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Quantum discriminator for binary 
classification
Prasanna Date 1* & Wyatt Smith 2

Quantum computers have the unique ability to operate relatively quickly in high-dimensional spaces—
this is sought to give them a competitive advantage over classical computers. In this work, we propose 
a novel quantum machine learning model called the Quantum Discriminator, which leverages the 
ability of quantum computers to operate in the high-dimensional spaces. The quantum discriminator 
is trained using a quantum-classical hybrid algorithm in O(N logN) time, and inferencing is performed 
on a universal quantum computer in O(N) time. The quantum discriminator takes as input the binary 
features extracted from a given datum along with a prediction qubit, and outputs the predicted label. 
We analyze its performance on the Iris and Bars and Stripes data sets, and show that it can attain 99% 
accuracy in simulation.

Machine learning has become ubiquitous in almost every discipline under the sun1. While high-quality training 
data will only continue to increase in availability in the coming decades, it is projected that classical approaches 
to machine learning will fail to keep pace with this increase owing to the end of Moore’s Law2,3. Consequently, we 
must look towards alternative computing paradigms such as quantum and neuromorphic computing to address 
these scalability issues and develop more efficient machine learning methods4–6.

Quantum computing has the potential to significantly speed up machine learning tasks4,7. Quantum com-
puters use the quantum phenomena of superposition, tunneling and entanglement to perform computations8. 
As a result, they are able to operate in high-dimensional tensor-product spaces much faster than classical 
computers9,10. For certain applications such as integer factoring and searching, quantum computers are known 
to outperform classical computers11,12. We believe the ability of quantum computers to efficiently operate in these 
high-dimensional tensor product spaces can be leveraged to design efficient training and inferencing methods.

In this work, we focus on binary classification. We operate within the traditional two-step workflow in 
machine learning, where the first step is to extract features from the data, and the second step is to perform 
classification using a discriminant function. We further assume that binary features, which are crucial in many 
scientific and engineering domains for encoding categorical variables, for reducing the memory usage in embed-
ded system applications, and for reducing the computation time in real-time edge computing applications , have 
been extracted from the data; many approaches for extracting binary features already exist in the literature13,14. 
Therefore, our focus in this paper is to propose the Quantum Discriminator, which is a quantum discriminant 
model that performs binary classification on a set of binary features. We also present the hybrid quantum-classical 
training algorithm used to train the quantum discriminator in O(N logN) time.

As a proof of concept, we demonstrate that our model can be used to completely solve the 2-bit binary clas-
sification problem. We also benchmark the quantum discriminator on the Iris and the Bars and Stripes data sets. 
Our results demonstrate that under a proper feature extraction and training regime, the quantum discriminator 
can attain a near-perfect ( 99% ) accuracy in simulation on the these data sets.

Sections "Related work" and "Notation" cover the related work and notation used in this paper. The quantum 
discriminator, associated quantum-classical training algorithm, theoretical analysis and notes on generalizabil-
ity are presented in Section "The quantum discriminator". In Section "2-bit binary classification", we apply the 
quantum discriminator to the 2-bit binary classification problem as a proof of concept. In Section "Methods and 
empirical evaluation", we benchmark the performance of our model on the Iris and Bars and Stripes data sets.

Related work
Several machine learning approaches on universal quantum computers have been proposed in the literature4. 
Lloyd and Weedbrook as well as Dallaire-Demers and Killoran derive the theoretical underpinnings of quantum 
generative adversarial networks15,16. Blance and Spannowsky propose a variational quantum classifier for use in 
high energy physics applications17. Shingu et al. propose a variational quantum algorithm for Boltzmann machine 
learning18. Benedetti et al. propose quantum parameterized circuits as machine learning models. Quiroga et al. 
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propose a quantum k-means (QK-Means) clustering technique to discriminate quantum states on the IBM 
Bogota quantum device19. Apart from universal quantum computing approaches, adiabatic quantum machine 
learning approaches have also been proposed for traditional machine learning models such as regression and 
k-means clustering20,21.

