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COVID‑19 screening in low 
resource settings using artificial 
intelligence for chest radiographs 
and point‑of‑care blood tests
Keelin Murphy 1*, Josephine Muhairwe 2, Steven Schalekamp 1, Bram van Ginneken 1, 
Irene Ayakaka 2, Kamele Mashaete 2, Bulemba Katende 2, Alastair van Heerden 3,4, 
Shannon Bosman 3, Thandanani Madonsela 3, Lucia Gonzalez Fernandez 5,6, Aita Signorell 7,8, 
Moniek Bresser 7,8, Klaus Reither 7,8,9 & Tracy R. Glass 7,8,9

Artificial intelligence (AI) systems for detection of COVID-19 using chest X-Ray (CXR) imaging 
and point-of-care blood tests were applied to data from four low resource African settings. The 
performance of these systems to detect COVID-19 using various input data was analysed and 
compared with antigen-based rapid diagnostic tests. Participants were tested using the gold standard 
of RT-PCR test (nasopharyngeal swab) to determine whether they were infected with SARS-CoV-2. A 
total of 3737 (260 RT-PCR positive) participants were included. In our cohort, AI for CXR images was 
a poor predictor of COVID-19 (AUC = 0.60), since the majority of positive cases had mild symptoms 
and no visible pneumonia in the lungs. AI systems using differential white blood cell counts (WBC), or 
a combination of WBC and C-Reactive Protein (CRP) both achieved an AUC of 0.74 with a suggested 
optimal cut-off point at 83% sensitivity and 63% specificity. The antigen-RDT tests in this trial 
obtained 65% sensitivity at 98% specificity. This study is the first to validate AI tools for COVID-19 
detection in an African setting. It demonstrates that screening for COVID-19 using AI with point-of-
care blood tests is feasible and can operate at a higher sensitivity level than antigen testing.

As the SARS-CoV-2 (coronavirus) pandemic unfolded around the world in 2020, scientists and clinicians scram-
bled for tools to aid with diagnosing the associated respiratory illness, coronavirus disease 2019 (COVID-19). 
The gold standard tests—reverse transcription polymerase chain reaction (RT-PCR)—were in short supply 
worldwide and additionally took approximately 2 days to produce a result. Antigen-based tests were still being 
developed and were not widely available. At the same time, health services around the world experienced large 
numbers of people presenting with respiratory symptoms and urgently needed to determine which patients 
should be isolated and treated for COVID-19. A large body of scientific literature emerged at that time, detail-
ing various routes through which COVID-19 could potentially be diagnosed, particularly using imaging or 
laboratory markers. These methods included analysis of chest imaging including computed tomography (CT) 
or X-Ray1–6 and investigation of blood markers7–12. There has additionally been a great deal of work on artificial 
intelligence (AI) methods to automatically diagnose COVID-19 using CT imaging13–22, chest X-Rays23–34 , audio 
samples35,36, or blood test results37–41. The chest X-Ray (CXR) is a low-cost image which can be acquired using 
portable equipment and operated by personnel with minimal training, making it a very useful diagnostic tool in 
resource-constrained settings. Many commercial products have been launched for the detection of tuberculosis 
(TB) on CXR42 in regions where TB is endemic and resources are limited. Furthermore, while many areas of 
the world do not have access to hospital laboratories, point-of-care (POC) blood testing can be achieved at low 
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cost and with immediate results. Both CXR and POC blood-testing, therefore, suggest themselves as feasible 
and cost-effective diagnostic tools for COVID-19 in low resource settings. In such regions, there is additionally 
a severe shortage of medical experts to interpret radiological images or blood test results and AI tools provide a 
way to bridge this gap. In this study we describe the application of AI for analysis of CXR and POC blood-tests 
in a COVID-19 screening trial, using different AI systems26,37. The AI systems were applied to data collected 
from four sites in low resource settings in Lesotho and South Africa.

