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Construction 
of an anoikis‑associated 
lncRNA‑miRNA‑mRNA network 
reveals the prognostic role 
of β‑elemene in non‑small cell lung 
cancer
Kai Tan 1, Changhui Zhang 1, Zuomei He 2,3 & Puhua Zeng 2,3*

β‑Elemene is the main active ingredient in Curcumae Rhizoma that exerts antitumour effects. 
Anoikis affects tumour development through various biological pathways in non‑small cell lung 
cancer (NSCLC), but the regulation between β‑elemene and anoikis remains to be explored. First, 
we explored the molecular expression patterns of anoikis‑associated genes (AAGs) using consensus 
clustering and characterized the impact of AAGs on patient prognosis, clinical characteristics, and 
genomic instability. In addition, we revealed that AAG regulatory genes have rich interactions 
with β‑elemene targets, and established a lncRNA‑miRNA‑mRNA network to explain the effect of 
β‑elemene on anoikis. Finally, to reveal the prognostic effect of their correlation, the prognostic 
scoring model and clinical nomogram of β‑elemene and anoikis were successfully established by least 
absolute shrinkage and selection operator (LASSO) and random forest algorithms. This prognostic 
scoring model containing noncoding RNA (ncRNA) can indicate the immunotherapy and mutational 
landscape, providing a novel theoretical basis and direction for the study of the antitumour 
mechanism of β‑elemene in NSCLC patients.

Abbreviations
NSCLC  Non-small cell lung cancer
TCM  Traditional Chinese medicine
CHM  Chinese herbal medicine
ZIC2  Zic family member 2
Src  Steroid receptor coactivator
FAK  Focal adhesion kinase
PTEN  Phosphatase and tensin homolog
AKT  Protein kinase B
FAM188B  Family with sequence similarity 188 member B
EGFR  Epidermal growth factor receptor
AMPK  The AMP-activated protein kinase
MAPK  Mitogen-activated protein kinases
PI3K  Phosphoinositide 3-kinase
mTOR  Mechanistic target of rapamycin
ncRNA  Noncoding RNA
lncRNA  Long noncoding RNA
miRNA  MicroRNA
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circRNA  Circular RNA
ceRNA  Competing endogenous RNA
TCGA   The Cancer Genome Atlas
CNV  Copy number variation
LUAD  Lung adenocarcinoma
LUSC  Lung squamous cell carcinoma
AAG   Anoikis-associated gene
PCA  Principal component analysis
GSEA  Gene set enrichment analysis
BAG  β-Elemene and anoikis-associated genes
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
DCA  Decision curve analysis
TIDE  Tumor Immune Dysfunction and Exclusion
MAF  Mutation annotation format
ECM  Extracellular matrix
AUC   Area under the curves
TMB  Tumour mutation burden
PPARA   Peroxisome proliferator activated receptor alpha
CNR2  Cannabinoid receptor 2
FOXO1  Forkhead box-1
NAC  Acetyl-Cysteine
PDK1  3-Phosphoinositide-dependent protein kinase 1
KLF10  KLF transcription factor 10
LRP8  Low-density lipoprotein receptor-related protein-8
SATB2  Special AT-rich sequence-binding protein 2
TNS1  Tensin1
FIH  Hypoxia inducible factor 1α inhibitor
HIF  Hypoxia inducible factor
VDR  Vitamin D receptor
VEGFC  Vascular endothelial growth factor C
PTGS1  Prostaglandin-endoperoxide synthase 1
PD-L1  Programmed cell death ligand 1
PTGS2  Prostaglandin-endoperoxide synthase 2
PGE2  Prostaglandin E2
MSCs  Mesenchymal stem cells
5-FU  5-Fluorouracil
NF-κB  Nuclear factor-kappaB

Lung cancer remains the leading cause of cancer death, accounting for 18% of all cancer deaths and 11.4% of all 
cancers diagnosed according to GLOBOCAN 2020, making it the deadliest type of cancer  worldwide1. Non-small 
cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer  cases2. Due to the insidious symptoms 
of early-onset NSCLC, many patients are in advanced stages at the time of diagnosis, and thus systemic drug 
treatments such as chemotherapy, targeted therapy and immunotherapy are usually needed but do not provide 
the desired benefits due to drug resistance and adverse  effects3,4.

Traditional Chinese medicine (TCM), especially Chinese herbal medicine (CHM), has been widely used in 
China and many other countries for the treatment of cancer. CHM not only relieves symptoms and improves the 
quality of life of cancer patients but also reduces the adverse effects and complications caused by chemotherapy, 
targeted therapy or  immunotherapy5. Curcumae Rhizoma is a commonly used drug in the TCM treatment of 
lung cancer, and β-elemene  (C15H24) is the main active ingredient extracted from it. Several previous studies have 
demonstrated that β-elemene plays an antitumour role in NSCLC patients not only by inhibiting NSCLC cell 
proliferation, invasion and migration and inducing apoptosis of NSCLC cells but also by increasing the sensitivity 
of drugs and other mechanisms, which are closely related to the development of  NSCLC6–8.