The above literature describes quantum implementations of conventional machine learning models. Another 
line of research in quantum machine learning focuses on developing purely quantum or hybrid quantum-classical 
models that are novel and different from conventional machine learning models. Gambs recasts the quantum 
discrimination problem within the framework of machine learning and uses the notion of learning reduction 
to solve different variants of the quantum classification task22. Sentis et al. present a quantum learning machine 
for binary classification of qubit states that does not require quantum memory and produces classifiers that are 
robust to an arbitrary amount of noise23. Chen et al. propose a discrimination method for two similar quan-
tum systems and apply it to quantum ensemble classification24. Sergioli et al. propose a new quantum classifier 
called the Helstrom Quantum Centroid, which acts on density matrices that encode the classical patterns of a 
data set onto the quantum computer25. Park et al. focus on the squared overlap between quantum states as a 
similarity measure and examine the essential ingredients for the quantum binary classification, advancing the 
theory of quantum kernel-based binary classification26. In order to reduce the number of trainable parameters 
of a quantum circuit, Li et al. propose the Variational Shadow Quantum Learning (VSQL) framework27. Blank 
et al. present a distance-based quantum classifier whose kernel is based on the quantum state fidelity between 
training and test data28. They also conduct proof of principle experiments on the IBMQ platform. Silver et al. 
develop a framework for multi-class classification on NISQ devices and test its performance on MNIST, Fashion 
MNIST and CIFAR data sets29.

A number of approaches to quantum machine learning leverage the two-step workflow followed by tradi-
tional machine learning models. Havlicek et al. propose a quantum variational classifier and a quantum kernel 
estimator for classification problems30. Schuld and Killoran propose a nonlinear feature map that maps data to 
a quantum feature space and discuss two discriminant models for classification31. Bergou and Hillery propose 
a quantum discriminator that can distinguish between two unknown quantum states32. Lloyd et al. present a 
two-part quantum machine learning model, where the first part of the circuit implements a quantum feature 
map that encodes classical inputs into quantum states, and the second part of the circuit executes a quantum 
measurement, which acts as the output of the model33.

Both universal as well as adiabatic approaches for quantum machine learning have been proposed in the 
literature. However, there are several limitations in the current state-of-the-art. Most of the proposed approaches 
are based on variational quantum circuits. By definition, these are iterative quantum-classical hybrid approaches, 
and require multiple data exchanges between the quantum and the classical computer. These data exchanges 
necessitate frequent measurements of the quantum states, which introduce measurement errors as well as collapse 
the quantum superposition. When the superposition is collapsed frequently, the ability of quantum computers 
to operate efficiently in high-dimensional tensor product spaces is curtailed. So, it is desirable to minimize the 
use of classical computers in quantum machine learning methods.

The quantum discriminator proposed in this paper mitigates some of these challenges. Firstly, unlike some of 
the QML models that use classical computers during training and inferencing stages , the quantum discrimina-
tor uses classical computers to process O(N) data during training only. The classical computer is not used in the 
inferencing stage. This restricted use of the classical computer enables the quantum discriminator to operate 
in the high-dimensional tensor-product spaces efficiently. Next, we validate the quantum discriminator on the 
Iris and the Bars and Stripes data sets. Another advantage of the quantum discriminator is that it can be trained 
in O(N logN) time using O(N logN) classical bits and O(logN) qubits. Inferencing can be performed on the 
quantum discriminator in O(N) time using O(logN) qubits.

Notation
We use the following notation throughout this paper:

•	 R , N , B : Set of real numbers, natural numbers and binary numbers ( B = {0, 1} ) respectively.
•	 N: Number of data points in training data set ( N ∈ N).
•	 d: Dimension of each data point in the training data set ( d ∈ N).
•	 b: Dimension of each data point in the binary feature set of the training data set ( b ∈ N).
•	 B: Number of unique states that can be attained using b bits ( B = 2b).
•	 X: The training data set ( X ∈ R

N×d).
•	 Y: The training labels ( Y ∈ B

N ). If the ith data point belongs to class 0 (class 1), then yi = 0 ( yi = 1).
•	 X̂ : The binary feature set of the training data set X ( X̂ ∈ B

N×b ). x̂i ∈ X̂ contains the features corresponding 
to the ith data point xi ∈ X.