Methods
Recruitment
The participants included in this work were recruited through two separate trials, TB TRIAGE+ and MistraL as 
described in more detail below. All data collection was carried out in accordance with relevant guidelines and 
regulations including the International Council for Harmonisation Good Clinical Practice (South Africa and 
Lesotho) and the Protection of Public Information Act (South Africa). The study protocols were approved by 
the Ethikkommission Nordwest- und Zentralschweiz in Switzerland and the National Health Research Ethics 
Committee of Lesotho (TB TRIAGE+ and MistraL), as well as the Provincial Department of Health of KwaZulu-
Natal and the Human Sciences Research Council Research Ethics Committee in South Africa (TB TRIAGE+). 
All participants provided written informed consent. In case of illiteracy, the adult participant signed with a 
thumbprint and an independent person signed as a witness.

Participants enrolled for COVID-19 screening in either trial had a chest X-Ray acquired as well as a blood test 
to determine white blood cell (WBC) differential counts (HemoCueR WBC DIFF). This is a point-of-care finger 
prick blood test which provides counts for the five types of WBC (neutrophils, eosinophils, basophils, mono-
cytes and lymphocytes). All participants received an antigen based SARS-CoV-2 rapid diagnostic test (RDT) 
(STANDARD Q COVID-19 Ag, SD Biosensor, Republic of Korea) and RT-PCR, both using nasopharyngeal 
swabs. Participants in TB TRIAGE+ additionally had CRP levels measured in a finger prick blood test (Afin-
ionTM CRP), as part of the standard protocol for that trial. The recruitment process is illustrated in Fig. 1 and 
described in more detail below. All tests for a single participant were carried out on the same day. Participants 
under 18 years of age were excluded for the purpose of this study since the AI systems in question had not been 
validated on paediatric data.

TB TRIAGE+: The TB TRIAGE+ trial43 was set up to detect tuberculosis (TB) in rural populations in Africa. 
It is testing the diagnostic accuracy, effectiveness and cost-effectiveness of an AI solution, CAD4TB, for CXR 
image analysis as well as the CRP blood marker as a means of screening and triaging for TB in community 
settings. At the height of the coronavirus pandemic, detection of COVID-19 was added to the TB TRIAGE+ 
protocol since the two diseases have overlapping symptoms and it was expected that both would be present in the 
community. The participants included in this study were recruited from the Butha-Buthe Government District 
Hospital, Lesotho and the Caluza Clinic, Pietermaritzburg, KwaZulu-Natal, South Africa if they had any of the 
four cardinal symptoms of TB (cough, weight loss, night sweats, fever). A CXR of all enrolled participants was 
acquired as well as a CRP blood test. During the COVID-19 recruitment period, enrolled participants had an 
additional WBC differential count blood test as well as a SARS-CoV-2 antigen test and an RT-PCR test (both 
using nasopharyngeal swabs).

MistraL: The MistraL trial44 was set up specifically in response to the coronavirus pandemic in Lesotho to 
determine optimal methods of screening for COVID-19. Patients presenting to St Charles Missionary Hospital 
Seboche or to Government District Hospital of Mokhotlong, as well as initially to the Butha-Buthe Govern-
ment District Hospital, were screened at the hospital entry point and invited to participate in the MistraL 
trial if they were experiencing any COVID-19 symptom (fever, cough, fatigue, shortness of breath, sore throat, 
muscle pain, diarrhoea, loss of taste/smell, weight loss or night sweats) or if they reported close contact with a 
positive case. A CXR image and a POC WBC differential blood test was obtained for all participants as well as 

Figure 1.   The recruitment process for participants included in this study.
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a nasopharyngeal swab rapid antigen test and a nasopharyngeal swab RT-PCR test as the reference standard for 
COVID-19 infection.