Anoikis is a specific form of programmed cell death induced by the loss of cellular exposure to the extracel-
lular matrix, which plays a key role in the maintenance of tissue  homeostasis9. However, tumour cells have the 
ability to evade cell death and usually show resistance to anoikis, which leads to tumour progression and meta-
static spread of cancer  cells10. An increasing number of studies have confirmed the involvement of anoikis in 
NSCLC biological processes: Liu et al.11 showed that silencing Zic family member 2 (ZIC2) could downregulate 
the migration, invasion and anoikis resistance ability of NSCLC cells by inhibiting steroid receptor coactivator/
focal adhesion kinase (Src/FAK) signalling; McCarroll et al.12 found that βIII-tubulin induced NSCLC devel-
opment and anoikis resistance through the phosphatase and tensin homolog/ protein kinase B (PTEN/AKT) 
signalling axis; Jang et al.13 demonstrated that knockdown of family with sequence similarity 188 member B 
(FAM188B) downregulated the activity of various signalling pathways involved in anti-anoikis downstream of 
epidermal growth factor receptor (EGFR), sensitizing NSCLC cells to anoikis and inhibiting tumour metastasis. 
It is evident that anoikis resistance is regulated by multiple signalling pathways in NSCLC cells. Several stud-
ies have shown that the main pathways of β-elemene anti-NSCLC include the AMP-activated protein kinase/
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mitogen-activated protein kinases (AMPK/MAPK), phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target 
of rapamycin (mTOR) and FAK-Src  pathways6,8,14. It is thus evident that β-elemene may exert anti-NSCLC effects 
by participating in the regulation of anoikis-related pathways and that the targets of β-elemene may play key 
roles in the anoikis process.

Noncoding RNAs (ncRNAs) are unique RNA transcripts that are widely found in eukaryotes, and a variety 
of ncRNAs, including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), 
are oncogenic drivers and tumour suppressors of major  tumours15. Extensive interactions also exist between 
ncRNAs, with lncRNAs usually acting as specific competing endogenous RNAs (ceRNAs), competing for com-
plementary miRNA binding sites to influence and regulate the expression of cancer target  genes16,17. A variety of 
ncRNAs play key roles in NSCLC and can influence NSCLC development through various  mechanisms18–20. In 
particular, anoikis-associated ncRNAs have been shown to be key markers for tumour metastasis and progres-
sion, including breast  cancer21, hepatocellular  carcinoma22, and prostate  cancer23. The latest research shows that 
lncRNA-miRNA interactions are successfully predicted based on multiple network algorithms, providing novel 
and valuable insights into ncRNA prediction of prognosis of NSCLC  patients24,25. However, studies involving the 
regulatory relationship of anoikis-related ncRNAs in NSCLC have been less frequently reported. Additionally, it 
is not yet known whether the target of β-elemene interacts with anoikis-related ncRNAs. Thus, elucidating their 
roles in NSCLC may improve our understanding of the mechanism of action of β-elemene in anoikis as well as 
new therapeutic strategies against NSCLC.

In this study, we explored the molecular expression pattern of anoikis prognostic factors in NSCLC patients 
by mining The Cancer Genome Atlas (TCGA) database, and investigated the biological function and prognos-
tic significance of these molecular clusters. In addition, by constructing a lncRNA-miRNA-mRNA network of 
anoikis and β-elemene targets, the regulatory relationship of anoikis-associated ncRNAs on β-elemene targets 
was clarified. Finally, potential targets were obtained by constructing a prognostic regression model, and binding 
stability was evaluated for targets and β-elemene through molecular docking, providing a theoretical basis and 
new possibilities for the diagnosis and treatment of NSCLC.

Methods and materials
Data acquisition
First, the transcriptional expression profiles, clinical information, survival information, somatic mutation data, 
copy number variation (CNV) data, and miRNA expression profiles (isoform expression quantification) of 
the lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) cohorts were obtained from the 
TCGA database (https:// portal. gdc. cancer. gov/). The TCGA-LUAD cohort included data for 59 paracancerous 
tissue samples and 541 tumour tissue samples, and the TCGA-LUSC cohort included data for 51 paracancer-
ous tissue samples and 502 tumour tissue samples. Using the ComBat function of the "sva" package, the gene 
expression profiles of the two cohorts were combined, batch effects were eliminated, and the merged matrix 
was normalized using the log2 function. Only 970 NSCLC tumour samples with full transcriptome, miRNA 
expression profiles, and survival information were included for the construction of prognostic models. Second, 
501 anoikis-associated genes (AAGs) with relevance scores greater than 0.4 were obtained from the GeneCards 
 database26 (https:// www. genec ards. org/). In addition, 139 AAGs were obtained from the Harmonizome  database27 
(http:// amp. pharm. mssm. edu/ Harmo nizome). A total of 638 AAGs were obtained after deduplicating. In addi-
tion, the PubChem  database28 (https:// pubch em. ncbi. nlm. nih. gov/) was explored to obtain canonical SMILES 
for β-elemene (PubChem CID: 6,918,391). Potential targets of β-elemene were predicted with the SwissTarget-
Prediction  database29 (http:// swiss targe tpred iction. ch/). Next, the UniProt IDs of the 23 predicted targets were 
converted to gene symbols using the UniProt  database30 (https:// www. unipr ot. org). Finally, 26 potential target 
genes of β-elemene were obtained.

Molecular characterization of AAGs
First, the expression of AAGs in paracancerous and tumour tissues of NSCLC patients was compared to obtain 
AAGs that were significantly differentially expressed in tumour tissues (|logFC|> 1 and FDR < 0.05). Then, uni-
variate Cox regression analysis was performed on the differential AAGs to obtain the AAGs significantly associ-
ated with prognosis of NSCLC (P < 0.05). To further explore the genomic activity of potentially prognostic AAGs, 
we assessed the frequency of CNV occurrence in these AAGs and visualized the location of CNVs. In addition, 
to explore the interactions of prognostically relevant AAGs, we analysed the interactions of proteins encoded 
by AAGs using the String  database31 (https:// string- db. org/) (confidence > 0.4).