•	 P: The labels predicted by the quantum binary classification model ( P ∈ B
N ). Ideally, the predicted labels 

should be identical to the training labels (Y).

The quantum discriminator
Given a data point x which belongs to one of two classes (Class 0 or Class 1), we would like to predict the cor-
rect class for x. Generally, the binary classification model is characterized by a set of model parameters � . The 
workflow used for traditional machine learning classification models—such as support vector machines (SVM) 
and logistic regression—is comprised of 2-steps: (i) Feature extraction from the data; and (ii) Class determination 
by application of a discriminant function. The workflow governing our quantum model for binary classification 
is analogous to this 2-step workflow as shown in Fig. 1.
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In Fig. 1, we are given a data point x ∈ R
d whose class needs to be predicted. We first extract the binary 

features of x, denoted by x̂ ∈ B
b . Usually, the extracted features are domain specific, for example, Histogram of 

Oriented Gradients (HOG)34 and Scale-Invariant Feature Transform (SIFT)35 have been widely used in computer 
vision. The feature space could also originate from dimensionality reduction techniques like Principal Compo-
nent Analysis (PCA). So, we do not make any assumptions on the extracted features, except that they are binary. 
This feature set of the training data is denoted by X̂ in Fig. 1. Each point x̂ ∈ X̂ is a point on a b-dimensional unit 
hypercube, and there are B such points. Given x̂ , its equivalent quantum feature state is denoted by |x̂� , which is 
a point in b-dimensional Hilbert space.

In addition to preparing the quantum feature state in Fig. 1, we also prepare a qubit in the |0� state, which 
would serve as our prediction qubit |p� . The quantum feature state |x̂� = |x̂1 . . . x̂b� , as well as the prediction qubit 
in the |0� state serve as inputs to the quantum discriminator as shown in Fig. 2. The quantum discriminator ( U� ) 
is a 2B× 2B matrix, which takes as input |x̂� and |0� , and outputs |x̂� and the prediction |p� . We now describe U� , 
which is parameterized by � = {θ1, θ2, . . . , θB} , θi ∈ B , ∀i = 1, 2, . . . ,B.

Since all quantum operators are unitary matrices, it is crucial that U� be a unitary matrix. We now show that 
U� is unitary by showing that U†

�U� = U�U
†
� = I . Since U� is symmetric, U†

� = U� . Because θi ∈ B , the off-
diagonal elements in U†

�U� and U�U
†
� are zeros. The diagonal elements of U†

�U� and U�U
†
� are of the form 

(1− θi)
2 + θ2i  , which always equals unity. So, U†

�U� = U�U
†
� = I . Thus, U� is a unitary.

Number of binary features
We would like to extract b binary features so that the N points in the feature set span as much of the feature space 
as possible. This would ensure that the quantum discriminator trained as a result would be generalizable to any 
test data point that originates from the same distribution as the training data set. Since the size of the feature 
space is 2b , we have: N ≈ 2b , or b is O(logN).

Training the quantum discriminator
Figure 3 shows the training workflow for our quantum model for classification. We are given the training data 
set X and the training labels Y. We compute the binary feature set X̂ and prepare the quantum feature states 
|x̂1� . . . |x̂N � , where x̂i ∈ X̂, ∀i = 1, 2, . . . ,N . In addition to the quantum feature states, we also prepare the |0� 
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Figure 1.   Model workflow.

Figure 2.   The quantum discriminator.
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state. Given |x̂1� . . . |x̂N � , Y, and |0� , the goal of training the quantum discriminator is to find the model parameters 
� , that minimize a well-defined error function.