Artificial intelligence software
The CAD4COVID-XRay AI software26 (Delft Imaging, the Netherlands) was developed in April 2020 to detect 
COVID-19 from chest X-Ray images. This system, which uses deep neural networks for prediction, was first 
pre-trained using CXR data acquired from various settings prior to the coronavirus pandemic. The system was 
then fine-tuned (re-trained) for the detection of COVID-19 (defined by RT-PCR results) using CXR images from 
participants presenting at a Dutch emergency department with respiratory symptoms in March and April 2020. 
Full details of the training data and procedure can be found in26. In testing on a dataset from a different Dutch 
hospital the system had a performance comparable with six independent radiologists in identifying COVID-19 
from the CXR26. The CAD4COVID-XRay system takes a single frontal CXR as input and produces a score in 
the range 0–100 indicating the likelihood of COVID-19. It additionally outputs a heatmap image to illustrate 
the regions of abnormality on the CXR as determined by the system.

In July of 2020, a second AI system was developed to detect COVID-19 using a combination of data from 
laboratory testing and CXR37. This system uses deep neural networks and is designed and trained to be robust 
to missing data, and while it is trained on participants with up to 28 inputs (27 laboratory results and a CXR 
score) it is optimized to provide the best possible results on any subset of these inputs available in a given set-
ting. Training and test data for this system came from the same two independent Dutch hospitals that provided 
training and test sets for CAD4COVID-XRay. Full details of the network architecture, data and training pro-
cedure can be found in37. For the purpose of this article we refer to this second AI system as COVID-LAB+ to 
indicate its purpose to detect COVID-19 using any combination of available laboratory results or CXR score. 
COVID-LAB+ takes between 1 and 28 numeric values as input—the operator must identify each input as 1 of 
27 possible laboratory test results or as a CXR score. It outputs a numeric score (0–100) indicating the likelihood 
of COVID-19 infection based on analysis of the given inputs. Figure 2 provides a schematic illustration of how 
these two AI systems operated in our study using the data collected as described in section “Recruitment”. For 
clarity, this diagram omits mention of other possible inputs to COVID-LAB+, i.e. laboratory tests which were 
not available in our trials.

Neither CAD4COVID-XRay nor COVID-LAB+ were re-trained for the purpose of this study. There was 
insufficient data available from our study to do so and there was no evidence to suggest that the systems would 
not generalise well.

Figure 2.   Schematic illustration of the AI systems (dark blue boxes) used in this study. The green boxes indicate 
a point-of-care blood-test procedure. The pale blue boxes indicate numeric values which are inputs or outputs of 
the systems as shown. The COVID-LAB+ system does not require all the indicated inputs to be present.
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Radiological reading
To provide a radiological reference for the CXR images in the study a chest radiologist with 8 years of experience 
was asked to view and rate a subset of the CXR data collected. This subset was chosen to include CXRs from all 
participants with a positive RT-PCR test result. To balance the data set, each RT-PCR positive participant was 
then matched with a participant with negative RT-PCR, from the same trial with sex and age matched (within 
3 years). In this way the subset of data contained equal numbers of RT-PCR positive and negative participants.

The radiologist was blinded to the RT-PCR results and images were presented in a randomly shuffled order. 
For each image the radiologist was asked to provide a score from 0 to 3, using the same radiological rating system 
that was employed in the CAD4COVID-XRay study26 (or to rate the image as unreadable). The scores assigned 
have the following definitions: 

0.	 normal, no finding
1.	 abnormal but no lung opacity consistent with pneumonia
2.	 lung opacity consistent with pneumonia (unlikely COVID-19)
3.	 lung opacity consistent with pneumonia (consistent with COVID-19)

The radiologist performance for COVID-19 prediction is calculated in terms of sensitivity and specificity using 
different cut-off thresholds on these scores. For this purpose, the scores 0 and 1 are merged, since both represent 
a clear opinion that no pneumonia related abnormality is present. Since COVID-19 pneumonia is difficult to 
distinguish from other-cause pneumonia on CXR a cut-off threshold at scores>1 is expected to produce higher 
sensitivity, whereas with the cut-off at scores>2 specificity is expected to improve.