Consensus clustering of AAGs
To explore the molecular expression patterns of prognostic AAGs, consensus clustering was performed based 
on the expression profiles of AAGs using the k-means algorithm of the "ConsensusClusterPlus"  package32. The 
maximum number of clusters was set to 9. A resampling scheme was used to sample 80% of the sample and 
resampled 50 times to find stable and reliable subgroup classification. Principal component analysis (PCA) and 
survival analysis were applied to test the differences in clustering and to compare the expression levels of these 
AAGs between clusters. In addition, the correlation between AAG clusters and the clinical information of NSCLC 
patients was explored, and differences in biological functions between AAG clusters were compared by gene set 
enrichment analysis (GSEA).

Construction and biological function analysis of the ceRNA network
To investigate the mechanism of action of β-elemene in NSCLC and its correlation with the anoikis process, we 
constructed an anoikis-β-elemene ceRNA network. First, anoikis-associated differential mRNAs, lncRNAs, and 

https://portal.gdc.cancer.gov/
https://www.genecards.org/
http://amp.pharm.mssm.edu/Harmonizome
https://pubchem.ncbi.nlm.nih.gov/
http://swisstargetprediction.ch/
https://www.uniprot.org
https://string-db.org/
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miRNAs (|logFC|> 0.585 and P < 0.05) were obtained by differential significance analysis among AAG clusters 
for all genes. Then, the targeting relationships of these mRNAs and lncRNAs were predicted by the DIANA-
LncBase  tool33 (http:// www. micro rna. gr/ LncBa se). The targets of differential miRNAs were also predicted by 
the TargetScan 8.0 database (www. targe tscan. org) and compared with anoikis-related differential mRNAs and 
β-elemene targets. In addition, by obtaining the targeting relationships between anoikis-related miRNAs and 
β-elemene targets and by performing correlation analyses between anoikis-related mRNAs and β-elemene tar-
gets, anoikis-β-elemene gene relationship pairs were established for the β-elemene targets that are both miRNA 
targets and coexpressed genes of anoikis-related mRNAs. Finally, only mRNAs with relevance to β-elemene tar-
gets were retained, and a lncRNA-miRNA-mRNA network was established based on ncRNA-target relationship 
pairs. The β-elemene-regulated anoikis genes used to construct the ceRNA network were defined as β-elemene 
and anoikis-associated genes (BAGs). To explore the biological functions of BAGs, we analysed Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of BAGs constructing ceRNA 
networks (P < 0.05 and Q < 0.1).

Prognostic modelling of feature BAGs
To further explore the impact of BAGs on patient survival, we used the random number method to divide 
NSCLC patients into training and validation groups at a ratio of 1:1 and then used least absolute shrinkage 
and selection operator (LASSO) and random forest algorithms to screen for prognostically relevant feature 
BAGs. First, in the training group, we used the "randomForest" package to construct a random forest model of 
OS.status predictions from BAGs by randomly cycling through all possible random numbers of the variables. 
The number of decision trees (ntree) contained in the random forest was 500, and the number of variables used 
in the nodes for binary trees (mtry) was 8. The Gini coefficient method was used to determine the importance of 
BAGs for OS.status prediction in the random forest model, and the top 10 BAGs were taken as feature genes. In 
addition, a LASSO regression model was constructed using the "glmnet" package with BAGs as the independent 
variable and OS.status as the dependent variable in the training group. The LASSO model was used for binary 
discrete dependent variables (family = "binomial"), and the cross-validated loss function was expressed in terms 
of the mean squared error (type.measure = "deviance") with a tenfold cross-test (nfolds = 10). The number of 
variables corresponding to the smallest mean square error was optimal, and these BAGs were screened to be 
feature genes. Finally, the intersection of the feature BAGs obtained by the two algorithms was taken and the 
intersecting genes were used to establish a multivariate Cox regression model for predicting the prognosis of 
NSCLC patients. The patient’s prognostic risk score was calculated using the sum of model genes and coefficient 
products and denoted as the BAG_Score. The training, validation, and entire groups were categorized into high 
and low BAG_Score groups based on the median BAG_Score of the training group. Finally, the accuracy of the 
prognostic model was assessed using receiver operating characteristic (ROC) curves and Kaplan‒Meier survival 
analyses, and multivariate Cox regression analysis was performed to assess the independent prognostic power 
of the BAG_Score with clinical factors.

Construction of a clinical nomogram
A nomogram is built on the basis of multifactor regression analysis, the integration of multiple predictive indica-
tors, and then the use of scaled line segments, according to a certain scale plotted on the same plane, to be used 
to express the interrelationships between the variables in the predictive model. To explore the clinical application 
value of the BAG_Score, we combined the BAG_Score with clinical factors (age, gender, pathologic M, patho-
logic N, pathologic T, tumour stage, tobacco smoking history and histological type) to construct a nomogram, 
assign scores according to each variable of the patient, and predict the 1-, 3-, and 5-year survival probability of 
the patient based on the total points. In addition, the accuracy of the nomogram for predicting OS for patient 
prognosis was assessed using calibration curves, cumulative risk curves, and decision curve analysis (DCA).