Some examples of error functions used in classification tasks are the Euclidean error (or L2-norm) in lin-
ear regression, negative log likelihood error in logistic regression, and the cross entropy error in deep neural 
networks. Negative log likelihood and cross entropy errors are generally used in probabilistic machine learning 
models, whereas, L2-norm is used for non-probabilistic machine learning models. For non-probabilistic machine 
learning models, the L1-norm is considered to be more robust than the L2-norm36. However, L2-norm is gen-
erally used in practice because it is differentiable and amenable to gradient computations. Since our quantum 
discriminator is not probabilistic and does not require gradient computations, we will use the L1-norm as the 
error function. Thus, the training process can be stated as follows:

where pi is the measured value of |pi� and the output state, |x̂i pi� equals U�|x̂i 0� ∀i = 1, 2, . . . ,N.

Algorithm 1.   Training the quantum discriminator.
Algorithm 1 outlines the training process for the quantum discriminator. The inputs to the model are the 

feature vectors x̂1, x̂2, . . . x̂N , and the training labels y1, y2, . . . , yN . We first initialize b and B. The length(z) 
function computes the length of z. We then set the vector τ = [2b−1, 2b−2, . . . , 20] . Next, we setup the quantum 
circuit shown in Fig. 2, where U� = I , by initializing all the model parameters θj to zero ( j = 1, 2, . . . ,B ). We 
then look at each feature vector x̂i ( i = 1, 2, . . . ,N ). If x̂i belongs to Class 1 (i.e. yi = 1 ), then we compute the 
index j as 1+ τ · x̂i , and set θj = 1 . We repeat this process for all N points in the training feature set X̂ . When 
Algorithm 1 terminates, it assigns all points in X̂ to their respective correct classes.

We now shed some light on why Algorithm 1 works. The input state to the quantum discriminator, |x̂ 0� , exists 
in (b+ 1)-dimensional Hilbert space and is in a superposition of all 2B possible states. As such, each of the B 
quantum feature states |x̂� , occurs twice: as |x̂ 0� and |x̂ 1� . These two states can be interpreted as |x̂� belonging to 
Class 0 or Class 1 respectively. While training the quantum discriminator, we select the correct class for each |x̂� . 
The rows and columns of U� that correspond to x̂ can be found at indices j = 1+ τ · x̂ and j + 1 , which can be 
leveraged to assign x̂ to Class 0 or Class 1 respectively. Initially, the 2× 2 sub-matrix at jth row and jth column 
of U� is an identity matrix because θj is initialized to 0. If x̂ belongs to Class 0, then this sub-matrix outputs |x̂ 0� 
for the input |x̂ 0� , which can be interpreted as x̂ being assigned to Class 0. On the other hand, if x̂ belongs to 
Class 1, then this sub-matrix must be changed to the Pauli-X gate (also called the bit-flip gate or the NOT gate), 
which is done by setting θj to 1. The Pauli-X gate at jth row and jth column of U� outputs |x̂ 1� for the input |x̂ 0� , 
which can be interpreted as x̂ being assigned to Class 1.

Theoretical analysis
We analyze the time and space complexity of training the quantum discriminator here. In Algorithm 1, lines 1 and 
2 require O(1) time and line 3 requires O(b) time. It may seem that line 4 requires O(B) time, but initializing θj to 
0 essentially refers to setting up the quantum circuit with U� = I . This entails setting up b+ 1 qubits, which takes 

(2)min
�

E(�) =
1
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Figure 3.   Training workflow.
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O(b) time. Computing the dot product on line 7 may take O(b) time and setting θj to unity on line 8 takes O(1) 
time. Since we may repeat lines 7 and 8 N-times in the worst case, the time complexity of Algorithm 1 is O(Nb) , 
which is the same as the size of the feature set X̂ . Since b is O(logN) from Section "Number of binary features", 
the time complexity is O(N logN) . Since we use O(Nb) classical bits for storing X̂ , Y and τ , and computing the 
dot product on line 7, the space complexity of Algorithm 1 is also O(N logN) . The qubit footprint of Algorithm 1 
is O(b) because we use b+ 1 qubits. Thus, it is possible to train the quantum discriminator shown in Fig. 2 in 
O(N logN) time, using O(N logN) classical bits and O(b) qubits. Subsequently, inferencing can be performed 
on a given input using the quantum circuit seen in Fig. 2 in O(N) time using just O(b) qubits.