AI system analysis
In all cases the RT-PCR result is considered as the reference standard for COVID-19 infection. To determine 
the most effective screening tools for detection of COVID-19, AI systems using different inputs and combina-
tions thereof are examined as follows: CAD4COVID-XRay: This system requires only a CXR image as input and 
outputs a likelihood score for COVID-19 (0–100). A receiver operating characteristic (ROC) curve is plotted by 
applying all possible thresholds to the set of scores, generating sensitivity and specificity points. COVID-LAB+: 
The COVID-LAB+ system is run using all possible combinations of inputs available. These include:

•	 CXR+WBC+CRP
•	 CXR+WBC
•	 CXR+CRP
•	 WBC+CRP
•	 WBC
•	 CRP

In each case ROC analysis is provided by thresholding on the scores output by the system. Area under the ROC 
curve is provided for the data from each trial (TB TRIAGE+ and MistraL) separately as well as for the combined 
datasets. It should be noted that the COVID-LAB+ systems are run on varying datasets, with each dataset being 
selected to include participants with the required input data parameters available. The sensitivity and specificity 
of the rapid antigen test used in the MistraL trial is additionally plotted for comparison with the different AI 
systems.

Statistical analysis
To make a statistical comparison of the AI system results, de Long’s test45 was used. For this comparison, only 
participants where all test results were available were included, to ensure exactly the same test subjects were pro-
vided to every system. Results for TB TRIAGE+ (participants with CXR, WBC, CRP, RT-PCR) and for MistraL 
(participants with CXR, WBC, RT-PCR) are shown separately. The scores from all tested AI systems were used 
to determine whether the achieved AUC values are statistically different. The p-values for each comparison are 
provided and p< 0.05 is considered to represent a statistically significant difference.

Results
Recruitment
Data from a total of 5763 participants was collected across both trials between December 2020 and August 2022. 
Local guidelines in Lesotho were amended to remove the need for PCR testing in late 2021. In keeping with those 
guidelines, MistraL participants from 19th November 2021 onwards did not routinely receive RT-PCR testing 
and are thus excluded from this analysis. After the exclusion of children under 18 years of age, 5394 participants 
remained with RT-PCR results available for 3738 (69%) of these. A total of 260 positive RT-PCR tests were 
recorded in adults. For pragmatic and operational reasons, some participants did not receive all tests available 
in the trial in which they were enrolled. Figures 3 and 4 provide detailed information on numbers of participants 
recruited in each trial and which tests those participants received. One participant with no test results (except 
RT-PCR) was excluded from further analysis. Table 1 provides additional demographic and clinical information 
about the participants in the included cohort. Detailed information on the recruitment procedure, and results 
for the MistraL study can be found in44. A publication from the TB TRIAGE+ study is in preparation.

Numbers of participants enrolled, excluded and finally included in our analysis. Figures in brackets indicate 
the subset which had a positive RT-PCR result.
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COVID‑19 prediction using chest X‑Ray
A total of 3231 participants were included with CXR imaging (see Fig. 4), of which 168 had positive RT-PCR 
tests. A subset of 336 images was selected (including all 168 images from participants with positive RT-PCR) 
and reviewed by a chest radiologist. Of these, 21 images were deemed unreadable by the radiologist, meaning 
the image quality was insufficient to draw a conclusion. Table 2 provides a summary of the remaining 315 scores 
assigned, categorized by RT-PCR results. The chest radiologist obtained a maximum sensitivity of 0.3 with speci-
ficity of 0.73 for detection of COVID-19 in this dataset. The CAD4COVID-XRay system achieved an AUC = 

Table 1.   Demographic information for the 3737 participants whose data is included in our analysis (as per 
Fig. 3).