Immune correlation analysis of the BAG_Score
To investigate the correlation between the BAG_Score and immune cells, we used seven algorithms, TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and  EPIC34, to assess the abundance 
of immune cells in patients, and the Wilcoxon test was used to compare the degree of immune infiltration with 
high and low BAG_Scores. In addition, patients’ levels of immune escape and immune response were assessed 
using the Tumor Immune Dysfunction and Exclusion (TIDE)  database35 (http:// tide. dfci. harva rd. edu), compar-
ing the degree of sensitivity of the immune response in patients in the high and low BAG_Score groups.

Mutational landscape of different BAG_Score groups
To identify the mutation profiles of patients with different PPG_scores, the "maftools" package was used to create 
the mutation annotation format (MAF) for the LUAD and LUSC cohorts and visualize the mutational landscapes 
of high and low BAG_Scores. In addition, the tumour mutational (mutation frequency per million bases) was 
calculated and compared between the two groups.

Molecular docking
We obtained the protein structures of potential targets associated with β-elemene involved in building the 
BAG_Score model from the PDB database (https:// www. rcsb. org/). Then, the 2D structure of β-elemene was 
obtained from the PubChem database and converted into a 3D structure using Chem3D software. Finally, the 
small-molecule ligand β-elemene and the potential receptor protein were molecularly docked using AutoDock 
Vina 1.1.236 and PyMOL 2.5.537, and the free energy of molecular binding was calculated to evaluate the stability 
of the binding.

http://www.microrna.gr/LncBase
http://www.targetscan.org
http://tide.dfci.harvard.edu
https://www.rcsb.org/
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Statistical analysis
R software (version 4.2.1) and corresponding packages were used for statistical analysis. Cytoscape v3.9.1 was 
used to visualize the lncRNA-miRNA-mRNA network. Multivariate Cox regression was used to construct a 
prognostic model. The Kaplan‒Meier method and log-rank test were used to assess prognosis. Correlation 
analysis was performed using Pearson’s and Spearman’s methods. The Wilcoxon test was used to compare the 
differences between the two groups. All tests with P < 0.05 indicate statistical significance.

Results
Molecular characterization of AAGs
The workflow diagram of the study is displayed in Fig. 1. We performed a differential significance analysis of 
638 AAGs and obtained 162 AAGs that were differentially expressed in paracancerous and tumour samples of 
NSCLC patients (Fig. 2A). Univariate Cox regression analysis of these 162 differential AAGs yielded 43 AAGs 
that were significantly associated with prognosis (Fig. 2B). Among them, 38 AAGs were risk prognostic factors 
and most of them were positively correlated with each other (Fig. 2B). Then, by analysing the frequency of CNVs 
in prognosis-associated AAGs, we found that NDRG1, S100A7, and FADD had the highest frequency of copy 
number gain, whereas THBS1, LATS2, and PHLDA2 had the highest frequency of copy number loss, and that 
most of the AAGs had high-frequency CNVs (Fig. 2C), which often occurred on chromosomes 1, 10, 11, etc. 
(Fig. 2D). In addition, Fig. 2E shows that the 37 AAGs encode proteins that have interacting relationships with 
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Figure 1.  Workflow diagram.
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Figure 2.  Molecular characteristics of anoikis associated genes (AAGs) (A) Significant difference analysis of 
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each other. All these results indicate that AAGs are aberrantly expressed and genomically unstable in NSCLC 
tumour tissues and may contribute to the poor prognosis of patients through synergistic effects.

Generation and functional characterization of AAG clusters
To explore the molecular expression patterns of 43 prognostically relevant AAGs, we used consensus clustering 
to characterize the expression of AAGs in NSCLC. Based on the plot of the cumulative distribution function, it 
was determined that the clustering had optimal stability at k = 2 (Fig. 3A,B). PCA demonstrated the differential 
distribution of AAG cluster A and B (Fig. 3C). Kaplan‒Meier analysis illustrated that cluster A had a higher 
survival probability than cluster B (Fig. 3D, P < 0.001). Most AAGs were significantly highly expressed in cluster 
B compared to cluster A (Fig. 3E, P < 0.05). According to Fig. 3F, the clinical characteristics of gender, pathologic 
M, pathologic N, pathologic T, tumour stage and histological type were significantly different between the two 
clusters (Fig. 3F, P < 0.05). To explore the molecular functions of the differences between the two AAG clusters, 
we performed GSEA, which showed that compared with cluster A, cell cycle, cytokine receptor interaction, extra-
cellular matrix (ECM)-receptor interaction, focal adhesion, and pathways in cancer were significantly enriched 
in cluster B (Fig. 3G). All of these results reveal that NSCLC can be clustered into two clusters with different 
prognostic features, clinical traits, and molecular functions based on the expression of AAGs and that AAGs 
may be related to the cell cycle and the pathway of tumour development in NSCLC.
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Construction of the ceRNA network of anoikis and β‑elemene
First, we performed a significant difference analysis of all the genes of AAG cluster A and B using |logFC|> 0.585 
and P < 0.05 as thresholds, respectively, and obtained 731 mRNAs, 42 lncRNAs and 10 miRNAs significantly 
related to AAGs. Then, the DIANA-LncBase tool was used to compare the targeting relationship between the 
differential lncRNAs and miRNAs, and the relationship pairs of 9 miRNAs and 7 lncRNAs were obtained. The 
target genes of 9 miRNAs were predicted by TargetScan 8.0: (i) target genes of 9 miRNAs were compared with 
731 differential mRNAs, and 208 mRNAs related to AAGs were obtained; (ii) 15 genes were the target genes 
of AAG-associated miRNAs by comparison with 26 β-elemene target genes. In addition, 15 β-elemene target 
genes were subjected to Spearman correlation analysis with 208 AAG-related mRNAs, and 47 genes related to 
β-elemene and anoikis were obtained, including 40 differential mRNAs, 8 β-elemene targets, and the intersect-
ing gene PTGS2 (Fig. 4A,B). Finally, based on the lncRNA-miRNA and miRNA-mRNA targeting relationships 
and the correlation relationship between β-elemene and anoikis, a ceRNA network consisting of 7 lncRNAs, 
9 miRNAs, and 47 mRNAs was successfully constructed (Fig. 4C, Table 1). A total of 63 BAGs were obtained 
based on β-elemene and anoikis regulatory relationships in the network, which will help us further understand 
the role of β-elemene in regulating anoikis in the prognosis of NSCLC patients.

