frequently used at benches, where researchers struggle to optimize the culture condi-
tions of their organoid samples.

Materials and methods
Patient specimen collection
All experimental procedures were approved by the Institutional Review Board (IRB) of Yonsei University College 
of Medicine (Permit Number: 4-2019-0811), and were performed in accordance with relevant guidelines. The 
study obtained informed consent for specimens from patients who had undergone surgical resection. Patients 
who underwent surgery to remove cancerous colon tissues contributed healthy colon tissues adjacent to the 
cancer region (Supplementary Table S1).

Establishment and culture of normal colon organoids
Tissues adjacent to the cancer region were chemically dissociated using a Gentle Cell Dissociation Reagent 
(GCDR; #100-0485, Stemcell) for 30 min at room temperature (RT), followed by mechanical dissociation. Pre-
chilled Matrigel (#356231, Corning) was added to the media containing isolated organoids as 50% (v/v). After 
gentle re-suspension, 50 μL of the mixture was dispensed into each well of a 24-well culture plate and polymerized 
for 30 min at 37 °C. Organoids were cultured in IntestiCult Organoid Growth Medium (OGM; #06010, Stemcell) 
containing 1X Penicillin/Streptomycin (#15140-122, Gibco) and 10 μM Y-27632 (#Y0503, Sigma-Aldrich) at 
37 °C and 5%  CO2. Media were exchanged every 2–3 days, and organoids were passaged 1:3–1:4 every 5–7 days. 
For passaging, organoids were dissociated in GCDR for 10 min at RT, followed by mechanical disruption using 
a P1000 pipette, and finally embedded in diluted Matrigel.

Cell viability assay
Organoids were dissociated in GCDR for 10 min at RT, followed by mechanical disruption. Small organoids 
with < 70 μm diameters were collected using a cell strainer (#93070, SPL Life Sciences). After gentle re-suspension 
with diluted Matrigel, 50–60 organoids per 6 μL were seeded on a white flat-bottom 96-well plate, followed by 
polymerization for 15 min at 37 °C. Every three days, 200 μL of OGM was added to each well and exchanged. To 
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measure the relative cell number, the medium was removed, and 30 μL of CellTiter-Glo 3D Reagent (#G9682, 
Promega) was added to each well, followed by vigorous shaking for 20 min at RT. Luminescence, detected using 
Centro  XS3 LB 960, was read using MikroWin 2000, and the normalized data were plotted using GraphPad Prism 
9 software. A single experiment was performed by triplication.

Fluorescence staining assay
The methods of seeding the mechanically dissociated organoids for viability assay are aforementioned. After 
washing each well with phosphate-buffered saline (PBS), 200 μL of PBS containing 7.5 μg/mL Hoechst 33342 
(#14533, Sigma-Aldrich) and 10 μM CellTracker Red CMTPX (#C34552, Invitrogen) was added to each well, 
followed by incubation for 30 min at 37 °C31,32. The fluorescence intensity of captured images was quantified 
using  ImageJ33, and the normalized data were plotted using GraphPad Prism 9 software. A single experiment 
was performed by triplication.

Image acquisition
Images of organoids embedded in Matrigel-containing droplets were acquired using an IX73 inverted micro-
scope (Olympus) with 4 × and 10 × objectives in a brightfield and fluorescence. Because colon organoids were 
suspended in Matrigel, the level with the most organoids in focus was chosen. The captured images were saved 
as JPGs (1600 × 1200 pixels) along with a scale bar, using the cellSens standard.

Manual process of original image into binary mask
In the development process of the OrgaExtractor model, which employs supervised learning, binary masks were 
generated to correspond with the organoid images. These masks served as ground truths for comparison with 
the predictions of the DL model. The establisher (T.K.K.) of the patient-derived normal colon organoids visually 
annotated the regions of projected organoids in the original image. Organoids that were neither cut at the edges 
nor less than 40 μm in size were outlined. The outlined regions were filled with white, whereas the background 
was filled with black.

Datasets
We used the OrgaExtractor development dataset comprising 30 colon organoid (PDO ID: COL-018-N) images. 
We first acquired 30 in-house original organoid images, and 30 additional binary masks were subsequently 
annotated by the aforementioned methods. The images in the dataset were split into three groups: 15 for train-
ing, 5 for validation, and 10 for testing (Fig. 1).

We used the OrgaExtractor evaluation dataset containing 248 colon organoid (PDO ID: COL-007-N, COL-
035-N, and COL-039-N) images. As shown in Fig. 2c and d, 28 images annotated with 28 binary masks were 
used to evaluate the concordance correlation. As shown in Fig. 3c and d, 90 images were used to evaluate whether 
the extracted data from the organoids correlated with the actual CTG data. As shown in Fig. 3e and f, 15 images 
were used to show that the data extracted by OrgaExtractor reflected organoid growth conditions. As shown 
in Fig. 4a and b, 19 images were used to compare the characteristics of organoids that were different in size. As 
shown in Fig. 4c and d, 48 images were used to compare the growth rates of different organoid samples. As shown 
in Fig. 4e, 48 images were used to compare the growth rates of different organoid samples.

The summary information of acquired image datasets is presented in Supplementary Table S2.

OrgaExtractor model
The detailed model architecture of OrgaExtractor is shown in Supplementary Fig. S1. In the training process, 
owing to the large original image size and the small size of the dataset, the images were cropped to 512 × 512 and 
augmented, including random flipping, rotation, affine transformation, and Gaussian blurring. Subsequently, the 
images were fed into a multi-scale residual U-Net with 3 × 3 and 7 × 7 kernels. We adopted a batch size of eight, a 
stochastic gradient descent optimizer, and a learning rate of 0.001. Our model is trained based on a compound 
of dice and cross-entropy loss because a compound loss provides robust results on segmentation  tasks34. The loss 
of training and DSC of validation are shown in Supplementary Fig. S3. The related Eq. (1) is as follows:

The raw output image from the model is post-processed iteratively with a morphological transformation to 
remove small components and recover holes. This process was empirically optimized. Finally, OrgaExtractor 
generates a binary contour image of organoids in which each organoid is labeled in ascending order. It analyzes 
the contour image using the OpenCV-Python library and provides information such as the projected area, diam-
eter, perimeter, major axis length, minor axis length, eccentricity, circularity, roundness, and solidity.

Quantification and statistical analysis
All figures were constructed using GraphPad Prism 9 software. All graphs display the mean values (mean) and the 
error bars represent the standard deviation (SD). Statistical analyses were conducted via the concordance correla-
tion test shown in Fig. 2c and d, linear regression analysis in Fig. 3a, and Pearson’s correlation test shown in Fig. 3c 
and d, and Supplementary Fig. S4d. P-values were calculated using a two-sided independent two-sample t-test 
in Figs. 2c,d, 3f, 4b,d, and e. P < 0.05 was considered statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001.

(1)L_total = L_(CE)+ L_Dice
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Data availability
The datasets and codes generated and/or analyzed during the current study are available in the GitHub reposi-
tory: https:// github. com/ tpark 16/ orgae xtrac tor.
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