TB TRIAGE + MistraL Total

Included 1301 (100%) 2436 (100%) 3737 (100%)

Gender

 Female 595 (45.7%) 1475 (60.6%) 2070 (55.4%)

 Male 705 (54.2%) 961 (39.4%) 1666 (44.6%)

 Ambiguous/Intersex 1 (0.0%) 0 (0.0%) 1 (0.0%)

Age, median (IQR) 46 (33–57) 44 (31–61) 45 (32–60)

BMI, median (IQR) 22 (19–27) 24 (21–29) 24 (20–28)

Illness Severity (Self Reporting)

 Mild / Moderate 1208 (93%) 1772 (77%) 2980 (82.8%)

 Severe 91 (7%) 529 (23%) 620 (17.2%)

Severe Illness (Health Professional Opinion)

 Yes 11 (0.8%) 37 (1.6%) 48 (1.3%)

 No 1290 (99.2%) 2264 (98.4%) 3554 (98.7%)

Symptoms

 Cough 109 (8.4%) 852 (39.4%) 961 (27.8%)

 Fever 1007 (77.4%) 2016 (99.6%) 3023 (90.9%)

 Fatigue 796 (61.2%) 1794 (78.1%) 2590 (72.0%)

 Muscle Pain 1120 (86.1%) 2096 (91.2%) 3216 (89.4%)

 Loss sense of smell 1180 (90.7%) 1853 (92.2%) 3033 (91.6%)

 Other symptoms 1252 (96.2%) 2271 (98.9%) 3523 (97.9%)

HIV status

 Negative 653 (50.2%) 1377 (56.5%) 2030 (54.3%)

 Positive 628 (48.3%) 540 (22.2%) 1168 (31.3%)

 Refused testing 20 (1.5%) 12 (0.5%) 32 (0.9%)

 Unknown 0 (0.0%) 507 (20.8%) 507 (13.6%)

Figure 3.   Numbers of participants enrolled, excluded and finally included in our analysis. Figures in brackets 
indicate the subset which had a positive RT-PCR result.
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0.60 on the same dataset scored by the radiologist, and also AUC = 0.60 when applied to the full dataset of 3231 
images. The ROC data is depicted in Fig. 5 along with the sensitivity and specificity achieved by the radiologist.

On the subset of X-ray data from TB TRIAGE+ the CAD4COVID-XRay system achieved an AUC of 0.64, 
while on that from MistraL the AUC was 0.57 (Table 3).

COVID‑19 prediction using COVID‑LAB+
The COVID-LAB+ AI system was used to predict COVID-19 using all possible combinations of X-Ray and blood 
tests available. ROC analysis of these experiments is illustrated in Fig. 6, where the sensitivity and specificity of 
antigen based RDT is also plotted for comparison. At the sensitivity of the RDT (65%), none of the AI systems can 
achieve a specificity close to that obtained by the RDT (98%). However, the AI systems are capable of operating 
at higher sensitivity levels, albeit with a reduced specificity. The WBC counts were the most predictive input for a 
single test, obtaining AUC of 0.74. While CRP alone has a poor performance (AUC = 0.54), when combined with 
WBC counts, the COVID-LAB+ system could also obtain an AUC of 0.74, boosting sensitivity and specificity 
at the central part of the ROC curve compared to WBC alone. The suggested optimal cut-off using this system 
achieved 83% sensitivity and 63% specificity. Only the system with CRP alone (AUC = 0.54) has an improved 
performance when CXR is added as an additional input (AUC = 0.64).

Comparing results on the subsets of data from TB TRIAGE+ and MistraL respectively (Table 3) the systems 
using X-Ray perform similarly in both, with a slightly higher AUC on the TB TRIAGE+ dataset, while the system 
using WBC alone has an identical AUC of 0.74 on both datasets.