Functional enrichment analysis of BAGs
To explore the molecular functions of β-elemene and anoikis in NSCLC, we performed GO and KEGG enrich-
ment analysis of 63 BAGs (P < 0.05 and Q < 0.1). These genes were significantly enriched in functions and 
pathways such as regulation of cellular response to growth factor stimulus (GO:0,090,287), epithelium migra-
tion (GO:0,090,132), tissue migration (GO:0,090,130), focal adhesion (hsa04510), ECM-receptor interaction 
(hsa04512), and chemical carcinogenesis (hsa05204) (Fig. 5A,B). Among them, epithelial and tissue migration 
are important characteristics of tumour cells; focal adhesion is the key to signal transduction; the extracellular 
matrix (ECM) is closely related to the immune microenvironment; and chemical carcinogens are a common 
driver of tumours. This indicates that BAGs may be involved in tumour characteristics, carcinogenic factors, and 
immune function-related functions, thus affecting the disease process of NSCLC patients.

Prognostic BAG_Score model construction
To explore the prognostic role of the β-elemene- and anoikis-regulated ceRNA network, we screened and mod-
elled 63 BAGs. First, 970 patients were randomized into the training group (485 patients) and the validation 
group (485 patients). The random forest algorithm was used for the training group to construct a classifier for 
predicting OS.status, and according to the model error plot, the error tended to remain stable at a decision tree 
of 300 (Fig. 6A). The top 10 genes were obtained as feature BAGs based on the Gini coefficient method with the 
MeanDecreaseGini index as the importance score (Fig. 6B). Then, with OS.status as the response variable and 
the normalized expression matrix of the 63 BAGs as the independent variables in the training group, a tenfold 
cross-test was performed to obtain the smallest mean squared error (binomial deviation) of the model for a 
variable number of 24 (Fig. 6C). The intersection of the feature genes obtained by the two algorithms was taken 
to obtain seven feature BAGs for constructing the BAG_Score model (Fig. 6D). The risk score was calculated by 
multivariate Cox regression analysis as follows:

According to the BAG_Score model in Fig. 6E, PPARA  and VDR were prognostic protective factors for 
NSCLC (HR < 1 and P < 0.05), while KLF10 and VEGFC were prognostic risk factors (HR < 1 and P < 0.05). 
According to the risk heatmap, CNR2, PPARA , and VDR were relatively highly expressed in the low BAG_Score 
group, whereas AL365181.3, KLF10, and VEGFC were relatively highly expressed in the high BAG_Score group 
(Fig. 6F). These four genes not only are the key genes by which β-elemene regulates anoikis but also serve as 
potential prognostic molecular markers for NSCLC patients, providing a research basis for the study of effective 
targets for β-elemene.

Assessment of prognostic BAG_Score models
Multivariate regression analysis of clinical characteristics and the BAG_Score showed that age, T3, and the 
BAG_Score were independent prognostic factors in NSCLC patients (Fig. 7A, HR > 1, P < 0.05). ROC analysis 
showed that the area under the curves (AUCs) for 1-, 3-, and 5-year survival probability were all greater than 0.57 
in the training group, greater than 0.53 in the test group, and greater than 0.55 in the entire group (Fig. 7B,C,D). 
In particular, the AUC for 1- and 3-year survival in the entire group was greater than 0.61 (Fig. 7D), suggesting 
that the model has some prognostic predictive ability and is more accurate in predicting early-stage disease. 
Kaplan‒Meier analysis demonstrated that patients in the high and low BAG_Score groups had significantly 
different OS. Patients in the low BAG_Score group had a higher survival probability than those in the high 
BAG_Score group (Fig. 7E,F,G, log-rank test: P < 0.05). By evaluating the BAG_Score model, we found that the 
BAG_Score was an independent predictor and significantly correlated with NSCLC patient prognosis.

BAG_Score = (0.015) ∗ Exp
(

hsa−miR − 30b− 5p
)

+ (−0.243) ∗ Exp (PPARA) + (−0.22) ∗ Exp (CNR2)

+ (0.078) ∗ Exp (AL365181.3) + (0.294) ∗ Exp (KLF10)

+ (−0.25) ∗ Exp (VDR) + (0.247) ∗ Exp (VEGFC).
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Construction of the BAG_Score combined nomogram
To explore the value of applying the BAG_Score with clinical factors, we constructed a clinical nomogram of 
the combined BAG_Score, aiming at the prediction of patient OS at 1, 3, and 5 years. In the nomogram, age, 
BAG_Score, and pathologic T independently predicted patient prognosis (Fig. 8A). The calibration curves show 
that the OS predictions for the 1-, 3-, and 5-year nomograms are extremely close to the actual observed values, 
demonstrating the excellent accuracy of the model (Fig. 8B). The cumulative hazard analysis showed that the 
cumulative hazard was higher in patients with high-nomoRisk than in the low-nomoRisk group (Fig. 8C). In 
addition, the 1-, 3-, and 5-year DCA curves showed that the prognostic predictive power of the BAG_Score and 
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nomogram was superior to that of other clinical factors, resulting in a higher net clinical benefit for patients 
(Fig. 8D,E,F). The clinical nomogram with the BAG_Score has better predictive validity than single clinical fac-
tors and can provide an effective reference for the clinical prediction of OS in NSCLC patients.