While the time complexity to train a quantum discriminator model is O(N logN) , it must be noted that 
there is a classical overhead for synthesizing a quantum circuit from an arbitrary unitary matrix. In some cases, 
this overhead can be exponentially complex. While it remains out of the scope of this paper to devise efficient 
techniques for quantum circuit synthesis for a given unitary matrix, we postulate that since the unitary matrix 
given in Eq. (1) has a well-defined structure, a quantum circuit could be synthesized efficiently by leveraging 
this structure.

Generalizability
By generalizability, we refer to the ability of a machine learning model to make predictions on data points not 
encountered during training. The quantum discriminator has the ability to classify points in the training data 
set with a high degree of accuracy owing to an exponential number of model parameters ( θ1, θ2, . . . , θB ). It is 
highly complex and highly susceptible to overfitting the training data. This affinity to overfit is kept in check by 
the feature extraction process. If the extracted binary features are good and small in number ( b ≈ O(logN) ), the 
number of model parameters are also small ( B ≈ O(N) ). The subsequent quantum discriminator would have a 
lower tendency of overfitting and would be generalizable.

2‑bit binary classification
To demonstrate a proof of concept for the proposed quantum discriminator, we use it to classify 2-dimensional 
binary data points. There are four such data points: (0, 0), (0, 1), (1, 0) and (1, 1), located on the corners of a unit 
square. There are 24 = 16 ways of classifying these points into two classes as shown in Fig. 4. For example, one 
such way could be: (0, 0) and (0, 1) belong to Class 0, and (1, 0) and (1, 1) belong to Class 1, as shown by Case 
10 in Fig. 4. In Fig. 5, we show the quantum circuits that can classify each of the 16 cases in Fig. 4. In Table 1, 
we present the unitary matrices of the quantum discriminator models that classify each of the 16 cases in Fig. 4.

We now elaborate Case 4 from Fig. 4. In Case 4, the points (0, 0), (0, 1) and (1, 1) belong to Class 0, while the 
point (1, 0) belongs to Class 1. The corresponding quantum circuit (Case 4 in Fig. 5) used for classification takes 
as input the two quantum data features ( |x1� and |x2� ) as well as the prediction qubit initialized to |0� . Next, it 
applies the Pauli-X gate on |x2� , followed by a Toffoli gate (also called the CCNOT gate) with |x1� and |x2� as the 
control bits and |0� as the target bit, followed by another Pauli-X gate on |x2�.

The corresponding unitary operator ( U� ) is shown in the Case 4 of Table 1. It looks like an identity matrix 
with one caveat. The 2× 2 sub-matrix starting at the fifth row and fifth column is a Pauli-X operator instead of 
a 2× 2 identity matrix. Note that the first and second rows/columns of all U� shown in Tables 1 correspond to 
the data point (0, 0). Similarly, third and fourth rows/columns correspond to the data point (0, 1), fifth and sixth 
rows/columns correspond to (1, 0), and seventh and eighth rows/columns correspond to (1, 1). The starting 
indices (1, 3, 5 and 7) of these 2× 2 sub-matrices can be computed from the equation on line 7 of Algorithm 1. 
For each data point in each of the 16 cases, we can independently update the classification operator ( U� ) so that it 
correctly classifies the said data point. In this way, the quantum discriminator is able to achieve near perfect accu-
racies on binary classification problems, provided appropriate binary features have been extracted from the data.

Methods and empirical evaluation
Hardware and simulator details
We validated the performance of the quantum discriminator on the Iris and Bars and Stripes data sets. All our 
experiments were conducted on the IBM Jakarta processor as well as in numerous noise-free simulations using 
the QASM simulator in IBM Qiskit. The IBM Jakarta quantum computer consists of 7 qubits with a total quan-
tum volume of 16. The average CNOT and readout errors on this machine were 0.015 and 0.035 respectively. 
The classical computer used in the training process was a desktop workstation having Intel Core i4-4670K CPU, 
running at 3.4 GHz, 64-bit operating system and 16 GB RAM.