Statistical analysis
The set of 1250 participants with all test results needed for AI evaluation (RT-PCR, CXR, WBC, CRP) was 
included for statistical testing. Scores for all AI systems on this subset of participants were used to generate 
AUC values and determine whether the differences in these AUC values were statistically significant45. Table 4 
indicates the AUC values on this dataset, which were very similar to those achieved on the full datasets. This 
table also provides p-values for each system comparison. All other AI systems are significantly better than the 

Figure 4.   Information on the numbers of participants recruited in each trial and how many results were 
recorded for the various tests available. Figures in brackets indicate numbers with a positive RT-PCR test. 
CXR, chest X-Ray; WBC, white blood cell differential count; RDT, rapid diagnostic test (antigen based); CRP, 
C-reactive protein test.

Table 2.   Scores assigned by the chest radiologist on the 315 images which he deemed readable. Percentages 
are calculated per RT-PCR category. For ROC analysis the scores of 0 and 1 are combined since both are 
interpreted as having no pneumonia-related abnormality.

RT-PCR positive RT-PCR negative Total

Score 0: (normal, no finding) 100 (65%) 97 (60%) 197

Score 1: (abnormal, but non-pneumonia) 7 (5%) 22 (13%) 29

Score 2: (abnormal, possible pneumonia, unlikely COVID-19) 28 (18%) 37 (23%) 65

Score 3: (abnormal, possible pneumonia, likely COVID-19) 18 (12%) 6 (4%) 24

Total 153 (100%) 162 (100%) 315
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system using CRP alone as a predictor. Furthermore, any system including WBC as an input is significantly better 
than any system that does not include WBC. No statistically significant difference could be detected between the 
four systems which include WBC as an input (which also have the highest AUC values among all those tested.)

Discussion
In this work, AI systems for detection of COVID-19 have been applied to input data collected from participants 
in resource-constrained settings in Africa during the COVID-19 pandemic. Although many studies have been 
published on the use of AI systems for COVID-19 detection, to our knowledge this is the first published appli-
cation of AI for COVID-19 screening in an African setting, and one of few applied outside a hospital setting to 
participants without severe respiratory symptoms at presentation.

At the time of commencing data collection (December 2020) there was an expectation that, during the study, 
waves of COVID-19 would be encountered, where case numbers would be high and disease would often be 
severe. In this context, a much higher incidence of radiologically evident COVID-19 pneumonia was expected, 
suggesting AI for chest X-ray (CAD4COVID-XRay) as a suitable predictor of infection. This was the scenario 
already encountered in many countries around the world, and in which CAD4COVID-XRay had been demon-
strated to perform well26. In fact, there was an overall low incidence of COVID-19 cases (7%) during the study 
and the majority of these had mild symptoms. This may be attributed to fluctuations in variants circulating and in 
population immunity which substantially affect disease prevalence and severity. For this reason, CAD4COVID-
XRay had a relatively poor performance at identifying RT-PCR+ participants, since they rarely had pneumonia 
visible in the lungs. This is supported by the radiological reading where the chest radiologist found that 100 of 153 
images from RT-PCR+ particpants were completely normal in appearance, and only 18 of the 153 were suggestive 
of COVID-19 pneumonia. The similarity in performance between CAD4COVID-XRay and the radiologist sug-
gests that the AI system was operating correctly (did not require re-training) but that the information pertaining 
to COVID-19 (signs of pneumonia) was simply absent from the majority of X-ray images. While many studies 
have suggested that chest X-ray analysis can identify COVID-19 infection (both with or without AI)1,5,23–34 it is 
important to clarify that this is only applicable in settings where disease is severe and participants report with 
acute respiratory symptoms indicative of pneumonia which would result in relevant radiological findings.