Table 1.  ceRNA network constructed by interacting genes of β-elemene and anoikis.

Biotype Genes

lncRNA AL365181.3, DSCAM-AS1, MIR205HG, AC022509.3, LINC01605, MCF2L-AS1, BX470102.2

miRNA hsa-miR-31-5p, hsa-miR-1910-5p, hsa-miR-375, hsa-miR-30b-5p, hsa-miR-30d-5p, hsa-miR-210-3p, hsa-miR-196b-5p, hsa-
miR-147b-3p, hsa-miR-203a-3p

mRNA
PTPN1, PPARA, PTGS1, HSD11B1, CXCR3, HTR2A, CNR2, PTGS2, MYH9, BCL9L, DST, ACTN1, ELK3, DSE, AFAP1L2, 
CTSB, KLF10, COL5A1, INHBA, TGFB1, UNC5B, THBS2, LOX, TSHZ3, TIMP2, ADAMTS2, VDR, FN1, UBASH3B, 
PCDHGC3, SIRPA, SPARC, VEGFC, COL15A1, MYADM, PTAFR, FSTL1, THBS1, CHRDL1, ADH1B, PLA2G2D, COL12A1, 
CD248, VCAN, ITGA11, HAS2, ASPN
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Immunization and mutational landscapes for different BAG_Scores
Using seven immune cell assessment algorithms to correlate the intensity of immune cell infiltration and the 
BAG_Score in NSCLC patients, the abundances of a total of 65 kinds of immune cells were correlated with the 
BAG_Score. Most of the immune cell levels were high in the low BAG_Score group, such as CD4 + T cell central 
memory, CD4 + T cell effector memory, and CD8 + T cell (Fig. 9A) levels, suggesting that the immune cells 
were more active in patients with low BAG_Scores. The low BAG_Scores group had significantly lower TIDE 
scores than the high BAG_Score group, suggesting that the low BAG_Score group was less prone to immune 
escape (Fig. 9B). Moreover, the incidence of immune response reactions was significantly higher in the low 
BAG_Score group than in the high BAG_Score group (Fig. 9C). Among the modelling genes, CNR2 and PPARA  
were significantly correlated with more immune cells, CD8 T cells and follicular helper T cells were negatively 
correlated with the modelling genes, and neutrophils and M0 macrophages were positively correlated with the 
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Figure 7.  Evaluation of the BAG_Score model. (A) Independent prognostic analysis of BAG_Score and clinical 
variables. (B–D) ROC curves of the BAG_Score in the training (B), validation (C) and entire (D) groups. (E–G) 
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modelling genes (Fig. 9D). This indicates that the BAG_Score is closely related to the immune level of NSCLC 
patients and that patients with a low BAG_Score have stronger immune cell activity and a higher success rate 
of immune response occurrence.

To explore the relationship between the BAG_Score and genomic instability, we assessed and compared the 
differences in tumour mutation burden (TMB) between the high and low BAG_Score groups. The outcomes 
revealed that TMB was significantly higher in the high BAG_Score group than in the low BAG_Score group 
(Fig. 9E, P < 0.05). Moreover, the BAG_Score was significantly positively correlated with TMB (COR = 0.11, 
P = 0.0018), and AAG cluster A had a lower TMB and BAG_Score (Fig. 9F). Furthermore, visualizing the immune 
landscape of the high and low BAG_Score groups in Fig. 9G, gene alterations occurred more frequently in the 
high BAG_Score group (93.95%) than in the low BAG_Score group (92.82%). The most frequent mutation type 
in both groups was missense mutation. The most mutation-prone genes in both groups were TP53, TTN, MUC16, 
CSMD3 and RYR2. Except for TP53, all of these genes were mutated more frequently in the high BAG_Score 
group than in the low BAG_Score group (Fig. 9G). In summary, it can be concluded that patients in the high 
BAG_Score group have a higher probability of mutations and greater genomic instability, which may lead to 
faster tumour progression and worse prognosis.

Molecular docking of β‑elemene
According to the BAG_Score model, CNR2 and PPARA  are potential targets of β-elemene; KLF10, VDR and 
VEGFC all have a coexpression relationship with the β-elemene target PTGS1; PTGS2 and PTGS1 belong 
to the same gene family and are also potential targets of β-elemene; and in particular, PTGS2 is also a gene 
related to anoikis. Therefore, we selected CNR2, PPARA , PTGS1 and PTGS2, four key genes that have direct 
or indirect effects on prognosis in NSCLC, and conducted molecular docking with β-elemene. The molecular 
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docking effect of these four macromolecule receptors and the small-molecule ligand β-elemene was evaluated 
through AutoDock Vina 1.1.2. The results showed that the four proteins all have the ability to bind to β-elemene 
(Fig. 10A,B,C,D). Among them, the combination of PPARA  and β-elemene was the most stable (binding free 
energy − 6.0 kcal/mol), followed by PTGS2 (− 5.8 kcal/mol) and PTGS1 (− 5.2 kcal/mol), and CNR2 was the least 
stable (− 4.4 kcal/mol). This suggests that the four proteins all have strong affinity for β-elemene and may be 
potential prognostic targets for β-elemene in NSCLC patients.