The Iris data set
The Iris data set is pervasive as a benchmark in machine learning, and is small enough to be embedded on cur-
rent quantum computers. The data set contains 150 data points gathered from a sample of Iris flowers. Each data 
point consists of four measurements taken on the given Iris flower along with its species. The recorded attributes 
for each flower are petal length, petal width, sepal length, and sepal width measured in centimeters. The 150 data 
points are split evenly between three species of Iris: Iris-Setosa, Iris-Versicolor, and Iris-Virginica.

Using this data set, a model can be created whereby the petal/sepal lengths and widths of a given Iris datum 
can be used to predict its species. For the purpose of testing the quantum discriminator—which is designed for 
binary classification—the data set was restricted to just the Iris-Setosa and Iris-Virginica samples, which were 
labeled as Class 0 and Class 1 respectively. This reduced the size of the data set to 100 data points.
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Feature extraction
Before training the quantum discriminator, binary features must be extracted from the data. In this case, three 
features were gathered from the data by imposing threshold values for the sepal length, sepal width, and petal 
length. The fourth attribute, petal width, was not considered in this feature extraction process. Specifically, our 
extracted data consisted 3-tuples of binary numbers, x̂ = (a1, a2, a3) ∈ B

3 , where a1 = 1 if the sepal length was 
recorded to be above 5.50 cm, a2 = 1 if the sepal width was recorded to be above 3.00 cm, a3 = 1 if petal length 
was recorded to be above 3.00 cm, and each ai was set to 0 if it failed to meet these respective threshold values. 
This feature extraction procedure resulted in a separable data set. Moreover, the extracted data set was found to 
span only three-quarters of our entire binary feature space, which has a theoretical size of 23 = 8 , i.e. 8 unique 
configurations of binary features.

Training
Training experiments were conducted in which the 100 data points were partitioned at random into a training 
data set of size N, and the remaining 100− N data points were reserved for validation. This parameter N, was 
varied from N = 4 , where at most half of feature space could be sampled, to N = 80 , which corresponds to a 
train/test split scheme commonly used to evaluate machine learning approaches. Training was performed in 
accordance with Algorithm 1.

The theory behind the quantum discriminator prescribes the number of features (b) to be O(logN) . Since 
the size of the smallest and largest training sets in our experiments were 4 and 80 respectively, we would need 
to have between log2 4 and log2 80 binary features, i.e., 2–6 binary features. As mentioned above, we selected 3 
binary features for this task, which is consistent with the assumptions of the quantum discriminator.

Figure 4.   16 cases of the 2-bit binary classification problem.
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In each trial, a quantum circuit was constructed using IBM’s Qiskit software development kit in order to evalu-
ate our model on each point in the validation set. Specifically, for each point in validation, (xi , y) , a circuit was 
constructed which initializes a blank quantum register of 4 qubits into the state |x̂i 0� before passing into a series 
of gates equivalent to the unitary transformation obtained from the model parameters which were extracted in 
training. The predicted label, p, was then recorded for comparison with its true value y.

Results on the Iris data set
The three training sizes tested in this work are N = 80, 8, and 4. In the former two cases, experiments consist-
ing of 300 trials each were conducted, with each experiment being performed once in the QASM simulator and 
once again on the IBM Jarkarta processor, meaning there were four experiments in total for these two cases. In 
each trial, N data points were selected at random to form a training set, which was used to train the quantum 
discriminator in accordance with Algorithm 1. The trained model was used for inferencing on each point in the 
validation set for benchmarking purposes. Benchmarking on the N = 4 case was conducted analogously, except 
just one experiment was conducted (in simulation) and the number of trials was increased to 600.

In the case of N = 80 , the discriminator obtained an average validation accuracy of 99.15% with a standard 
deviation of 1.878% in simulation. This is at par with the performance of some of the Variational Quantum Clas-
sifier (VQC) approaches in the literature37–39. On the Jakarta processor, however, the discriminator obtained 
a much lower accuracy of 89.13% on average with a standard deviation of 6.97% . A histogram depicting the 
distribution of model accuracies across the 300 trials in both cases is depicted in Fig. 6.