The COVID-LAB+ system was employed to investigate the potential of combinations of POC tests for predic-
tion of COVID-19. In designing the study, differential WBC was selected as an inexpensive POC blood test which 
showed promise as a COVID-19 predictor in earlier studies9,37. CRP was additionally included in this work since 

Figure 5.   COVID-19 prediction using X-Ray analysis only. The ROC curves show the results for 
CAD4COVID-XRay using all available CXR images (orange) and a subset selected for radiological reading 
(blue). The blue points indicate the performance using the scores from the radiologist on this same subset at two 
cutoff points (i.e. scores>2 considered positive and scores>1 considered positive).
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it was collected as part of the TB TRIAGE+ protocol and had also been indicated as a potentially useful marker of 
COVID-19 prognosis46–48. Our results indicate that WBC count alone is a strong predictor of COVID-19 infec-
tion and all AI systems using it performed significantly better than those without it. No significant difference 
was found between any of the four systems that incorporated WBC (alone or in combination) although the sug-
gested optimal operating point (sensitivity = 0.83, specificity = 0.63) was achieved by combining CRP with WBC.

The AUC value (0.73) achieved by COVID-LAB+ using the combination of X-Ray + WBC + CRP is substan-
tially lower than that reported using an identical set of input variables in the first publication on the system (AUC 
= 0.919)37. This is likely related to the fact that the data in that study (both training and test data) was collected 
at emergency departments in Dutch hospitals at the beginning of the pandemic, where patients presented with 
severe respiratory complaints. The variants in circulation at that time, as well as lack of population immunity 
typically resulted in more severe disease manifestation. Further investigation is required to verify whether severity 
of illness was the only reason for the disparity in AUC values between this study and the earlier one.

At the time that this study commenced, antigen-based testing was not commonly used or well validated, 
although it has since become commonplace in many parts of the world. The performance of antigen RDTs in 

Figure 6.   ROC results for the COVID-Lab+ system, run using different combinations of input parameters. 
Note that different curves are created from different populations, depending on data available for specific input 
parameters. The sensitivity and specificity obtained by antigen-based testing is additionally plotted. WBC, White 
blood cell counts; CRP, C-Reactive Protein; RDT, rapid diagnostic test (antigen based).

Table 3.   AUC scores for all systems, per individual study (TB TRIAGE+ and MistraL) and combined. Note 
that CRP was not collected in the MistraL study, resulting in some empty cells. ROC curves for combined 
datasets are provided in Figs. 5 and  6.

System performance (AUC) by dataset

TB TRIAGE+ MistraL Combined

CAD4COVID-XRay 0.64 (n = 1296 (81 PCR+)) 0.57 (n = 1935 (87 PCR+)) 0.60 (n = 3231 (168 PCR+))

WBC 0.74 (n = 1261 (82 PCR+)) 0.74 (n = 1639 (104 PCR+)) 0.74 (n = 2900 (186 PCR+))

WBC+CRP 0.74 (n = 1255 (82 PCR+)) 0.74 (n = 1255 (82 PCR+))

X-Ray+WBC+CRP 0.73 (n = 1250 (81 PCR+)) 0.73 (n = 1250 (81 PCR+))

X-Ray+WBC 0.73 (n = 1256 (81 PCR+)) 0.65 (n = 1382 (56 PCR+)) 0.70 (n = 2638 (137 PCR+))

X-Ray+CRP 0.64 (n = 1288 (81 PCR+)) 0.64 (n = 1288 (81 PCR+))

CRP 0.54 (n = 1293 (82 PCR+)) 0.54 (n = 1293 (82 PCR+))
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this study (sensitivity = 0.65, specificity = 0.98) concurs with many previous works which report relatively low 
sensitivity values but very high specificity49, although there is evidence that antigen based tests are more effective 
in subjects with high viral load50. In many environments, however, such as healthcare settings, a test with higher 
sensitivity is desirable, even for cases with milder or earlier stage disease, in order to reduce the possibility of 
COVID-19 transmission among vulnerable populations. A triage test with high sensitivity could enable accurate 
selection of participants recommended to receive RT-PCR testing, for example. Future investigation should 
determine whether antigen-based RDT results could be usefully incorporated as an input to our COVID-LAB+ 
system, potentially improving specificity without loss of sensitivity. Although the need for tests which can detect 
SARS-CoV-2 has reduced over the course of time, the benefits of combining different types of inputs (such as 
blood markers and radiological findings) could also be investigated in other applications such as the accurate 
detection of TB, for example.