Discussion
NSCLC is a serious global public health problem, and despite ongoing advances in diagnostic and therapeutic 
technologies, NSCLC remains an incurable disease for most  patients38. Curcumae Rhizoma has a long history of 
use in TCM clinical NSCLC treatment, and modern studies have demonstrated that Curcumae Rhizoma exerts 
anti-NSCLC effects via multiple pathways through a variety of active constituents, among which β-elemene is 
the most important sesquiterpene compound isolated from Curcumae Rhizoma and is rich in prominent antitu-
mour  activity39,40. Therefore, the continuous elucidation of the β-elemene antitumour mechanism is of increasing 
significance for exploring the innovative path of antitumour drug development.

In this study, we characterized the genetic and epigenetic profiles of anoikis in NSCLC patients by gene 
expression and clinical information from the LUSC and LUAD cohorts of the TCGA database. Anoikis genes 
have significant prognostic differences and genomic instability, suggesting that AAGs are closely associated with 
tumour development. To explore the molecular mechanisms regulating anoikis in NSCLC patients, we used 
consensus clustering to analyse the molecular expression patterns of patients. According to the AAG expression 
level, patients can be classified into two different AAG molecular subtypes, and NSCLC patients with different 
clusters have different prognoses, clinical features and immune functions.

Then, to further explore the molecular regulatory mechanism of AAGs on tumour cells, we successfully 
constructed a lncRNA-miRNA-mRNA regulatory network of β-elemene interaction with anoikis by using the 
targeting relationship of AAG-related lncRNAs, miRNAs and mRNAs as well as through the interactions between 
β-elemene and AAG-related genes. This ceRNA network demonstrated the rich interactions between β-elemene 
targets and related genes of anoikis in NSCLC, which provided a new theoretical basis and direction to further 
explore the antitumour mechanism of β-elemene in NSCLC.

In addition, to further explore the prognostic role of β-elemene in NSCLC, we screened and constructed a 
prognostic score model for all the genes in the ceRNA network using LASSO regression and a random forest 
algorithm. The scoring model can be used as an independent prognostic factor for the prediction of prognosis 
in NSCLC patients and in conjunction with clinical factors to construct a nomogram that provides the best net 
benefit for the prediction of survival in clinical patients. Molecular docking of β-elemene and model-related 
targets is beneficial for elucidating the mechanism of β-elemene in NSCLC patients.

A CNR2 B PPARA

C PTGS1 D PTGS2

Figure 10.  Molecular docking. Purple (A), red (B), blue (C) and green (D) represent the protein structures of 
CNR2, PPARA, PTGS1 and PTGS2, respectively. The wheat-coloured structure represents β-elemene.
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In the prognostic scoring model, we identified Peroxisome proliferator activated receptor alpha (PPARA ) and 
Cannabinoid receptor 2 (CNR2) as potential target genes of β-elemene, which we hypothesized could be regulated 
by upstream hsa-miR-1910-5p. PPARA  was the first PPAR isoform identified, and several studies have demon-
strated the oncogenic effects of PPARA  in NSCLC: PPARA  activation inhibits NSCLC growth and angiogenesis 
and reduces  metastasis41; the PPARA  agonist fenofibrate promotes NSCLC resistance to gefitinib by modulat-
ing in a PPARA -dependent manner the AMPK/AKT/forkhead box-1 (FOXO1) pathway to promote gefitinib-
induced apoptosis, thereby alleviating NSCLC resistance to  gefitinib42; N-Acetyl-Cysteine (NAC) in combination 
with PPARA  induces p53 and reduces p65 protein expression to inhibit 3-phosphoinositide-dependent protein 
kinase 1 (PDK1) activity, leading to inhibition of NSCLC cell  growth43. CNR2 is widely present in NSCLC tis-
sues, and its expression influences NSCLC development. Xu et al.44 found that deletion of CNR2 inhibited the 
progression of NSCLC cells, suggesting that CNR2 has a pro-carcinogenic role in NSCLC. Sarsembayeva et al.45 
demonstrated that CNR2 in the tumour microenvironment hinders the antitumour activity of CD8 T cells and 
NK cells, thereby promoting NSCLC growth. It has been shown that CNR2 expression in early-stage NSCLC is 
associated with prolonged survival and fewer lymph node  metastases46. Both PPARA  and CNR2, potential target 
genes of β-elemene, have been shown to be involved in the tumour development process of NSCLC. Among 
them, PPARA  is an oncogene, which is consistent with our observation, so we speculate that β-elemene exerts 
tumour suppression in NSCLC through the oncogene PPARA .

Both KLF transcription factor 10 (KLF10) and hsa-miR-30b-5p were modelled, and interestingly, KLF10 is a 
potential target gene for hsa-miR-30b-5p. We hypothesized that hsa-miR-30b-5p might improve the prognosis 
of patients by targeting KLF10. Studies have shown that miR-30b-5p is closely associated with the survival and 
prognosis of lung cancer  patients47,48. Qiu et al.49 found that miR-30b-5p plays an oncogenic role in lung cancer 
and sensitizes lung cancer cells to cisplatin by targeting low-density lipoprotein receptor-related protein-8 (LRP8). 
It has been demonstrated that miR-30b can induce anoikis resistance by downregulating Caspase 3  expression50.