When the training set was lowered to size N = 8 , the average validation accuracy dropped to 94.98% with a 
standard deviation of 9.047% in simulation, whereas the average accuracy on the Jakarta processor fell to 82.37% 
with a standard deviation of 8.403% . The distribution of model accuracies on validation is similarly displayed in 
Fig. 7. Figure 8 displays a box plot of model accuracies on quantum hardware for N equals 80 and 8.

In the case of N = 4 , the average model accuracy across our 600 trials fell to 84.41% , with an increased 
standard deviation of 15.04% ; the distribution of which can be seen in Fig. 9. Additional statistics were gathered 
in this case. Inaccurate predictions made on validation were separated into Type I (false positive) and Type II 
(false negative) errors. It was found that all errors made by the models belong to Type II, meaning the model had 
a false positive rate of 0 in each simulated trial. In other words, each simulated model had a precision of 100% . 
It was found that false negative rate (also called the miss rate) was 0.3074 on average with a standard deviation 
of 0.2934. This distribution, seen in Fig. 10 was heavily skew-right; i.e. the distribution was more concentrated 
on the side closer to a false-negative rate of 0. Consequently, the average recall (also called sensitivity or hit rate) 
was 0.6925 on average with the same standard deviation.

Figure 5.   Quantum circuits for each case of the 2-bit binary classification problem.
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While these results are reported for the Iris data set and should be interpreted accordingly, we believe these 
are still very interesting. The fact that the quantum discriminator can achieve 84% accuracy when trained on 
just 4% of the data can be used to build approximate machine learning models with moderately high accuracy 
very quickly. Such models could then be refined quickly in subsequent training iterations, thereby reducing the 
training times.

The bars and stripes data set
To further evaluate the performance of our quantum discriminator, a Bars and Stripes data set of size 100 was 
generated on a 3x3 grid. Each cell in this grid can either be illuminated or not. In this experiment, a grid is said 
to be a bar if it has a rectangle of illuminated cells whose width is strictly greater than its height. Similarly, a 
grid is said to be a stripe if it has a rectangle of illuminated cells whose height is strictly greater than its width. 
Accordingly, all bars and stripes viable under this formulation are displayed in Fig. 11. Using this scheme, 100 
samples were drawn from a uniform sample of these viable bars and stripes to form the data set used in this 
experiment. The bars and strips were assigned to class 0 and 1 respectively. The Bars and Stripes experiments 
were run in simulation only.

Methodology
Nine binary features were extracted from each data point by reading the cells of each grid in lexicographic order, 
recording a one if the given cell is illuminated and a zero otherwise. Two experiments were conducted on the Bars 
and Stripes data set in a similar fashion to the Iris data set in Section "The Iris data set". Specifically, 300 trials 
(each) were conducted in noise-free simulation whereby the data set was randomly partitioned into a training 
set of size N and the remaining data were reserved for validation of the resulting model; the training sizes used in 
this case were N = 80 and N = 11 . The latter quantity was chosen as it is the minimal number of points needed 
to sample all of the Class 1 data in our binary feature space.

Results on the bars and stripes data set
In the case of N = 80 , the discriminator obtained an average validation accuracy of 98.38% with a standard 
deviation of 3.647% in simulation. This is at par with some of the QML approaches in the literature such as the 
hybrid neural networks and better than some others such as VQCs40,41. When N was lowered to 11, the average 
validation accuracy dropped to 71.02% with a standard deviation of 6.765% in simulation. Figure 12 displays 
how the distribution of model accuracies on validation varies in simulation with this change in N. These results 
were very similar to the Iris data set.

Table 1.   Unitary matrices for each case of the 2-bit binary classification problem.
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Discussion
The Quantum Discriminator fared extremely well in both of the cases where the size of the feature set was 
O(logN) for the Iris as well as the Bars and Stripes data sets. There was a noticeable gap ( ≈ 10% ) in both Iris 
cases ( N = 80 and 8) between the discriminator’s performance in simulation and on the IBM Jakarta processor. 
This discrepancy can be attributed to the fact that the state of the qubit as well as the inter-qubit connections on 
the quantum hardware are extremely sensitive to any kind of noise (thermal, radiation, vibrational etc.) in today’s 
quantum computers. Consequently, it is extremely difficult to maintain the qubit states for longer periods of time, 
and the qubits have a tendency to lose their state during the computation—this is called decoherence. Qubit 
decoherence is known to result in considerably poor performance on the hardware as compared to simulation 
for many quantum algorithms.