Our study had some limitations. Since the data was collected over a period of almost 2 years there were 
fluctuations in the prevalence of COVID-19, population immunity, and in the circulating variants during that 
period44. No data on participant vaccination status was collected although COVID-19 vaccines were introduced 
in South Africa and Lesotho on a phased basis starting in 2021. Variations in such factors may have affected 
the predictive values of the diagnostic tests used51. Furthermore, a substantial number of those recruited in the 
MistraL study (39%) had no result for RT-PCR as they were recruited after November 2021 when local guidelines 
indicated antigen-based RDT instead of RT-PCR testing. This may result in imbalances in the data included 
from the two trials, in terms of circulating variants and prevalence. Finally, due to limited numbers of positive 
COVID-19 cases and limited scope of this manuscript, we did not perform subgroup analysis using age, HIV-
status, clinical severity or other factors. Future work may indicate the role of these factors in diagnosis.

Diagnostic AI systems in resource-constrained settings are limited, compared to those used elsewhere, in that 
the input data must generally be acquired at low-cost, at point-of-care and by personnel with minimal training. A 
review by Hirner et al.52 of tools for COVID-19 screening, triage and severity scoring found none that had been 
validated in low or middle income countries, despite 51 of the identified tools being considered feasible for use 
in such settings. This study is, to the best of our knowledge, the first to demonstrate that such tools can be suc-
cessfully deployed in a low-resource setting. Participants were people presenting at local medical facilities and all 
tests were carried out on the same day, using temporary facilities on-site, without interruption to their standard 
care. This demonstrates the feasibility of collecting such point-of-care imaging and blood tests in low resource 
settings where patient follow-up is difficult and therefore cost-effective screening tools with immediate results 
are of utmost importance. This novel study lays the foundations for future AI development for low resource set-
tings, with the potential, in the future, to detect a variety of conditions based on low-cost point-of-care testing.

Data availibility
A spreadsheet containing all data used for the analysis shown in this work will be placed in a permanent public 
repository on zenodo.org upon publication. All data will be fully anonymized. Details of the repository, includ-
ing DOI will be provided here at that time.
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Table 4.   Results of statistical comparison of the scores from different systems on data from TB TRIAGE+ and 
MistraL respectively. Values shown are p-values from deLong45 testing. Comparison was performed on (a) 
results from the 1250 TB TRIAGE+ participants with CXR, WBC, CRP and RT-PCR test results available (81 
PCR+) and (b) results from the 1382 MistraL participants with CXR, WBC and RT-PCR test results available 
(56 PCR+) (shown in [italics] throughout). AUC values using only these specific participants are indicated 
in the table (using [italics] for MistraL data). The * symbol is used to indicate p-values lower than 0.05 
(statistically significant difference between the systems)..

COVID-LAB+

WBC (AUC = 0.74  
[0.69])

WBC+ CRP (AUC 
= 0.74)

X-Ray+
WBC+ CRP (AUC 
= 0.73)

X-Ray+
WBC (AUC=0.73  
[0.65])

X-Ray+ CRP (AUC 
= 0.64) CRP (AUC =0.55)

CAD4COVID-XRay 
(AUC = 0.65
 [0.55])

0.02* [0.01]* 0.01* 1.65E−04* 1.41E−04* 
[1.65E−03]* 0.10 0.01*

COVID-LAB+

WBC (AUC = 0.74  
[0.69]) 0.79 0.63 0.74[0.16] 0.01* 1.66E−05*

WBC+CRP (AUC 
= 0.74) 0.49 0.62 4.04E−03 8.37E−07

X-Ray+WBC+CRP 
(AUC = 0.73) 0.33 4.81E−05 4.33E−06

X-Ray+WBC (AUC = 
0.73  [0.65]) 6.52E−05 9.50E−06

X-Ray+CRP (AUC 
= 0.64) 0.01*
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