We found that the anoikis-associated lncRNA AL365181.3 may be regulated by hsa-miR-31-5p to exert pro-
oncogenic effects. In previous studies, AL365181.3 was identified as a neutrophil extracellular trap-associated 
lncRNA and has potential prognostic value for LUAD  patients51. In addition, AL365181.3 has been identified 
as an iron death-associated lncRNA and has been verified to be significantly upregulated in a variety of NSCLC 
 cell52. Yu et al.53 found that miR-31-5p was heavily enriched in the exosomes of hypoxic LUAD cells and promoted 
LUAD invasion and migration by decreasing special AT-rich sequence-binding protein 2 (SATB2) expression 
and activating MEK/ERK signalling pathway transduction. Zhu et al.54 demonstrated that miR-31-5p is highly 
expressed in LUAD and determined that it promotes LUAD progression through the tensin1 (TNS1)/p53 axis. 
Zhu et al.55 demonstrated that miR-31-5P targeting the hypoxia inducible factor 1α inhibitor/hypoxia inducible 
factor (FIH/HIF) mechanism enhances the Warburg effect, induces glycolysis and promotes NSCLC cell pro-
liferation. Thus, both hsa-miR-31-5p and AL365181.3 are upregulated in NSCLC, leading to anoikis inhibition 
and exerting a potential pro-oncogenic role.

In addition, both vitamin D receptor (VDR) and vascular endothelial growth factor C (VEGFC) were pre-
dictive of NSCLC prognosis, and both were coexpressed with the target gene β-elemene and the target gene 
prostaglandin-endoperoxide synthase 1 (PTGS1). A high expression level of VDR is associated with elevated 
LUAD survival and with anti-proliferative and G1  arrest56. Several studies have shown that VDR polymor-
phisms can significantly reduce NSCLC  risk57,58. High expression of VEGFC is significantly associated with 
poor prognosis in NSCLC. Qin et al.59 found that coexpression of VEGFC and programmed cell death ligand 1 
(PD-L1) was an indicator of high risk of recurrence and poor prognosis in LUAD. Regan et al.60 demonstrated 
that VEGFC is a major driver of tumour lymphangiogenesis in NSCLC. PTGS1 is a coexpressed gene of VDR 
and VEGFC in NSCLC, while homologous prostaglandin-endoperoxide synthase 2 (PTGS2) is one of the target 
genes of β-elemene. PTGS1 and PTGS2 are important anticancer targets, and studies have shown that PTGS1 and 
PTGS2 are highly associated with lung  tumorigenesis61,62. Several studies have demonstrated the association of 
PTGS2 with anoikis: PTGS2-mediated prostaglandin E2 (PGE2) synthesis renders three-dimensionally cultured 
mesenchymal stem cells (MSCs) resistant to  anoikis63; PTGS2 provides hepatocyte growth factor-mediated resist-
ance to anoikis and promotes human head and neck squamous cell carcinoma  growth64; and a PTGS2 inhibitor 
(celecoxib) enhances the effect of cisplatin and induces anoikis in osteosarcoma through the PI3K/Akt  pathway65. 
For β-elemene, Su et al.66 found that β-elemene combined with 5-fluorouracil (5-FU) inhibited triple-negative 
breast cancer growth by interfering with the nuclear factor-kappaB (NF-κB)/PTGS2 pathway. Cai et al.67 found 
that β-elemene inhibited PTGS2 expression in NSCLC. From this, we hypothesize that the active substance 
β-elemene regulates the expression of the potential molecular markers VDR and VEGFC by acting on PTGS1 
and PTGS2 to affect anoikis in NSCLC cells.

In summary, by studying the interaction relationship between β-elemene targets and anoikis-related genes, 
this study obtained multiple gene pairs related to the prognosis of NSCLC patients, which provides new research 
ideas and a theoretical basis for the antitumour mechanism and clinical treatment of β-elemene-acting anoikis.

This study also has some limitations. External validation of the prognostic scoring model with other cohorts 
was not performed because of limited miRNA-seq data. Moreover, our data were obtained from public clinical 
databases, and relevant molecular and animal experiments are yet to be carried out to validate the interaction 
between β-elemene targets and genes related to loss of anoikis. At the same time, this article has certain shortcom-
ings in methodology. The prognostic prediction feature used in this article is the expression level of gene pairs, 
and the existing research on the interaction between ncRNAs is very  mature24,25. Single-cell multiomic data and 
related algorithms have also been widely used in gene/protein association  analysis68,69; in addition, the potential 
association between metabolites and diseases can be directly predicted based on deep learning  models70–72, but 
this article has not yet conducted an in-depth study of diseases based on metabolites. In the future, this research 
should be based on the theoretical model of the gene/protein signalling  network73–75, and use deep learning 
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model theory to connect with clinical practice to gain an in-depth understanding of the regulatory mechanism 
of the disease and find potential therapeutic targets.

Conclusion
We comprehensively analysed the genetic and clinical characteristics and prognosis of AAGs and, for the first 
time, discovered a rich interaction relationship between β-elemene and AAG-regulated genes in NSCLC patients. 
Furthermore, we observed the effect of interacting gene pairs on prognosis, which provided us with enlightening 
significance and a new perspective to further explore the mechanism of action of β-elemene in NSCLC patients.

Data availability
All of the data used in this investigation was obtained from public clinical databases. The data set numbers are 
mentioned in the publication. All dataset numbers are mentioned in the article and are publicly available. All 
data analysis in this study is based on the R software (version 4.2.1). The methods are all from the published R 
package, and the specific methods can be found in the text and references. Further inquiries can be directed to 
the corresponding author.
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