To mitigate this issue of decoherence, error correction regimes are often incorporated into quantum algo-
rithms. However, no error-correction was performed in this experiment as it adds considerable overheads in 
terms of both time and space complexity. It did not seem warranted considering that only four qubits were 
required for the Iris experiments, and only ten qubits were required for the Bars and Stripes experiments under 
our feature extraction regime. It stands to reason that the disparity in performance of the simulated and real-
world models would increase dramatically as the number of qubits required for inferencing increases when 
working with today’s quantum computers. Having said that, it is expected that with hardware and engineering 
improvements in the future, quantum computers would become less noisy, more reliable, and larger in size. These 
fault-tolerant quantum computers are expected to run quantum algorithms at par with (if not better than) the 
current simulation results. In both data sets, it was observed that the quantum discriminator can obtain mod-
erately high accuracies even when the training set is sparse, meaning approximate models can be quickly and 
efficiently generated for subsequent refinement.

It is important to note that the quantum discriminator uniquely benefits from the quantum computers, which 
leverage the unique properties of quantum superposition and quantum entanglement. Specifically, the unitary 
matrix governing the quantum discriminator is 2b × 2b . This exponential matrix becomes intractable to store 
and compute on a classical computer as b increases. However, this can be done on a quantum computer using 
only b qubits.

Conclusion
Alternative computing paradigms, such as quantum computing, present a new frontier in which novel machine 
learning techniques can be developed to address the current limitations of classical learning techniques. In this 
work, we outline a quantum machine learning technique for binary classification called the quantum discrimi-
nator. The quantum discriminator is used as a discriminant function to infer the label of a given datum from 
its extracted features. The quantum discriminator is a 2B× 2B unitary matrix, which is parameterized by B 
parameters. It can be trained in O(N logN) time, using O(N logN) classical bits and O(b) qubits. Inferencing 
on the quantum discriminator can be performed in O(N) time using O(b) qubits. We demonstrated that this 
model can be used to completely solve the 2-bit binary classification problem Section "2-bit binary classification". 
Furthermore, we evaluated its performance on the Iris data set, which is a benchmark machine learning data set, 
and also on a 3x3 Bars and Stripes data set. This empirical evaluation demonstrates the discriminator’s potential 
to generate highly accurate, inherently precise models on a separable data sets when appropriate binary features 
have been extracted from the data.

In our future work, we would like to evaluate the discriminator’s performance on problems involving larger, 
more complex data sets, such as MNIST. We would also like to extend the quantum discriminator to multi-class 
classification problems. Lastly, we would like to investigate purely quantum training algorithms for training the 
quantum discriminator as opposed to the hybrid quantum-classical training algorithm described in this paper.

Figure 6.   Histogram of validation accuracies on hardware and simulator in the case of N = 80 for the Iris data 
set across 300 trials each.
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Figure 7.   of validation accuracies on hardware and simulator in the case of N = 8 for the Iris data set across 
300 trials each.

Figure 8.   Box plot of model accuracies on the IBM Jakarta processor for N = 80 and N = 8 across 300 trials 
each.

Figure 9.   Histogram of validation accuracies on simulator in the case of N = 4 for the Iris data set across 600 
trials.
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Data availibility
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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Figure 10.   Box plot of model accuracies on simulator across 600 trials on the IBM Jakarta processor for N = 4.

Figure 11.   A diagram depicting all possible bars (on the left) and stripes (on the right) in our data set. Here, 
cells are illuminated in green. Bars and stripes are assigned the classes 0 and 1 respectively.

Figure 12.   Histogram of validation accuracies on simulator in the case of N = 80 and 11 for the Bars and 
Stripes data set across 300 trials each.
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